
THE CITY OF KINGSVILLE LANDFILL TCEQ PERMIT MSW 235-C

PERMIT AMENDMENT APPLICATION Volume 2 of 6

CITY OF KINGSVILLE, TEXAS

September 2018 Revision 0

HANSON PROJECT NO. 16L0438-0003

PART III ATTACHMENT 4 GEOLOGY REPORT

THE CITY OF KINGSVILLE LANDFILL TCEQ PERMIT MSW 235-C

PERMIT AMENDMENT APPLICATION PART III, ATTACHMENT 4 GEOLOGY REPORT

CITY OF KINGSVILLE, TEXAS

September 2018

Revision 0

Prepared by

TAD A. GASS

GEOLOGY
11496

107/11/2018

HANSON PROJECT NO. 16L0438-0003

Contents

1.0 INTRODUCTION	1
1.1 Project Information	1
1.2 Scope of Investigation	1
1.3 Previous Subsurface Investigations	1
1.4 Current Subsurface Investigation	2
2.0 REGIONAL INFORMATION	4
2.1 Regional Physiography	4
2.2 Regional Stratigraphy	5
2.3 Regional Hydrogeology	7
2.4 Water Quality	7
2.5 Groundwater Recharge	8
3.0 SITE CHARACTERIZATION	8
3.1 Site Topography	8
3.2 Subsurface Investigation Report	8
3.2.1 Site Exploration	8
3.2.2 Field Drilling, Sampling, and Logging	8
3.3 Site Stratigraphy	9
3.3.1 Body I- Caliche Bearing Channel	9
3.3.2 Body II- Sand Filled Channel	9
3.3.3 Body III- Clayey Sand (Clay Dune)	10
3.3.4 Body IV- Clayey Sand (Clay Dune)	10
3.3.5 Sandy Clay Bed	10
3.3.6 "Orange" Sand	10
3.3.7 Light Olive Green to Gray Clay	11
3.4 Geologic Fault and Seismicity Assessment	11
3.5 Geologic Processes	11
4.0 GEOTECHNICAL REPORT	12
4.1 Laboratory Results	12
4.2 Geotechnical Analysis	13

4.2.1 Settlement Analysis	. 13
4.2.2 Slope Stability	. 13
5.0 CONCLUSIONS	. 13

APPENDICES

APPENDIX 1 – GEOLOGY REPORT DATED MAY 29, 1998 AND JUNE 29, 1998, AND REVISED SEPTEMBER 30, 1998, WITH APPENDICES AND GROUNDWATER CHARACTERIZATION REPORT DATED NOVEMBER 1997, REVISED JUNE 1998 AND SEPTEMBER 1998 **APPENDIX 2** – TOLUNAY-WONG ENGINEERS, INC. GEOTECHNICAL ENGINEERING STUDY **APPENDIX 3** – HANSON PROFESSIONAL SERVICES, INC. SOIL BORING REPORT

ATTACHMENTS

ATTACHMENT 1 – LOCATION MAP

ATTACHMENT 2 – SOIL BORING LOCATION MAP

ATTACHMENT 3 – GROUNDWATER CONTOUR MAP,

EXHIBIT 1 – GROUNDWATER ELEVATION TABLE

EXHIBIT 2 – ANALYTICAL DATA SUMMARY

ATTACHMENT 4 – SEISMIC-HAZARD MAPS FOR THE CONTERMINOUS UNITED STATES

LIST OF TABLES

TABLE 1-1 – SOIL BORINGS

TABLE 2-1 – GEOLOGIC FORMATIONS FOR KLEBERG COUNTY

TABLE 4-1 – LABORATORY TESTING PROGRAM

1.0 INTRODUCTION

1.1 Project Information

The City of Kingsville Landfill is located approximately 1.45 miles southeast of the City of Kingsville city limits, at the northeast corner of the intersection of Farm to Market Road 2619 and East County Road 2130 as shown on Attachment 1- Location Map. The initial facility was permitted by the State of Texas in 1977 (Permit No. 235), and initial filling operations began in February 1977. The original 40 acre landfill is currently closed and is not Subtitle D compliant. The City of Kingsville was authorized a permit amendment for a 40-acre lateral landfill expansion of the site in 1986 (Permit No. 235-A). The approved Permit No. 235-A was developed and Sector 1 received its first load of waste material in March 1992. The City of Kingsville was again authorized a permit amendment in 1999 (Permit No. 235-B). This amendment increased the permitted acreage from 80 acres to approximately 120 acres and a maximum height of final cover of 125 feet-msl. The Kingsville Landfill is currently operating under Permit No. 235-B and subsequent permit modifications and/or authorizations.

The City of Kingsville Landfill is currently comprised of 120 acres. The City of Kingsville wishes to increase the capacity of the landfill site via a vertical and horizontal expansion through a permit amendment. The proposed permit amendment will increase the total permitted area to 176.33 acres. This will be accomplished by incorporating additional acreage to the northeast and southwest of the current permitted boundary. The existing active 108-acre waste disposal area will be expanded to a total of 121.3-acres. Other parts of this permit amendment are to; convert the current Type IV waste sector to accept Type I waste, request approval to process and dispose of liquid wastes and used tires, and to revise the floor contour and final contour plans to incorporate the vertical and horizontal expansion previously discussed.

1.2 Scope of Investigaation

The purpose of this study is to provide geological and geotechnical data for the design of the city of Kingsville Landfill. The scope of services included reviewing previous subsurface studies, summarizing the engineering properties of the subsurface materials and determining certain geotechnical design criteria such as estimated settlement and future slope stability.

1.3 Previous Subsurface Investigations

Previous subsurface investigations were conducted for the City of Kingsville Landfill to characterize subsurface conditions and assist with the development of landfill disposal cell designs. The previous testing and soils exploration work was performed by:

- Finch Energy and Environmental Services, Inc. (FEE)
- and Professional Service Industries, Inc. (PSI).

These reports are included in Appendix 1. A total of 23 soil borings were installed at this site at varying depths and testing intervals during these previous investigations.

Finch Energy and Environmental Services, Inc. conducted an investigation of subsurface materials at the Landfill location. Twelve (12) soil borings were installed and sampled. Laboratory tests were performed to determine the engineering properties of the subsurface materials. The report discussed the soils, sediments, and geologic and groundwater conditions encountered by FEE, Inc. during the hydrogeological/geotechnical investigations at the City of Kingsville Landfill. The report also discussed the characteristics of the soil samples collected and tested during the investigation.

As requested by the Texas Natural Resource Conservation Commission (TNRCC) in an NOD letter, Professional Service Industries, Inc. also conducted a subsurface investigation for FEE, Inc. and the City of Kingsville to evaluate the soil and groundwater conditions present at the site and to better define the aquiclude below the landfill site. A total of eleven (11) soil test borings were drilled and laboratory tests were performed to determine the engineering properties of the subsurface materials. This additional study discussed the types of subsurface materials encountered in the test borings and the results of the field and other laboratory tests performed for this site.

1.4 Current Subsurface Investigation

As previously identified, the proposed permit boundary for this facility will incorporate 176 acres of land with 128 acres being utilized for waste disposal. In accordance with 30 TAC 330.63 (e)(4)(B), a facility of this size requires 23-26 borings with 13-15 of these borings being installed at least 30 feet below the elevation of deepest excavation (EDE) and the remainder of the borings being installed at least 5 feet below the EDE. Before this subsurface investigation, there were fifteen (15) borings that were installed at least 5 feet below the EDE and four (4) of those borings were installed at least 30 feet below the EDE.

For this investigation, nine (9) soil borings were advanced to a minimum depth of 30 feet below the elevation of the deepest excavation of 22.5 ft and one (1) additional soil boring was advanced to 5 feet below the elevation of the deepest excavation to supplement the existing facility data. The borings were drilled in the locations identified on Attachment 2- Soil Boring Location Map. Attachment 2 also identifies the locations of the previously installed soil borings. Attachment 3 identifies groundwater elevations in addition to the existing groundwater monitoring system.

The soil borings for the current subsurface investigation were installed by Tolunay-Wong Engineers, Inc. Representative samples were collected with split-barrel sampling procedures in general accordance with the procedures for "Penetration Test and Split-Barrel Sampling of Soils" (ASTM Designation D-1586) and Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM Designation D-1587). Borings were dry-augered using hollow stem augers to advance the boreholes until groundwater was encountered or until the boreholes

became unstable and/or collapsed. Wash rotary drilling techniques were used as necessary in order to continue advancing the borings to their required completion depths. Samples were identified according to boring number and depth, protected against moisture loss, and transported to the laboratory for analysis. After obtaining all required soil samples and groundwater level readings, the soil borings were properly plugged and abandoned in accordance with 16 TAC Chapter 76, Texas Department of Licensing and Regulation (TDLR)-Water Well Drillers and Pump Installers rules. Table 1-1 below identifies specific details for both existing and newly installed soil borings. For this investigation, borings B30 through B41 were installed. These borings were advanced to depths ranging from 33.5 to 86 feet beneath the existing ground surface. Tolunay-Wong Engineers, Inc. prepared a Geotechnical Engineering Study Report that is provided in Appendix 2. Hanson Professional Services also prepared a soil boring report that has been included as Appendix 3.

Table 1-1 Soil Borings

		Sun Dui	5°		
Boring	Surface	Boring	Bottom	≥5 Feet	≥30 Feet
Identification	Elevation	Depth (ft.	Elevation	Below	Below
	(ft.	bgs)	(ft.	E.D.E?	E.D.E?
	AMSL)		AMSL)		
B-1	59.25	42	17.25	YES	NO
B-2	52.64	27	25.64	NO	NO
B-3	56.1	37	19.1	NO	NO
B-4	58.01	39	19.01	NO	NO
B-5	60.54	48	12.54	YES	NO
B-6	55.46	38	17.46	YES	NO
B-7	61.05	36	25.05	NO	NO
B-8	59.79	43	16.79	YES	NO
B-9	62.51	44	18.51	NO	NO
B-9R	41.41	17	24.41	NO	NO
B-10	49.78	29	20.78	NO	NO
B-11	60.2	33	27.2	NO	NO
B-12	52.38	48	4.38	YES	NO
B-13	59.13	50	9.13	YES	NO
B-14	49.94	42	7.94	YES	NO
B-15	48.39	37	11.39	YES	NO
B-16	55.96	47	8.96	YES	NO
B-17	41.35	33	8.35	YES	NO

Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

Boring	Surface	Boring	Bottom	≥5 Feet	≥30 Feet
Identification	Elevation	Depth (ft.	Elevation	Below	Below
	(ft.	bgs)	(ft.	E.D.E?	E.D.E?
	AMSL)		AMSL)		
B-18	50.04	42	8.04	YES	NO
B-21	52.41	84	-31.59	YES	YES
B-23	49.5	86	-36.5	YES	YES
B-24	47.38	72	-24.62	YES	YES
B-25	61.12	88	-26.88	YES	YES
B-30	45.99	82.5	-36.51	YES	YES
B-31	58.37	68	-9.63	YES	YES
B-32	48.46	82.5	-34.04	YES	YES
B-33	64.51	86	-21.49	YES	YES
B-34	61.14	43	18.14	NO	NO
B-35	64.5	72.5	-8	YES	YES
B-36	59.13	68	-8.87	YES	YES
B-37	45.52	48	-2.48	YES	NO
B-38	41.64	58	-16.36	YES	YES
B-39	60.26	68	-7.74	YES	YES
B-40	52.31	33.5	18.81	NO	NO
B-41	50.2	62.5	-12.3	YES	YES

E.D.E.-Elevation of Deepest Excavation (22.5' Above Mean Sea Level (AMSL))

2.0 REGIONAL INFORMATION

2.1 Regional Physiography

As discussed in Finch Energy and Environmental Services' Report (Appendix 1, Section 2.0), the site of the landfill is located in the part of the Gulf Coastal Plain that has been defined as the Coastal Bend of Texas. The coastal plain is gently, but irregularly, inclined gulfward at about 5 feet or less per mile. In many areas, coastal plain slopes range from 1 to 3 feet per mile, and on the lagoonal wind-tidal flats, slopes are usually less than 1 foot per mile. Elevations within the county range from 0 feet (Gulf of Mexico) to 125 feet above Mean Seal Level (MSL) in the extreme northwestern part. It is characterized as an arid, desert like region where wind (Eolian) erosion and wind transported sediment have determined much of the area's character and distinctiveness. The surface features of the county are broad, dune covered mainland prairies and extensive coastal wind-tidal flats.

Eolian transport of silts and sands has produced the South Texas Eolian System (Sand Sheet). Extensive, hummocky prairies within the South Texas sand sheet are underlain by relic sand dunes and wind-deflated depressions which extend inland from broad wind-tidal flats along the landward margin of Laguna Madre and parts of Baffin Bay.

2.2 Regional Stratigraphy

Table 2-1 presents the geologic formations that characterize the regional stratigraphy of Kleberg County.

Table 2-1 Geologic Formations for Kleberg County

			Approximate Maximum		
Period	Epoch	Geologic Formation	Thickness (FT)	Litholgy	Water-Bearing Properties
Quaternary		Alluvium	?	Mostly very fine to fine sand, silt, and calcareous clay	Not significant as an aquifer. Not known to be tapped by wells.
		Barrier Island Deposits	50	Tan to gray, fossiliferous, medium sand containing wood fragments; interbedded tan sand and gray clay, locally gypseous; and gray, fossiliferous sandy clay	Capable of yielding small quantities of fresh water to shallow wells on Padre Island.
	Holocene and Pleistocene (?)	South Texas Eolian Plain Deposits	60+	Tan to white, unfossiliferous, massive, fine to very fine sand, greenish gray sandy clay, highly calcareous clay or marl, and thin-bedded clayey sand.	Yields small quantities of sI ightly saline water to a few stock wells in Kenedy County. in sofne areas in Kenedy County the sand contains brine
	Pleistocene	Barrier Island and Beach Deposits	1,400	Barrier island and beach deposits mostly light gray, massive, crossbedded fine sand about 60 feet thick; contains some shell fragments.	Barrier island and beach deposits yield small quantities of fresh to probably moderately saline water to a few stock wells in eastern Kleberg County near Laguna Madre.
		Beaumont Clay and Lissie Formation, Undifferentiated		Beaumont Clay and Lissie Formation mostly very calcareous, slightly carbonaceous, blue and yellow clay and a few lenticular beds of sand.	Beaumont Clay and Lissie Formation yield small quantities of slightly to moderately saline water to a few mostly stock wells in eastern part of Kleberg and Kenedy Counties.
Tertiary	Pliocene	Goliad Sand	1,100	Fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored calcareous clay. Sand beds or sandstone compose from 40 to 60 percent of the formation.	Principal aquifer. Yields small to large quantities of fresh to slightly saline water to public supply, industrial, and irrigation wells as well as to numerous rural domestic and stock wells. Many of the wells tapping the Goliad in Kleberg and Kenedy Counties flow.
	Miocene	Lagarto Clay	1,200+	Mostly stiff, compact, gray, calcareous clay and some thin lenticular beds of gray sand.	Not known to be tapped by wells, but capable of yielding small quantities of slightly saline water in Kenedy and Jim Wells Counties.
		Oakville Sandstone		Very fine to coarse, brown to gray sand and sandstone interbedded with silt and a considerable amount of clay.	Yields small to moderate quantities of sl ightly saline water to industrial and stock wells in southern Jim Wells County.

^{*}Texas Water Development Board, Report 173, Ground-Water Resources of Kleberg, Kenedy, and Southern Jim Wells Counties, Texas, July 1973. (Shafer, 1973)

2.3 Regional Hydrogeology

As discussed in Finch Energy and Environmental Services' Report (Appendix 1, Section 4.0), The Evangeline Aquifer is the principal aquifer in the region and is considered one of the most prolific aquifers in the Texas Coastal Plain. The aquifer is composed of at least the Goliad Sand and includes sections of sand in the Fleming Formation. Also discussed in Finch Energy and Environmental Services' Report (Appendix 1, Section 3.2), the Goliad Sand of Pliocene age occurs in the subsurface of the site area. It is the principal aquifer in the site area with wells producing small to large quantities of fresh to slightly saline water to public supply, industrial, irrigation, rural-domestic, and stock wells. The aquifer is considered a large, leaky artesian aquifer. A stratigraphic column of geologic formations including a brief discussion of lithology and water-bearing properties found in the area of Kingsville is presented in Table 2-1.

The Pleistocene formations exposed in the region are the Beaumont Clay and Lissie Formation. The Beaumont Clay is recognized as lying to the east of U.S. Highway 77. The Beaumont Clay is a series of delta-plain deposits composed principally of mud with localized elongate sand and silt bodies. The Lissie Formation is composed of meanderbelt sands and muds which underlie thin loess (Eolian silt) deposits and Eolian sand deposits west of U.S. Highway 77. These two formations are generally discussed as one unit; Beaumont Clay and Lissie Formation, undifferentiated (Chicot Aquifer). Regional hydrogeology for the site is discussed further in Appendix 1.

2.4 Water Quality

As stated in Appendix 1, water quality of the Goliad is highly variable. The quality of water from wells in the Goliad Sand deteriorates at depths greater than 1,000 feet, and the salinity of the water increases eastward. Generally, water from wells in the Goliad Sand in southern Jim Wells County and about the western one-half of Kleberg County meets the quality standards of the U.S. Public Health Service. Shallow, moderately saline to very saline water overlies the fresh to slightly saline water at most places (Shafer, 1973).

The Beaumont Clay and Lissie Formation (Chicot Aquifer) yield small quantities of slightly to moderately saline water to a few shallow wells used mostly for stock needs in eastern Kleberg and Kenedy Counties. Test wells drilled for observation purposes 1.25 miles west of Riviera (approximately 15 miles south of Kingsville), show that shallow sands of the Beaumont and Lissie usually contain very saline water in this area. The casings of many wells are cemented through the Beaumont and Lissie due to highly mineralized water associated with these formations (Shafer, 1973).

A groundwater contour map has been included in Attachment 3. A monitoring well groundwater elevation table has been included as Exhibit 1 of Attachment 3 and an analytical data summary table has been included as Exhibit 2 of Attachment 3. Detailed analytical data and groundwater elevations from historic ground water monitoring of monitor wells at the site can be found in the

Groundwater Characterization Report which is included in Appendix 1. On-site groundwater monitoring well installation information has also been included in Appendix 1, and additional on-site monitor well installation information shall be provided as wells are installed.

2.5 Groundwater Recharge

As discussed in Appendix 1, Recharge within a 5 mile radius is from downward percolation of surface water, infiltration from streams, impoundments, and water retained in abandoned caliche pits. A map of the recharge area can be seen in Figure 4.14 in Appendix 1.

3.0 SITE CHARACTERIZATION

3.1 Site Topography

The natural topography in the vicinity of the landfill is relatively flat to slightly depressed. The general direction of drainage is to the east-southeast and east-northeast. The natural ground elevation at the City of Kingsville Landfill is approximately 52 feet above mean sea level (MSL). The proposed elevation of the deepest excavation at the site is approximately 22.5 feet above MSL, and the highest permitted elevation for the site is approximately 200 feet above MSL. Lines displaying site topography for the City of Kingsville Landfill have been included on Attachment 2. The site vicinity is surrounded by extensive areas of agriculture. There are also abandoned caliche mines to the west and southwest. The Santa Gertrudis Creek, located 0.7 miles to the north, trends to the east-southeast 3.25 miles to it's confluence with the San Fernando Creek which then flows southeast to the Cayo del Grullo of Baffin Bay. Jaboncillos Creek, Ebanito Creek and several small unnamed ephemeral streams, are located several miles south of the site.

3.2 Subsurface Investigation Report

3.2.1 Site Exploration

Three subsurface studies have been performed to evaluate the stratigraphy of the landfill site. A total of thirty-five (35) borings have been drilled to depths ranging from 17 to 88 feet below the natural ground surface.

Finch Energy and Environmental Services, Inc. installed twelve (12) borings ranging in depth from 17 to 48 feet below the existing ground surface. Professional Service Industries, Inc. installed eleven (11) borings ranging from 33 to 88 feet below the existing ground surface. Tolunay-Wong Engineers, Inc. installed twelve (12) borings ranging in depth from 33.5 to 86 feet below the existing ground surface.

3.2.2 Field Drilling, Sampling, and Logging

For the three investigations, the soil test borings were installed using a drilling rig capable of sampling cohesive and cohesionless materials. Samples of cohesive materials were obtained by hydraulically pushing a thin walled tube in accordance with ASTM D 1587. Non-cohesive soils

were obtained by performing a standard penetration test (SPT) using a split barrel sampler in accordance with ASTM D 1586-D. The samples were extruded in the field, wrapped in foil, placed in moisture sealed containers, and protected from disturbance prior to transport to the laboratory. All samples were transported to the laboratory for testing and were identified according to boring number and depth at a minimum. Soil test borings were visually logged in the field and boring logs have been provided in Appendices 1, 2, and 3.

3.3 Site Stratigraphy

As seen on the Geologic Atlas of Texas Corpus Christi Sheet, the primary geologic formations exposed at the surface of the site are silt sheet deposits, clay dune, and clay-sand dune deposits. The topsoil consists of clay which is black, silty, and contains humic material. Sediments encountered in borings at the site are Holocene and Pleistocene in age and consist of clays, silts, sands, and caliche deposited in two (2) separate and distinct environments of deposition. The subsurface geology is presented on cross sections A - A' through B-B' included in Appendix 1.

The site is underlain by sediments that can be divided into five discontinuous units and one continuous unit. The discontinuous units are caliche bearing channel unit (I), sand filled channel unit (II), clayey sand (clay dune, III), clayey sand (clay dune IV), and sandy silty clay (V). The continuous unit consists of the light olive green to gray clay which is an aquiclude present below the site. The water bearing zone is made up of the five discontinuous units which are all in communication. The average ground water level is at approximately 35 feet below National Geodetic Vertical Datum (NGVD).

3.3.1 Body I- Caliche Bearing Channel

As stated in Appendix 1, this is the youngest, most extensive, sand containing body that can be correlated across the site. This body consists of interbeds of caliche, clays, and sands which, in themselves, are noncorrelative. The individual beds within this body appear to be of limited extent and probably represent braided deposits within a single channel approximately ½ mile in width. The base of this channel is placed at the base of the lowest caliche encountered in the borings at the site. When grouped together, it can be shown via cross section and isopach mapping that the body can obtain a maximum thickness of 40 feet and, as a whole, cuts downward into underlying beds. This body was deposited as a channel system which trends in a down dip direction, southwest to northeast, across the City of Kingsville Landfill site. Much of the caliche contained within this body has been previously removed from the site by mining operations.

3.3.2 Body II- Sand Filled Channel

As stated in Appendix 1, Body II was deposited as a channel filled with a homogeneous, well sorted, very fine grained to fine grained, clean, unconsolidated sand. The fill sediment in Body II is much simpler than the fill sediment in Body I. The preserved length and width of this channel sand is less than one half mile due to truncation and incisement by the overlying Body I channel. Body II is interpreted as being a channel due to down cutting evident on the cross sections. This

channel sand is apparent in borings 10 and 17. Body II was also evident in boring 37, which was installed in the most recent geotechnical investigation by Tolunay-Wong Engineers, Inc., approximately 14.5 feet below ground elevation 45.52. Deposition of the Body II channel sand was oriented in a dip direction, southwest to northeast across the site.

3.3.3 Body III- Clayey Sand (Clay Dune)

As stated in Appendix 1, the Clayey Sand (Clay Dune) Body III lies under the eastern edge of the City of Kingsville Landfill site and is composed of a homogeneous, very fine grained, well sorted, clayey sand. Well 13 was previously the only known penetration of the sand encountering a thickness of 17'. Borings 35 and 39, installed by Tolunay-Wong Engineers, Inc., also penetrated Body III at approximately 24 feet and 36.5 feet below ground elevations of 64.5 and 60.26 feet respectively. At it's base, the sand appears to be conformable with the underlying "orange" sand which is interpreted as a near shore or beach sand. Body III is interpreted as a clay dune based on clay content, sorting, and stratigraphic position within an overall regression section.

3.3.4 Body IV- Clayey Sand (Clay Dune)

As stated in Appendix 1, the Clayey Sand (Clay Dune) Body IV is believed to be a time and stratigraphic equivalent of Body III, described above, and underlies a portion of the western edge of the City of Kingsville Landfill site. Borings 16 and 23 penetrated 18 feet and 12 feet respectively, immediately above the underlying "orange" sand. Body IV sand is similar in all respects to the homogeneous, very fine grained, well sorted, clayey sand which comprises Body III above. Cross section G-G' included in Appendix 1 (wells 16 and 23) illustrates the top of Body IV as being concave downward with a flat base, indicating deposition as a "buildup" or clay dune. Again, Body IV appears conformable with the underlying "orange" which is interpreted as a near shore or beach sand. Bodies III and IV are typical of the QCD deposits seen on the Geologic Atlas of Texas Corpus Christi Sheet. QCD is comprised of clay due and claysand dune deposits and possess physical properties similar to those of the sandy and silty Beaumont Formation as indicated in the Geologic Atlas of Texas.

3.3.5 Sandy Clay Bed

As stated in Appendix 1, the sandy clay bed was deposited in conjunction with Bodies I through IV and is composed of a homogeneous, tan, sandy clay containing abundant decomposed organic material. Thickness of this clay ranged from 40 to 60 feet under the City of Kingsville Landfill site with the above described Sand Bodies deposited within or adjacent to this clayey interval. The basal contact is abrupt with the underlying "orange" Sand.

3.3.6 "Orange" Sand

As stated in Appendix 1, the "orange" sand appears to have been deposited in a near shore or beach environment. The sand is extremely well sorted and clean and the grains are well rounded and composed of approximately 90% fine quartz grains and 10% fine multicolored shell fragments giving the overall sand color an orange cast. The thin (<5 feet), sheet-like nature of the

Part III, Attachment 4, pg-10

sand represents a beach environment of short duration developed at the top of the Beaumont clay (Light Olive Green to Gray Clay). It is present in all wells of sufficient depth.

3.3.7 Light Olive Green to Gray Clay

As stated in Appendix 1, tops of the Light Olive Green to Gray Clay are necessary to make the above interpretations of shallower beds in that it is the most definitive, planar marker bed under the City of Kingsville Landfill site. This clay is pure and therefore exhibits characteristic low permeabilites with a proven thickness of at least 38 feet as seen in Boring 21 (boring log included in Appendix 1). The light olive green clay layer begins at approximately 46 feet below the ground surface elevation of 52.41 feet in boring 21, and the boring was terminated at approximately 84 feet below the surface elevation (bottom elevation of -36.5 feet). The clay layer is also evidenced in boring B-23 with an approximate thickness of 50 feet. The layer begins at approximately 36 feet below the surface elevation of 49.50 feet, and the boring terminates at approximately 86 feet below the surface elevation (bottom elevation of -36.5 feet).

3.4 Geologic Fault and Seismicity Assessment

A geologic fault and seismicity assessment was performed by FEE. Sections 3.3.1 and 3.3.4 in Appendix 1 discusses faults and faulting, and seismic impact zones at the City of Kingsville Landfill. Conclusions from FEE are as follows:

"An evaluation of potential faults or fault zones does not indicate the presence of *active* faults. Topographic Maps, literature searches, aerial photographs, Petroleum Industry maps and a field survey were used in this evaluation. The field survey combined with topographic maps did not *reveal* structural damage to buildings, ground scarps, or unusual surface depressions. Changes in drainage or vegetation patterns which are also associated with faulting were not present. Data presented by Algermissen, et al, 1990 suggests a low probability of major seismic activity in the vicinity of the site."

A Seismic Impact Zone Map from the USGS from 1990 has been provided by FEE in Figure 4.9 of Appendix 1. A Seismic-Hazard Map for the Conterminous United States from 2014 from the USGS has also been included as Attachment 4. Both maps show the City of Kingsville Landfill site to be clear of any potential seismic impact zones.

3.5 Geologic Processes

Active Geologic Processes are discussed in Section 3.3 of Appendix 1. The primary geologic process occurring in this area of Texas is erosion. Based on soil types and character, and topography, erosion does not appear to be a significant factor under "normal conditions" or if design criteria are met and maintained. The construction of silt fences, wind screens, diversion berms, and routine maintenance should keep erosion at the City of Kingsville Landfill manageable.

4.0 GEOTECHNICAL REPORT

4.1 Laboratory Results

Laboratory tests were performed by Finch Energy and Environmental Services, Inc., Professional Service Industries, Inc., and Tolunay-Wong Engineers, Inc. on recovered soil samples to determine the engineering properties of the strata during the previous and most recent geotechnical engineering studies. Laboratory tests were performed in general accordance with ASTM International standards to measure physical and engineering properties of the recovered samples. Laboratory testing descriptions and methods used in the most recent Tolunay-Wong Engineers, Inc. study can be viewed in table 4-1. Laboratory results gathered from previous subsurface investigations performed by FEE and PSI are located in section 8.0 of Appendix 1. A summary of Tolunay-Wong's laboratory results has been included below.

Table 4-1 Laboratory Testing Program

Test Description	Test Method				
Amount of Material in Soils Finer than No. 200 Sieve	ASTM D 1140				
Unconfined Compressive Strength of Cohesive Soil (UC)	ASTM D 2166				
Water (Moisture) Content of Soil	ASTM D 2216				
Liquid Limit, Plastic Limit and Plasticity Index of Soils	ASTM D 4318				
Density (Unit Weight) of Soil Specimens	ASTM D 2937				
One-Dimensional, Incremental Loading Consolidation	ASTM D 2435				
Consolidated-Undrained Triaxial Compression w/ Pore Water Pressure	ASTM D 4767				

Standard geotechnical laboratory test results and soil properties encountered in the project borings are presented on the logs of borings in Appendix B of Appendix 2. Results of completed one-dimensional consolidation and consolidated-undrained triaixial compression tests performed on the selected cohesive soil samples obtained for this study are included in Appendix C of Appendix 2.

In-situ moisture contents of selected cohesive clay samples ranged from 18% to 34%. Results of Atterberg Limits tests on selected clay samples indicated liquid limits (LL) ranging from 31 to 81 with plasticity indices (PI) ranging from 18 to 58. The amount of materials finer than the No. 200 sieve on the selected samples ranged from 55% to 100%. In-situ moisture contents of selected silty sand samples ranged from 23% to 24%. The amount of materials finer than the No. 200 sieve on the selected samples tested for grain size distribution ranged from 14% to 38%.

Undrained shear strengths derived from field pocket penetrometer readings ranged from 0.25-tsf to 4.50-tsf. Undrained shear strengths derived from laboratory unconfined compressive (UC) strength testing ranged from 0.16-tsf to 3.41-tsf with corresponding total unit weights of 86-pcf to 105-pcf. Shear strength of cohesive soils inferred from SPT blow counts generally were similar. Based on this undrained shear strength data, the consistency of the cohesive soils encountered in the project borings is considered to be very soft to very stiff. Tabulated laboratory test results at the recovered sample depths are presented on the boring logs in Appendix B of Appendix 2.

4.2 Geotechnical Analysis

4.2.1 Settlement Analysis

One-dimensional consolidation tests were performed by Tolunay-Wong Engineers, Inc. using select samples from the soil borings to evaluate the compressibility characteristics of the foundation soils. The results of the consolidation tests are presented in Appendix D of Appendix 2. The predicted settlements resulting from consolidation settlement of the foundation soils due to the weight of the overlying landfill material are on the order of 1 foot.

Mr. Ralph N. Lewis of PSI also performed a settlement analysis during PSI's previous geotechnical analysis, and his calculations are shown in Appendix H.2 of Appendix 1. His calculations show that conservatively the final landfill cover will settle 3.0 inches at the center and 1.5 inches at the edges of the landfill. These calculations were based on previous landfill designs and capacities.

4.2.2 Slope Stability

A slope stability analysis was conducted by FEE. The objective of the analysis was to determine the local sliding stability of the liner system and cover as well as the overall stability of the embankment slope. The proposed embankments have a 4 (horizontal) to 1 (vertical) slope. FEE determined that a maximum allowable landfill height to satisfy a minimum factor of safety of 2.0 under static loading conditions was approximately 125 NGVD. Further discussion of the results from these analyses can be seen in Appendix 1 Section 8.3- Engineering Analysis. Tolunay-Wong Engineers, Inc. also performed a waste mass stability analysis during their geotechnical engineering study. Tolunay determined that the calculated factor of safety for peak shear strength conditions exceeded 1.5 for their assumed strength and unit weight parameters, the analyzed cross sections, and assumed failure geometry. The calculated factor of safety for large displacement condition exceeds 1.5, which in their judgement, and based on published information, is acceptable. Further discussion of the results of this study have been included in Appendix 2 Section 7- Waste Mass Stability.

5.0 CONCLUSIONS

As discussed in Finch Energy and Environmental Services, Professional Service Industries, Inc., and Tolunay-Wong Engineers Inc. reports and based upon the results of field and laboratory investigations performed during these studies, the following conclusions have been developed:

Part III, Attachment 4, pg-13

The site is located in the Gulf Coastal Plain of Texas with the Beaumont Clay and Lissie Formation undifferentiated near the surface. This formation underlies silt sheet deposits, clay dune, and clay-sand dune deposits on the surface at the site.

The site is underlain by sediments that can be divided into five discontinuous units [Caliche Bearing Channel Unit (I), Sand Filled Channel Unit (II), Clayey Sand (Clay Dune)(III), Clayey Sand (Clay Dune)(IV), Sandy (Silty) Clay] and one continuous unit [Light Olive Green to Gray Clay Aquiclude]. The water bearing zone is made up of the five discontinuous units which are all in communication. The normal ground water level is at approximately 35 ft NGVD.

The uppermost aquifer beneath the base grade of the existing site can be defined as a discontinuous fluvial-deltaic environment in which all units are in hydraulic communication with each other and bounded by the 38 foot thick plus Light Olive Green to Gray Clay aquiclude at depths of 5 ft to 17 ft above mean sea level. Groundwater movement is to all sides of the landfill except to the northwest.

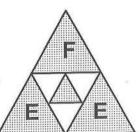
The Landfill site has a Light Olive Green to Gray Clay layer of more than 38 feet thickness which forms an aquiclude between the uppermost local aquifer and the Chicot aquifer which is the uppermost regional aquifer. The Chicot aquifer is located between 200 and 300 feet below mean seal level (MSL) and generally contains slightly-saline to saline water in Kleberg County.

Tolunay determined that the calculated factor of safety for peak shear strength conditions exceeded 1.5 for their assumed strength and unit weight parameters, the analyzed cross sections, and assumed failure geometry. The calculated factor of safety for large displacement condition exceeds 1.5, which based on published information, is acceptable. Based on Tolunay-Wong's Geotechnical Engineering Study results, and in their opinion, it is anticipated that the planned landfill configuration should be stable, provided excess pore pressures are not generated within the waste mass or that there is no increase in piezometric head above 1 foot within the underlying liner cover material or leachate collection system. The generation of pore pressures and increase in piezometric head within the materials could substantially reduce the factor of safety and increase the risk for stability problems. Also, the predicted settlements resulting from consolidation settlement of the foundation soils due to the weight of the overlying landfill material are on the order of 1 foot.

References

- 1. Algermissen, S.T., et al, Probablistic Earthquake Acceleration and Velocity Maps for the United States and Puerto Rico, (1990).
- 2. Aronow, S., and Barnes, V. E., Geologic Atlas of Texas, Corpus Christi Sheet: The University of Texas at Austin, Bureau of Economic Geology (1975).
- 3. Finch, R.N, P.E., Geology Report, Permit Amendment Application-City of Kingsville Landfill, City of Kingsville, Kleberg County, Texas, Permit Amendment No. MSW 235-B: Finch Energy and Environmental Services, Inc, (1998).
- 4. O'Connor, M.J., P.E., and Rein, A.R., E.I.T., Subsurface Exploration and Laboratory Analysis for the Proposed Landfill Expansion, Kingsville, Texas: Professional Service Industries, Inc, (1997).
- 5. Petersen, M.D., et al, Seismic-Hazard Maps for the Conterminous United States, 2014: U.S. Geological Survey Scientific Investigations Map 3325, sheet 2, scale 1: 7,000,000, (2015), https://dx.doi.org/10.3133/sim3325.
- 6. Shafrer, G.H., and Baker, E. T., Jr., Ground-water Resources of Kleberg, Kenedy, and Southern Jim Wells Counties, Texas: Texas Water Development Board Report #173, (1973).

CITY OF KINGSVILLE LANDFILL


PART III, ATTACHMENT 4

APPENDIX 1

GEOLOGY REPORT DATED MAY 29, 1998 AND JUNE 29, 1998, AND REVISED SEPTEMBER 30, 1998, WITH APPENDICES.

ATTACHMENT 4 Geology Report

Finch Energy & Environmental Services, Inc. P.O. Box 73/1204 W. King, Kingsville, TX 78364 Phone: (512) 592-9810 Fax: (512) 592-5552

ATTACHMENT 4 - GEOLOGY REPORT PERMIT AMENDMENT APPLICATION-CITY OF KINGSVILLE LANDFILL CITY OF KINGSVILLE, KLEBERG COUNTY, TEXAS

Permit Amendment No. MSW 235-B

Prepared for:

City of Kingsville P.O. Box 1458 Kingsville, Tx 78364 Prepared by:

F.E.E., Inc. P.O. Box 73

Kingsville, Tx 78364 (512)592-9810

TABLE OF CONTENTS

1.0	FACIL	ITY LOCATION AND SETTING Figure 4.1 - Location Map	
2.0	REGIO	Figure 4.2 - Physiographic Map of Texas Figure 4.3 - Topographic Map of MSWLF Area	5
3.0	3.1	Regional Geology Figure 4.4 - Regional Geology Map	701
	3.2	Regional Hydrogeology Figure 4.5 - Stratigraphic Column Figure 4.6 - Regional Cross-Section Figure 4.7 - Physical Properties Map	2
	3.3	Active Geologic Processes 18 3.3.1 Faults and Faulting 18 Figure 4.8 - Fault Map 18 3.3.2 Subsidence and Unstable Areas 18 3.3.3 Erosion 19 3.3.4 Seismic Impact Zones 17 Figure 4.9 - Seismic Impact Zone Map 19	5 8 6 6 7
	3.4	Wetlands	7
4.0	REGIO 4.1 4.2 4.3 4.4	NAL AQUIFERS 22 Water Quality 23 Hydraulic Connection 24 Recharge 25 Water Use 25 Figure 4.11 - Regional Groundwater Elevation Map 26 Figure 4.12 - Regional Stratigraphic and Hydrogeologic 26	3 4 5 5
		Cross-Section27Figure 4.13 - Regional Groundwater Quality Cross-Section28Figure 4.14 - Map Showing 5 Mile Recharge Area29Figure 4.14a- Geology Map Explanation30Figure 4.15 - Map Showing 1 Mile Water Well Survey Area31	3 9
SINI	OF TEX	THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY	,

THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY INCLUDING PAGES <u>I</u> THROUGH <u>IIO</u> AND <u>APPENDICES</u>.

i

5.0	SUBSU	JRFACE INVESTIGATION	2
	5.2	Site Reconnaissance and Mapping	2
		Drilling and Sampling	3
	5.3		3
		5.3.1 Soil Borings	14
		5.3.2 Classification and Logging of Soils	1
	5.4	Piezometer Installation and Development	4
		5.4.1 Piezometer Installation	C
		5.4.2 Piezometer Development	6
	5.5	Drilling Equipment Decontamination Procedures	6
		Figure 4.16 - Regional Man Showing Elevations	
		of The Goliad	8
	5.6	Horizontal and Vertical Datum Survey Activities	37
	5.0	Honzontal and Vertical Batam ourvey reconded 111111	
	OITE O	PECIFIC STRATIGRAPHIC & HYDROGEOLOGIC CONDITIONS	39
6.0	SIIE-5		11
		6.0.1 Body I - Caliche Bearing Channel	11
		6.0.2 Body II - Sand Filled Channel	11
		6.0.3 Body III - Clayey Sand (Clay Dune)	10
		6.0.4 Body IV - Clayey Sand (Clay Dune)	12
		6.0.5 Sandy Clay Bed	12
		6.0.6 "Orange" Sand	12
		6 0.7 "Light Olive Green Clav"	13
	6.1	Holocene Stratigraphy as related to Groundwater Migration Pathway	13
	6.2	Hydrogeologic Conditions	10
	0.2	6.2.1 Surface Water Hydrology	15
		6.2.2 Groundwater Hydrology	16
		Figure 4.17 - Boring Plot Plan	17
		Figure - Cross Section Location Map	18
		Figure - Cross Section Location Map	10
		Figure - Cross Section A-A' Figure - Cross Section B-B'	50
		Figure - Cross Section B-B	51
		Figure - Cross Section C-C'	50
		Figure - Cross Section D-D'	2
		Figure - Cross Section E-E'	23
		Figure - Cross Section F-F'	54
		Figure - Cross Section G-G'	55
		Figure - Cross Section H-H'	סכ
		Figure - Cross Section I-I'	0/
		Figure 2 - Structure Top Olive Green Clay	58
		Figure - Isopach Channels I and II	59
		Figure - Isopach Bodies III and IV	30
			31
		6.2.3 Relationship of Ponded Water to Water Table	8
			3/
7.0		NDWATER CHARACTERIZATION	5
	7.1	Background	24
	7.2	Groundwater Quality	54
		the second contract of	

THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY INCLUDING PAGES ___ THROUGH ___ AND ___ A PLEN DICES.

8.0	GEOT 8.1		AL CHARACTERIZATION	
	8.2	Geotec 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7	hnical Data Evaluation 6 Surficial Clay Unit 6 Secondary Clay Unit 6 Tertiary Clay Unit 6 Sand Unit 6 Clayey Sand (Clay Dune) (IV) Layer 6 Sandy (Silty) Clay Unit 6 Light Olive Green Clay Confining Layer - Aquiclude 6 Table 4.1 Test Results by Boring Log 7 Table 4.2 Test Results by Stratigraphic Layers 8	77788991
	8.3	8.3.1 8.3.1.1 8.3.1.2 8.3.2 8.3.3 8.3.4 8.3.5 Landfill	Frankie 4-2 Test Results by Gutangraphic Edychs 9 ering Analyses 9 Slope Stability 9 Final Cover Slopes 9 Open Cut Excavations 10 Settlement Analyses 10 Perforated Pipe 10 Liner Puncture Resistance 10 Anchor Trench Analysis 10 Design 10 Temporary Construction Dewatering System 10	999111122
		8.4.2 8.4.3 8.4.4	Composite Liner System	444
9.0	9.1 9.2 9.3	Geology	S AND RECOMMENDATIONS 10 y/Hydrogeology Well Network 10 ed Monitoring Well Network 10 Design 10	6
10.0	REFER	RENCES		0

iii

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

APPENDIX A SOIL BORING PLAN APPROVAL

APPENDIX B BORING LOGS

APPENDIX C PIEZOMETER CONSTRUCTION LOGS

APPENDIX D WATER LEVEL MEASUREMENT DATA SHEETS

APPENDIX E IN-SITU HYDRAULIC CONDUCTIVITY TEST DATA

APPENDIX F HYDROGRAPHS

APPENDIX G GEOTECHNICAL LABORATORY TEST RESULTS

G.1 Grain Size Distribution Curves

G.2 Compressive Strength Test Results

G.3 Consolidation Test Results

G.4 Hydraulic Conductivity Test Results

G.5 Cation-Exchange Test Results

G.6 Permeability Calculations

APPENDIX H ENGINEERING DESIGN CALCULATIONS AND ANALYSES

H.1 Slope Stability Analysis

H.2 Settlement Analysis

H.3 Pipe Stability Analysis

H.4 HDPE Liner Stress Analysis

H.5 Anchor Trench Pullout Analysis

APPENDIX I MONITOR WELL SCHEMATIC

APPENDIX J WATER WELL SURVEY

APPENDIX K TX WATER WELL DRILLERS ADVISORY COUNCIL WELL REPORTS

APPENDIX L AERIAL PHOTO

APPENDIX M DESIGN GROUNDWATER SYSTEM CERTIFICATION

APPENDIX N LOCAL PONDING STUDY - IMPACT ON GROUND WATER

APPENDIX O SOILS DATA

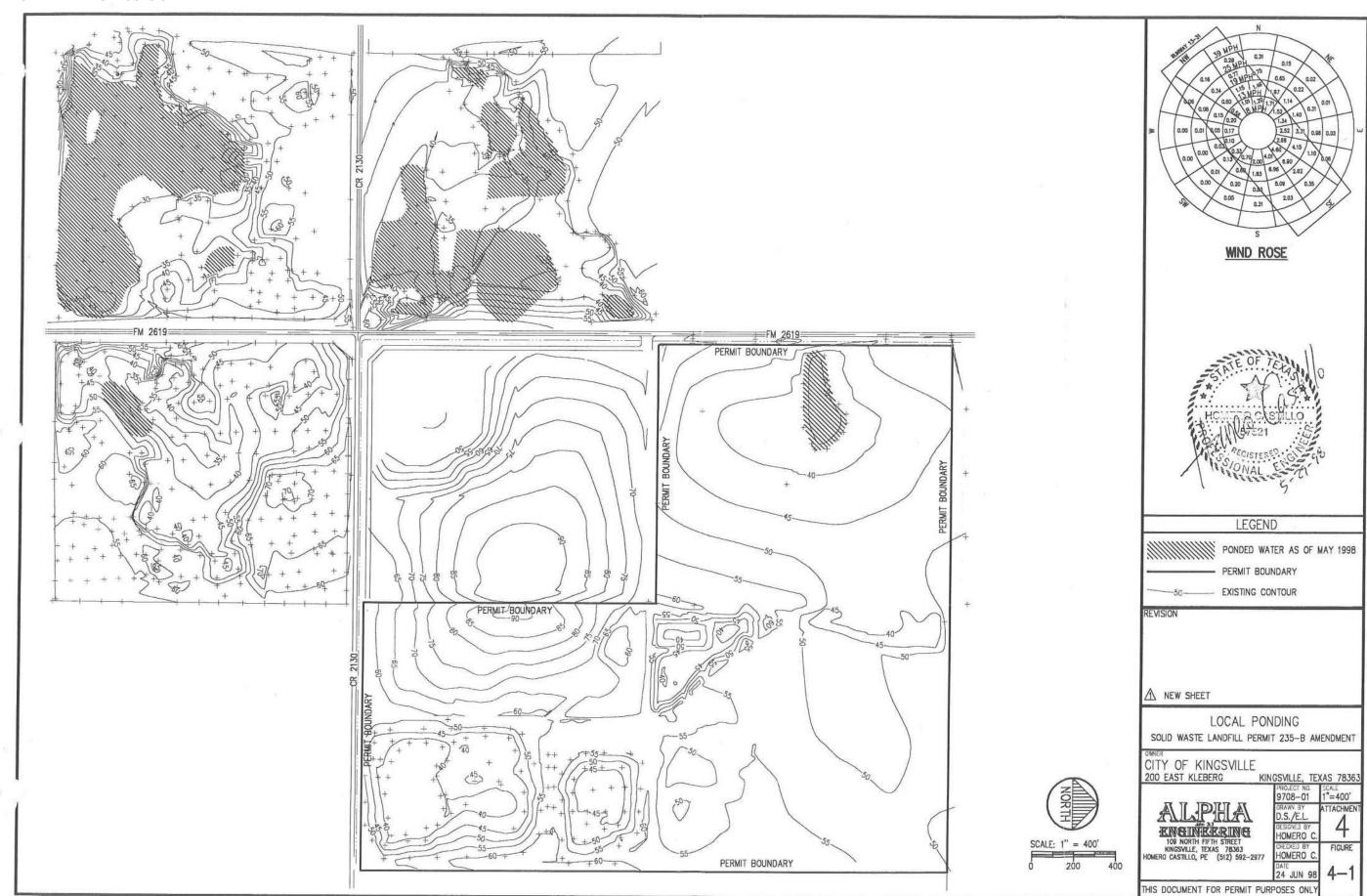
APPENDIX P GROUND WATER TECHNICAL QUALIFICATIONS

i٧

Part III, Attachment 4, Appendix 1, p.g. 5

1.0 FACILITY LOCATION AND SETTING

Part III, Attachment 4, Appendix 1, p.g. 6


Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

1.0 FACILITY LOCATION AND SETTING

The Kingsville Municipal Solid Waste Landfill (MSWLF) is located in north central Kleberg county, approximately five (5) miles southeast of the center of the city of Kingsville, Tx. The site is specifically located on the northwest corner of the intersection of Farm-to-Market Road #2619 and Kleberg County Road #2130 (See Figure 4.1). The site is geologically located at the northern boundary of the South Texas Eolian System. The current permitted area in Farm Lot (FL) 13 and West 1/2 FL 14, Section 36, Kleberg Town and Improvement Subdivision is 55.87 acres more or less (26.34 closed, 12.23 unused, 17.30 active) in size. The proposed expansion into East 1/2 FL 14, FL11, and FL12 will increase the total landfill area to 160 acres, more or less. This 160 acres will be composed of approximately 40 acres closed and unused, and approximately 120 acres of permitted area (active plus unused), assuming TNRCC approval of this permit application.

Additionally, the site is located within an area historically used for the surface mining of caliche. The site is an abandoned mine and abandoned mines are adjacent to the site on the North, West and Southwest. The area of abandoned mines is approximately one (1) square mile in size.

Part III, Attachment 4, Appendix 1, p.g. 8

Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

2.0 REGIONAL PHYSIOGRAPHY AND TOPOGRAPHY

2.0 REGIONAL PHYSIOGRAPHY AND TOPOGRAPHY

The Kingsville MSWLF is located within the part of the Gulf Coastal Plain that has been defined as the Coastal Bend of Texas. (See Figure 4.2) The coastal plain is gently, but irregularly, inclined gulfward at about 5 feet or less per mile. In many areas, coastal plain slopes range from 1 to 3 feet per mile, and on the lagoonal wind-tidal flats, slopes are usually less than 1 foot per mile. Elevations within the county range from 0 feet (Gulf of Mexico) to 125 feet above Mean Seal Level (MSL) in the extreme northwestern part. It is characterized as an arid, desert like region where wind (Eolian) erosion and wind-transported sediment have determined much of the area's character and distinctiveness. The surface features of the county are broad, dune covered mainland prairies and extensive coastal wind-tidal flats. The climate is one of low rainfall, high evaporation, and persistent onshore winds.

Eolian transport of silts and sands has produced the South Texas Eolian system (sand sheet). Extensive, hummocky prairies within the South Texas sand sheet are underlain by relic sand dunes and wind-deflated depressions which extend inland from broad wind-tidal flats along the landward margin of Laguna Madre and parts of Baffin Bay.

Live-oak mottes, stands of brushland, and active sand dunes break the widespread sandy prairies of the Kingsville area into many local, discontinuous patches of rangeland. A few small ephemeral streams, that extend coastward across the northern and northwestern parts of the area, discharge into Baffin Bay.

In a broad area southwest of Santa Gertrudis Creek and Cayo del Grullo, mud and sand substrates are veneered by relatively thin airborne silt (loess) deposits that have settled out downwind from the large dune fields southeast of Sarita. The silt, or loess, sheet overlies muddy sediments between U.S. Highway 77 and Cayo del Grullo and sandy and silty deposits west of U.S. Highway 77. (Brown, 1977)

The Santa Gertrudis Creek, located 0.7 miles to the north, trends to the east-southeast 3.25 miles to it's confluence with the San Fernando Creek which then flows southeast to the Cayo del Grullo of Baffin Bay. Jaboncillos Creek, Ebanito Creek and several small unnamed ephemeral streams, are located several miles south of the site. (See Figure 4.3)

Standing water several feet deep is present on the floor of the abandoned caliche mines to the west and southwest. These mines were excavated to a depth of approximately forty feet. This would place the mine floor in proximity to ground water level. The standing water has continued to be present throughout the extended drought period of the past 2-3 years. The USGS topographic map of the area indicates that these pits are considered permanent water bodies. A more complete discussion of the impacts of these local depressions on groundwater is given in section 6.2.3.

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

The land surface surrounding the site is flat to slightly depressed. The general direction of drainage is to the east-southeast and east-northeast. The minimum depth of the site is approximately 40 feet above MSL (excavated depth). The current elevation of the MSWLF is 90 feet above MSL, and the planned elevation is 125 feet MSL (top of capped section). Extensive areas of agriculture surround the site.

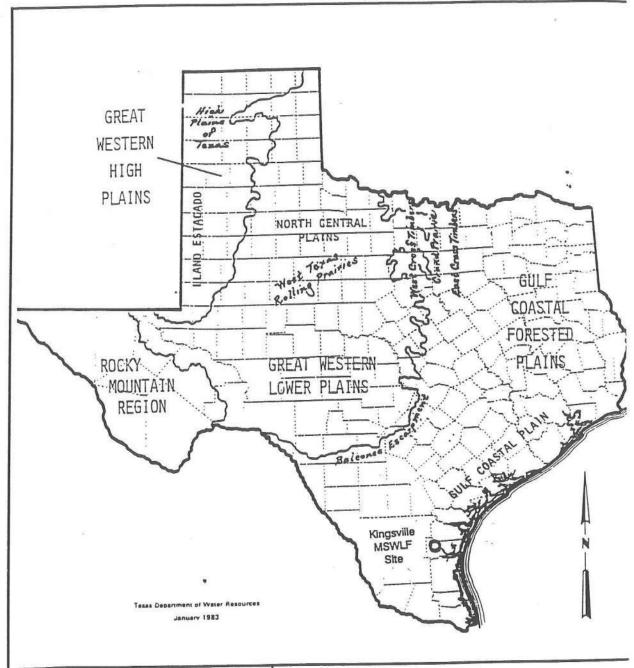
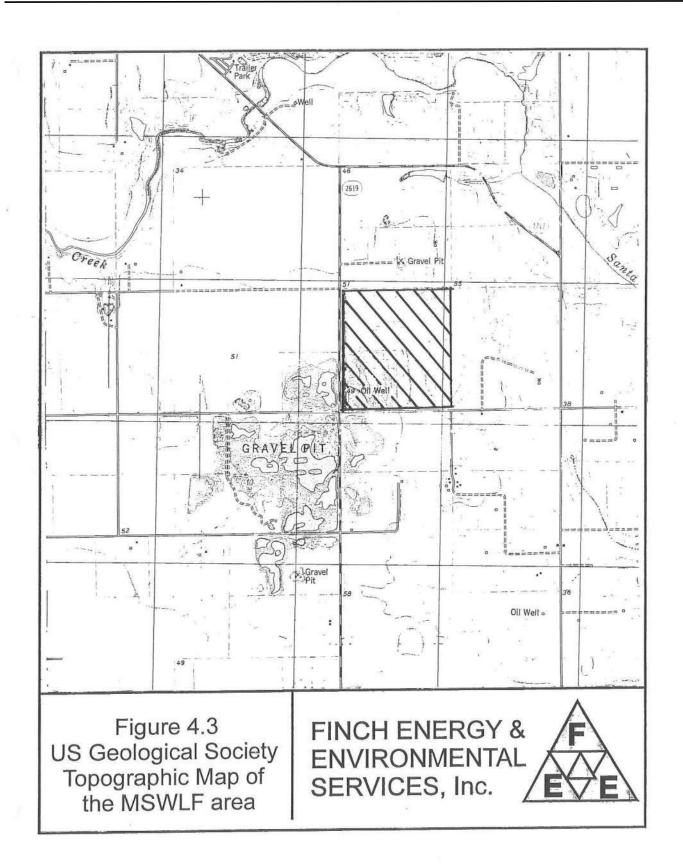



Figure 4.2
Physiographic Map
of Texas
Texas Dept of Water
Resources - 1983

FINCH ENERGY & ENVIRONMENTAL SERVICES, Inc.

3. BEGIONAL GEOLOGY AND HYDROLOGY

3.0 REGIONAL GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

The Texas Coastal Zone is composed of several active, natural systems of environments: fluvial-deltaic, barrier-strandplain-chenier, and bay-estuary-lagoon systems, as well as an Eolian (wind) system in South Texas and marsh-swamp systems in more humid middle and upper coastal regions. (See Figure 4.4) The Coastal Zone is also underlain by sedimentary deposits that originated in ancient, but similar, coastal systems. (Brown, 1977) The clastic sediments composing the geologic formations grade from fluviatile and deltaic sand, silt, and clay in inland areas to predominantly finer sediments that interfinger with brackish and marine sediments near the Gulf Coast and offshore. Geologic structure in the area is relatively simple. The water bearing formations underlying the report area form a monocline which dips gently toward the coast. Although faults are fairly common in many of the deeply buried formations, none of the geologic formations within the scope of this report are known to be displaced by significant faults (Shafer, 1973).

3.2 Regional Hydrogeology

A stratigraphic column of geologic formations including a brief discussion of lithology and water-bearing properties found in the area of Kingsville is presented as Figure 4.5.

The Goliad Sand of Pliocene age occurs in the subsurface of the site area. It is the principal aquifer in the site area with wells producing small to large quantities of fresh to slightly saline water to public supply, industrial, irrigation, rural-domestic, and stock wells. The aquifer is considered a large, leaky artesian aquifer. The lithology is fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored calcareous clay. The formation outcrops in Duval County where it is under water table conditions. (See Figure 4.6) The Goliad Sand dips to the east from 20 to 40 feet per mile. It reaches a maximum thickness of about 1,100 feet and it's top lies 1,400 feet below the surface in the vicinity of Padre Island. In the Kingsville area, the Goliad is about 500 feet below the land surface. (Shafer, 1973)

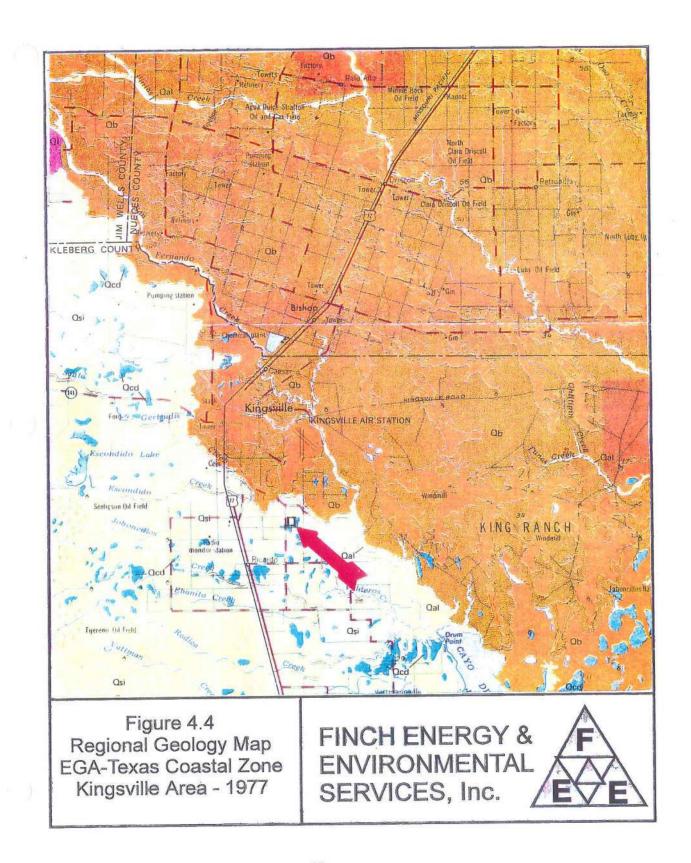
The Pleistocene formations exposed in the region are the Beaumont Clay and Lissie Formation. The Beaumont Clay is recognized as lying to the east of U.S. Highway 77. The Beaumont Clay is a series of delta-plain deposits composed principally of mud with localized elongate sand and silt bodies. The Lissie Formation is composed of meanderbelt sands and muds which underlie thin loess (Eolian silt) deposits and Eolian sand deposits west of U.S. Highway 77. These two formations are generally discussed as one unit; Beaumont Clay and Lissie Formation, undifferentiated.

During Pleistocene time, large streams eroded large amounts of sand, gravel, clay, and silt from the upland areas. These clastic sediments were deposited by streams meandering across the nearly featureless coastal plain. Sand beds are lenticular grading rapidly both horizontally and vertically into clay or silt within short distances. These deposits slope to the east at about 25 feet per mile. The thickness of the unit ranges from 100 feet in parts of Jim Wells County where the base of the unit is nearest land surface to approximately 1,400 feet in far eastern Kleberg and Kenedy Counties. The formations consist mostly of very calcareous, slightly carbonaceous, blue and yellow clay, and a few lenticular beds of sand. Many of the sand beds, especially those near the surface, are fine to very fine grained. Calcareous nodules and disseminated caliche are common in the shallow part of the section. The group yields small quantities of slightly to moderately saline water to a few shallow wells used mostly for stock needs in eastern Kleberg and Kenedy Counties. (Shafer, 1973)

The South Texas Eolian system is of Modern, Holocene, and Pleistocene age according to the Environmental Geologic Atlas of the Texas Coastal Zone - Kingsville Area. The landfill site is situated within the Riviera loess sheet to the east of U.S. Highway 77 and southeast of Kingsville. The Riviera loess sheet is characterized as a thin, discontinuous loess sheet composed of airborne silt derived from upwind areas of wind deflation. East of U.S. Highway 77, the loess overlies flat Pleistocene delta-plain deposits composed principally of mud with localized elongate sand and silt bodies (Beaumont Clay). The Riviera loess sheet varies in thickness from a few inches to several feet; locally the loess is absent and Pleistocene deposits are exposed at the surface. The loess and underlying Pleistocene deposits, especially the sands, are extensively calichified. This formation is of minor importance in the site area (Brown, 1977). (See Figure 4.7)

3.2.1 Regional Soils

The Environmental Geologic Atlas - Kingsville Area indicates that the soils in the area of the landfill site are of two types: Type II and Type IX. (See Figure 4.7) The predominant soil group is Group IX which is described as clay -sand dunes and dune complexes, active and inactive, sparsely and heavily vegetated respectively. Older vegetated dune complexes have a higher sand and caliche content. Currently active dunes are high in clay content. Type II soil group is defined as dominantly sand, high to very high permeability and drainage, moderate water-holding capacity, low to moderate compressibility and shrink-swell potential. The Atlas also points out in Table 6 that these types of soils may have problems as solid waste disposal areas. However, the use of geosynthetic clay liner as replacement for higher permeability soils addresses this problem.


The Texas Coastal Basins Cooperative River Basin Survey Plate 4-5 indicates that the

soils at the landfill site are type 3-V described as Victoria-Orelia- Clareville group. These are described as cracking clayey soils; soils with loamy surface layers underlain by cracking clayey layers and soils loamy throughout, some of which are compact beneath the surface layer.

The soil in the area of the landfill site is defined to be Czar-Delfina-Orelia according to the General Soil Map of Kleberg County, Texas prepared by the Soil Conservation Service. This soil group is described as "somewhat poorly to well drained loamy fine sands, fine sandy loams and sandy clay loams that have moderately to very slowly permeable lower layers with low and moderate shrink-swell potentials. This unit consists of about 35 percent Czar soils, 30 percent Delfina soils, 20 percent Orelia soils, and 15 percent other soils. The detailed description of these soils is given in Appendix O. This same source states that the Czar soils have slight limitations for area type sanitary landfills but are so minor they are easily overcome. The Czar soil is good for daily landfill cover. The Delfina soil has the same rating (slight) for area type sanitary landfills as Czar soils. The use of Delfina soil for landfill cover varies from good to fair. The Orelia soil has a moderate rating for area type sanitary landfills which means that limitations can be overcome or modified. The Orelia soil has fair use as landfill cover.

Consultation with the local USDA Soil Conservation Office produced a specific aerial photograph soils map of the area. This map defines the caliche pits as just that. The soils surrounding the remainder of the site are of four types: Hidlago fine sandy loam, Racombes sandy clay loam, Runge fine sandy loam, and Willacy fine sandy loam. The description of these soils from the National Soils database at lowa State University are attached in Appendix O.

The geologic description of the site surface and subsurface described in sections 6 and 8 confirm that the site has a major caliche bearing channel, a discontinuous sand filled channel, and two clay dunes. Thus, the soils description from the Environmental Geologic Atlas, the Kleberg County Soils Map and the local SCS describe the site soils best.

EXPLANATION Fill and Spoil Deweyville Formation Fill, F, material dredged for raising land surface above alluvium and barrier island deposits and for creating land, Spoil, S, dredged material forming islands along waterways. Properties highly variable, mixed mud, silt, sand, and shell; mud and silt winnowed when reworked Sand, silt, clay, and gravel, includes point bar, natural levee, and stream channel deposits, surface characterized by relict meanders of much larger radius of curvature than those of present streams; occurs along Nueces River at three levels: 5-20, 20-30, and 40-55 feet above level of Present flood/silt. Recent floodplain Oal Alluvium Clay, silt, sand, and gravel, organic material abundant locally; includes point bar, natural levee, stream channel, backswamp, coastal marsh, mud flat, clay dune, sand dune, and oyster reef deposits. Includes some terrace deposits along streams other than the Nueces Beaumont Formation Beaumont Formation, Ob, with barrier island and beach deposits, Obb, mapped separately. Beaumont Formation, Ob, mostly clay, silt, sand, and gravel; includes mainly stream channel, point bar, natural levee, and backswamp deposits, and to a lesser extent coastal marsh, mud flat, lagoonal, Recent and older lake, clay dune, and sand dune deposits. Obi agoonal, Recent and other lake, cay durie, this same the deposits; concretions and massive accumulations of calcium carbonate (caliche) and concretions of iron oxide and iron-manganese oxides in zone of weathering; surface pitted by shallow lakes or dry lake beds with associated clay dunes which in places align along meanderbelt ridges; pimple mounds only in vicinity of Qbb unit; thickness 1004 ties? Barrier island deposit Sand, silt, and clay; mostly sand, well sorted, fine grained, abundant shells and shell fragments; interfingers with silt and clay in landward direction; includes beach ridge, spit, tidal channel, tidal delta, washover fan, and sand dune deposits; "high to very high permeability, low waterholding capacity, low compressibility, low shrink-swell potential, good drainage, high shear strength, low plasticity" pimple mounds only in vicinity of Obb unit; thickness 100± feet The stippled overprint (source shown in Index to Geologic Mapping) shows areas that are "Dominantly clay and mud of low permeability, high water-holding capacity, high compressibility, high to very high shrink-swell potential, poor drainage, level to depressed relief, low shear strength, and high plasticity; geologic units include interdistributary muds, abandoned channel-fill muds, and fluvial overbank muds," The nonstippled areas are "Dominantly clayey sand and silt of low-moderate permeability, moderate drainage, level relief with local mounds and ridges, and high shear strength; geologic units include meanderbelt, levee, crevasse splay, and distributary sands" Barrier island and beach deposits, Obb, mostly fine-grained sand, shells scarce; surface slightly higher than that of surrounding deposits, characterized by numerous pimple mounds and poorly defined relict beach ridges; includes many Recent, locally active sand dunes; probably part of "Ingleside" barrier island system; thickness less than 60 feet 100± feet Qds Qcd Os Osi Windblown deposits Includes clay dune and clay-sand dune deposits, Qcd; active dunes and dune complexes; Qcd; stabilized sand dune deposits, Qcd; sand sheet deposits, Qs; and silt sheet deposits, Qs; Small areas of Pleistocene deposits within these various units not separately mapped Clay dune and clay-sand dune deposits, Qcd, clay, silt, and sand ranging from mostly clay and silt in coastal areas to a mixture of clay, silt, and sand inland; light gray, calcareous; forms elongate deposits mostly on downwind side of intermittently wet basins, relief 5-30 feet; physical properties similar to those of the sandy and silty Beaumont Windblown deposits Beaumont Active dunes and dune complexes on mainland, Osd, banner dunes common, local barchan dunes; relief up to 30 feet; "very high permeability, low water-holding capacity, low compressibility, low shrink-swell potential, good drainage, high shear strength, low plasticity, unstable because of migration" Stabilized sand dune deposits, Ods, strong relict eolian grain, sparse grass; includes active blowout areas with depressed relief, hummocky, locally becomes fresh-water marsh in wet season, and well-stabilized sand dunes with dense live-oak mottes and scrub; "moderate to very high permeability, low to moderate water-holding capacity, low compressibility, low shrink-swell potential, good to fair drainage, high shear strength, low plasticity, shallow water table" Sand sheet deposits, Os, no relict grain, sparse grass; physical OI Lissie Formation undivided Sand, silt, clay, and minor amount of gravel; iron oxide and iron-manganese nodules common in zone of weathering, in upper part locally calcareous, some concretions of calcium carbonate; surface fairly flat and featureless except for numerous rounded shallow depressions and pimple mounds, lower part very gently rolling; characterized by "moderate permeability, moderate drainage, and high shear strength; geologic units include meanderbelt, levee, crevasse splay, and distributary sands and floodbasin mud over meanderbelt sand;" thickness 200± feet water table" Sand sheet deposits, Os, no relict grain, sparse grass; physical properties similar to those of "Stabilized sand dune deposits," Ods Silt sheet deposits, Osi, silt and fine sand in thin, locally discontinuous sheet winnowed from other "Windblown deposits," brush and grass covered, rests on various Pleistocene deposits; has physical properties similar to those of other "Windblown deposits," but because of its thinness engineering plans should consider the nature of the underlying materials Fault U, upthrown side; D, downthrown side; dashed where inferred

Figure 4.4a Geology Map Explanation

FINCH ENERGY & ENVIRONMENTAL SERVICES, Inc.

					3	(8			<u>(</u>	
WATER-BEARING PROPERTIES	Not significant as an aquifer, Not known to be tapped by wells.	Capable of yleiding small quantities of fresh water to shallow wells on Padre Island.	Yleids small quantities of slightly saline water to a few stock wells in Kenedy Courty, in some stess in Kenedy County the sand conteins brine.	Barrier island and beach deposits yield small quantities of fresh to probably moderately saline water to a few stock wells in eastern Kleberg County near Larune Medre.	Besumont Cley and Lissie Formation yield small quantities of slightly to moderately saline water to a few mostly stock wells in sestem part of Kleberg and Kenedy Counties.	Pri cipal aquite: Yields small to large qu. nitites of Ire.h to slightly saline wa rr to public supply, industriel, and Irri atlon wells as well as to numerous ru: I domestle and stock wells. Many of the wells tapping the Gollad in Kleberg an: Kenedy Counties flow.	Nc known to be tapped by wells, but call ible of ylading small quantities of slightly saline water in Kenedy and Jim Writs Counties.	Yiulds small to inoderate quantities of slightly saline water to industrial and stock wells in southern Jim Wells County.	FINCH ENERGY &	ENVIRONMENTAL SERVICES, Inc
LITHOLOGY	Mostly very fine to fine sand, silt, and calcaraous clay.	Tan to gray, fossilitarous, medium sand containing wood fragments; interbeded ten sand and gray clay, locally gypseous: and gray, fossiliferous sandy cl.y.	Tan to white, unfossillferous, massive, line to very line sand, grenish gray sandy clay, highicalcarcous clay or mar!, and thin-bedded clayey sand.	Barrier island and basch deposits mostly light gray, massive, cross-bedded fine sand about 60 feet thick; contains some shell fragments.	Beaumont Clay and Lissie Formstion mostly very calcar- eous, silghtly carbonaceous, blue and yellow clay and a few lenticular beds of sand.	Fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored calcareous clay. Sand beds or sandstone compose from 40 to 60 percent of the formation.	Mostly stiff, compact, gray, calcareous clay and some thin lenticular beds of gray sand.	Very line to coarse, brown to gray sand and sandstone inter- bedded with silt and a consider- able amount of ctay.	FINCH	SERVIC
APPROXIMATE MAXIMUM THICKNESS (FT)		90	+ 09		1,400	1,100	1,200 +	009	<u></u>	opment Board
GEOLOGIC FORMATION	Alluvlum	Barrler Island deposits	South Texas eolian plain deposits	Barrier Island and beach deposits	Besumont Cley and Lissie Formation, undifferentiated	Gollad Sand	Legarto Clay	Oakville Sandstone	Figure 4.5 graphic Column	r Developmen 1987
SERIES		:•1	Holocene and Pleistocene (?)		Pleistocene	Pilocene	Mocene		Figure Stratigraphic	Texas Water Devel
SYSTEM	Quaternary				Tertiory				Texas	

Figure 4.6 Regional Cross-Section Texas Water Development Board 1987

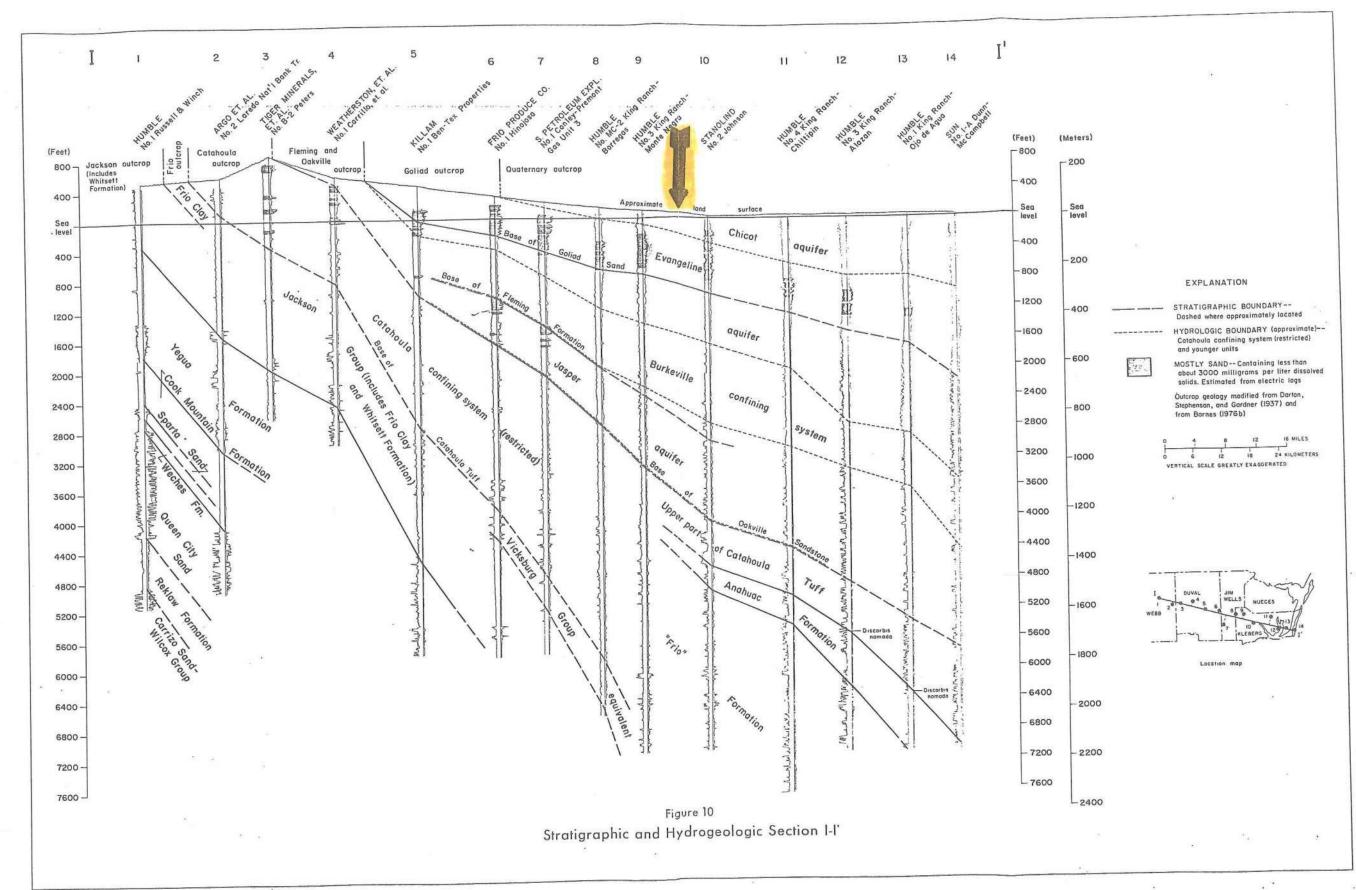
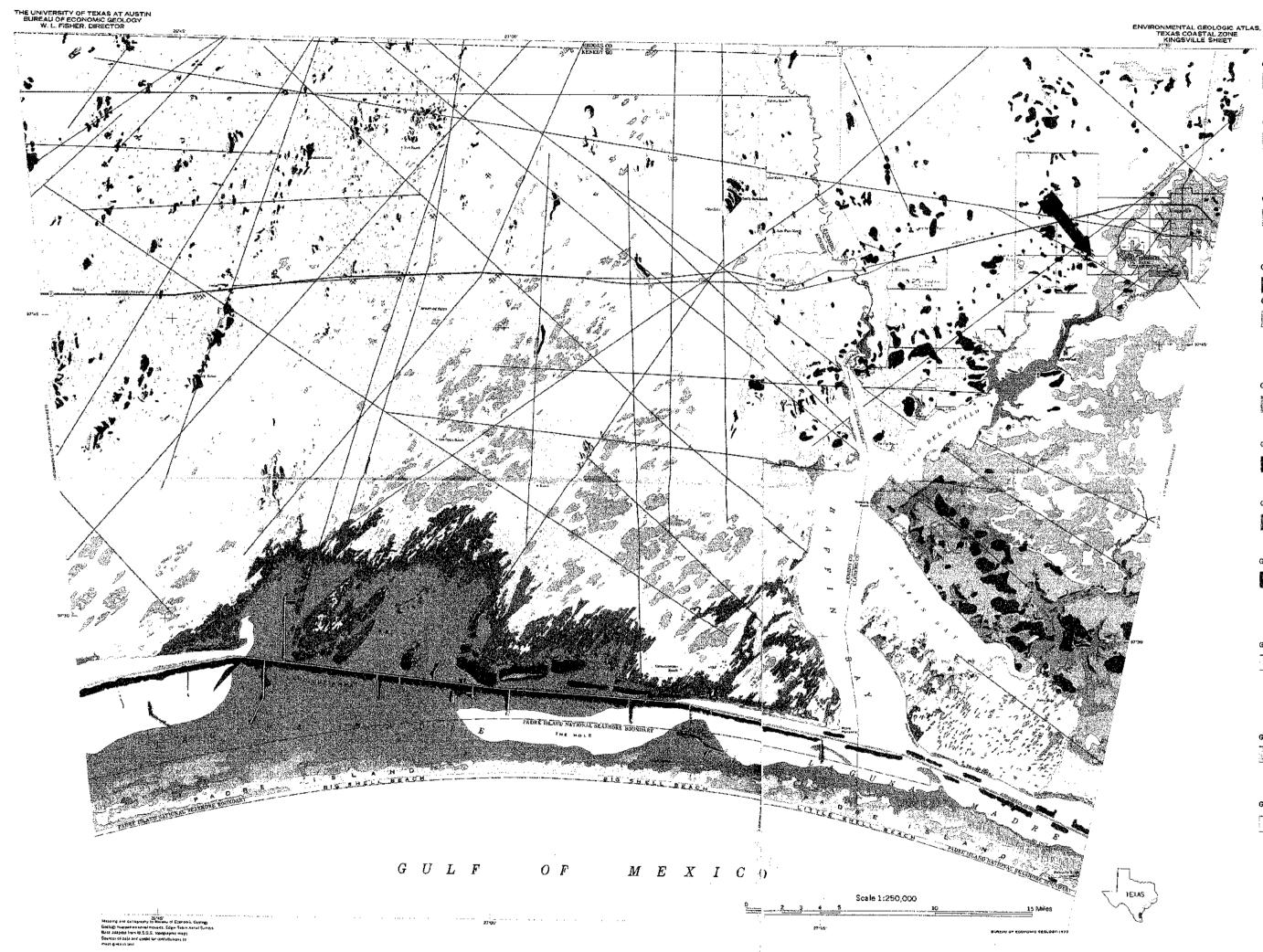



Figure 4.7
Physical Properties Map
Bureau of Economic Geology
EGA-Texas Coastal Zone
Kingsville Area 1977

PHYSICAL PROPERTIES

EXPLANATION CATEGORIES

Dominantly clay and mud low permeability, high water-holding capacity, high compressibility, high to very high shrink-swell potential, poor drainage, level to depressed rehef, low shear strength, high plasticity Geologic units include interdistributary muds, channel-fill muds, mud-filled coastal labar.

GROUP II.

Dominantly sand, high to very high permeability, low water-holding capacity, low compressibility, low shrink-swell potential, good drainage, low ridge and depressed relief, high shear strength, low plasticity Geologic units include Modern barrier island sands [beach, foredunes.stabilized epilen blowouts, vegetated barrier flats, wind-deflation troughs and storm runnels, washover channels), and Pleistocene barrier strandplain sands.

GROUP III.

GROUP IV

Coastal marsh, fresh to brackish, not mapped because of scale narrow band along mainland shore

GROUP V

Intand marsh, fresh-water, ephemeral, alternately wet and dry, variable substrate, commonly mud, low to moderate permeability, moderate water-holding capacity, poor drainage, poor to moderate load-bearing strength, moderately high organic content, subject to flooding, locally thin mud may veneer sand substrate. Geologic units include fresh-water marsh and fresh-water marsh-hilled wind deflation areas; local ephemeral fresh-water marsh in epilan blowout areas not mapped.

GROUP VI.

Wind-tidal flat, salt marsh rare or absent, sand with minor amounts of mud and algal mat laminations, alternatively submergent (0 - 2 feet) and emergent unvegetated, subject to intense colian transport of sand, local depressed areas with soft substrate, properties similar to Group II

Geologic units include several wind-tidal flat facies

GROUP VII.

Madelandand spoil, properties highly variable, mixed mud, silt, sand, and shelt, reworked spoil commonly sandy and sheltly with moderate sorting similar to Group III. Geologic whits include subserial spoil heads or mounds, subserial roworked spoil subsanierits spoil made land.

GROUP VIII.

Transitional wind-tidal flat and editar sand sheet brief periods of tidal inundation alternating with longer sustained periods of wind deflation and
clay-dune accretion, numerous clay dunes with properties similar to Group I,
wind-tidal flat properties similar to Group Vt, essentially an area of wind destruction of earlier send sheet.

Clay-sand dunes and dune complexes, active and inactive, sparsely and heavily regetated respectively, see Geologic map to differentiate dunes, mixed sand, silt, and clay with variable properties similar to Group III, older vagetated dune complexes have higher sand and caliche content currently active dunes high in clay content. Geologic units include inactive, brush-covered clay-sand dune complex active, grass-covered clay-sand dunes, and eolan accretionary bars and ridges (mocons pourers).

ridges (rincons potreros)

Edian sand sheet, poorly to well stabilized with grass, brush, and live daks, see Geologic map to differentiate vegetation dover, moderate to vary high permeability, low to moderate water-holding capacity, low compressibility, low shrink-swell potential, good to fair drainage, high shear strength. Ilow plasticity, shellow water table, flat to hummocky or ridge-like topography. Geologic units include active dune blowout area, sand sheet with strong relict grain sand sheet with no relict grain, sand sheet deliation area moderately stabilized dune and sand sheet, and well-stabilized dune and sand sheet.

GROUP XI.

Active dune complex, sand, triable, very high permeability, low water-hold-ing capacity, low compressibility, low shrink-swell obtantal, good drain-age, high shear strength, low plasticity, unstable due to migration, local relief up to 30 feet. Geologic units include active dune complex in sand sheet area, backisland dune field, fore-island blowout dune, and coppice dune and sand flats.

GROUP XII.

Loess sheet, silt, and time sand, thin and locally discontinuous, overlying fluvial or deflaic-bay sand and mud, locally sandy near underlying Pleistocene channet bodies, loess variable thickness properties similar to Group X, underlying non-colian sediments resemble. Groups I and III. engineering plans should involve consideration of depth of silt and sand and nature of subadjacent. Pleistocene sediment.

Geologic units include sand sheet overlying deltaic facies and sand sheet overlying fluvial facies.

Refer to tables in text for land-use evaluation such as engineering, solid waste disposal, and other functional categories based on physical properties and other parameters

A Pit or quarry, commonly caliche-comented fluvial and deltaic deposits

Solid waste disposal site, senitary landfills, and open dumps.

Active or potentially active fault, based on lineament or grain displayed on aenal photographs

Sources of data given in text

3.3 Active Geologic Processes

3.3.1 Faults and Faulting

The site is located on the west flank, southwest quadrant, of the Kingsville Dome, an area of post Late Miocene (<8 m.y.b.p.) uplift which is the largest isolated, positive structure in Kleberg County. The uplift influences an area of approximately 50 square miles. Although origin of the uplift is unknown it is attributed to deep seated diapiric shale or salt movement. The overall paucity of oil and gas production on the Dome is due to late uplift and resulting late trap formation. Possible destruction of any pre Miocene hydrocarbon traps could have also occurred. Past and current oil and gas production has been obtained from sands within the Oligocene age Frio and Miocene age Oakville formations. Productive reservoirs are highly compartmentalized by faulting. Two primary fault zones divide the Dome into quadrants.

a.) Northeast striking regional Frio, down to the coast, growth fault buried below the Oakville formation, and

 b.) West-Northwest striking post Miocene Santa Gertrudis Fault zone, down to the South-Southwest with associated, up to the north northeast, relief faults.

An updip projection of the regional Frio growth fault passes below the landfill site at approximate depths of 6,000 to 7,000 feet, but the fault is buried below the Miocene age Oakville formation and therefore does not influence shallower beds. Updip projections of the Santa Gertrudis fault system are located north of and not in the vicinity of the landfill site. Beds as recent as the Goliad sand are influenced by the uplift but it is unknown as to whether Santa Gertrudis faulting penetrates this high in the section. It is believed that the Late Miocene uplift and associated Santa Gertrudis faults predate deposition of the Pleistocene Beaumont and Lissie formations. The Pleistocene beds exhibit northeast dip in the landfill site vicinity (Structure Map, Top Lt. Olive Green Clay) whereas deeper Miocene and Oligocene beds exhibit west to southwest dips due to uplift.

An evaluation of potential faults or fault zones does not indicate the presence of active faults. Topographic Maps, literature searches, aerial photographs, Petroleum Industry maps and a field survey were used in this evaluation. The field survey combined with topographic maps did not reveal structural damage to buildings, ground scarps, or unusual surface depressions. Changes in drainage or vegetation patterns which are also associated with faulting were not present.

A surface lineament passing through the site was noted on the Physical Properties map in the Kingsville Volume of the Environmental Geologic Atlas of the Texas coastal Zone. (See Figure 4.7, Lineament Labeled A) No surface expression of faulting as related to this lineament is noted. Improved copies of Figures 4.8 &4.9 could not be located.

Electric logs of the oil and gas wells drilled in the immediate area are not recorded to

ground surface. Electric logs of two uranium wells were located and obtained from URI, Inc.'s Kingsville office. The location of these wells are noted on the Cross section map and subsurface maps submitted with this revised report.

3.3.2 Subsidence and Unstable Areas

Site specific soil conditions which might result in differential compaction are not evident. A 2' to 2.5' topsoil and loess cover is present in the current agricultural area and the unmined areas. Below, the topsoil, is a firm to very hard clay. This clay is described as silty, calcified, with caliche, and is uniform in character throughout the site.

A field investigation did not reveal any geologic or geomorphologic features which might affect the soil stability. On site are an office and scale house, and maintenance facilities. Off site (within a one (1) mile radius) are 41 residences and agricultural buildings. All buildings are one-story in design.

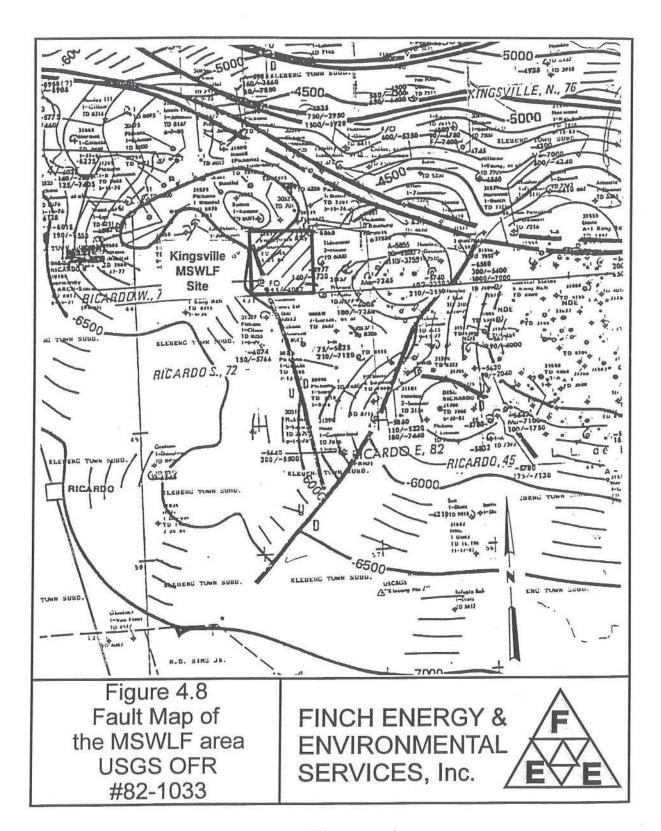
An off-site field investigation of the petroleum producing areas did not reveal any major storage, processing or secondary recover facilities which could affect site stability at the surface or at depth.

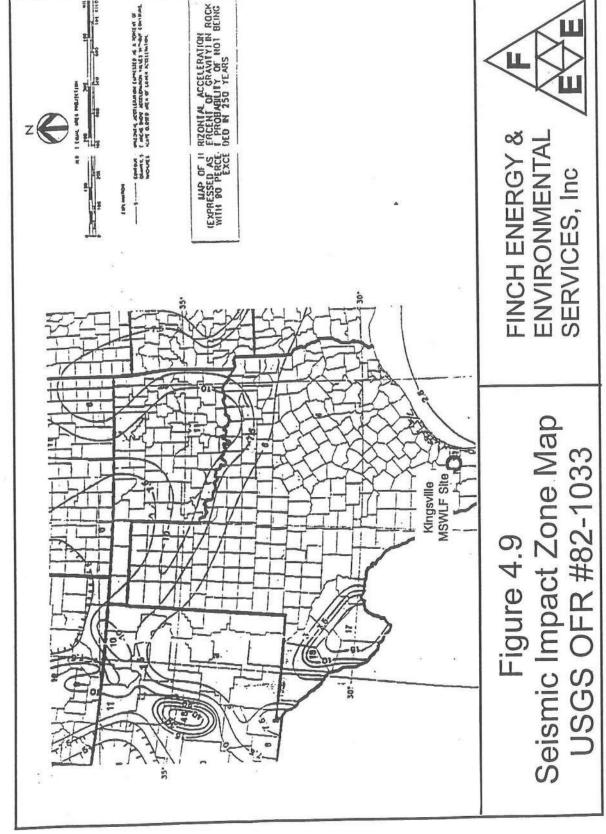
Subsidence at the site does not appear to be a problem. The settlement analysis in Appendix H indicates a maximum settling of 3.0 inches at the center of the landfill and 1.5 inches at the edges. The maximum stress when the landfill is completely filled is between 1.25 to 1.50 tons per square foot. Unconfined compressive strength is typically 3.0 to 5.0 tons per square foot. Typical strain of less than 1% is encountered when compressive stress is 1.5 tons per square foot. Therefore, subsidence does not appear to be a problem. Some localized sand channels will have to be replaced during construction.

3.3.3 Erosion

Based on soil types and character, and topography, erosion does not appear to be significant factor under "normal conditions" or if design criteria are met and maintained. The soils data found in the references given in Section 3.2.1 above say very little about erosion potential. However, it is obvious that sandy soils will tend to become airborne with sufficient velocity. It is therefore important that the cap for the landfill be immediately covered, compacted and vegetated. The length of rainfall run-off on slopes has been addressed by breaking up the long runs on the cap with diversionary berms. Thus, active cap cover and maintenance will minimize erosion from the site. However, in a situation of torrential rains associated with tropical storms or hurricanes erosion may be significant in local areas and for a limited time frame.

Although cultivated agricultural lands may tend to undergo some erosion with sandy types


of soils, pasture lands or other vegetated soils greatly reduce the potential to erode. The land fill soils for capping will be compacted and/or vegetated or both to minimize erosion. The final cover for the landfill will be well capped and diversionary berms for water flow control on long slopes will be used.


3.3.4 Seismic Impact Zones

Data presented by Algermissen, et al, 1990 suggests a low probability of major seismic activity in the vicinity of the site. (See Figure 4.9)

3.4 Wetlands

A representative from the U.S. Army Corps of Engineers has visited the site. The U.S. Army Corps of Engineers has concluded that there are no wetlands on the COK MSWLF site. (See Figure 4.10)

FIGURE 4.10

U.S. Army Corps of Engineers
Letter Dated November 7, 1997

DEPARTMENT OF THE ARMY SOUTHERN AREA OFFICE, CORPS OF ENGINEERS P.O. BOX 2845 CORPUS CHRISTI, TEXAS 78403-2948 November 7, 1997

Regulatory Branch

SUBJECT: D-8551

Mr. Homero Castillo Alpha Engineering P.O. Box 1251 Kingsville, Texas 78364

Dear Mr. Castillo:

This is in response to your August 13, 1997, letter requesting a jurisdictional determination and permit requirements for a proposed Solid Waste Landfill project. The site is located at the intersection of FM 2130 and FM 2619, Kleberg County, Texas.

I have completed my review of the information submitted and have determined that a Corps of Engineers permit is not required to proceed with the project. This determination is valid for a period of 5 years unless new information warrants a revision before the expiration date.

If you have any questions concerning this matter, please contact me at the letterhead address or call (512) 884-3385.

Sincerely,

James E. Gilmore South Unit Leader Enforcement Section

4.0 Regional Aquifers

The Evangeline Aquifer is the principal aquifer in the region and is considered one of the most prolific aquifers in the Texas Coastal Plain. The aquifer is composed of at least the Goliad Sand and includes sections of sand in the Fleming Formation. Only in South Texas the base of the Evangeline coincides with the base of the Goliad. The upper boundary of the Evangeline probably follows closely the top of the Goliad Sand where present, but this relationship is somewhat speculative (Muller, 1979). (See Figure 4.11) Ground water flow direction in the Evangeline is in a Northerly direction based on a water level map of the Goliad sand. There are two very significant cones of depression in the Evangeline (Goliad) aquifer located to the northwest of the City of Kingsville MSWLF site. These depressions are primarily due to large groundwater production rates by the City of Kingsville and the Exxon King Ranch Gas Plant. The extent of salt water intrusion from the Gulf of Mexico into the Evangeline (Goliad) aquifer is shown on Figure 4.16.

The Goliad consists of fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored clay. Recharge within the site area occurs along the outcrop which is located in western Hidalgo, central-eastern Starr, central Jim Hogg, Duval, southeastern Webb, northeastern Brooks, northern Jim Wells, and extreme northeast Zapata counties, as well as other counties to the north. The maximum width of the outcrop is west of Falfurrias where the Goliad Sand extends for nearly 50 miles at the surface and completely overlaps the underlying Lagarto Clay and Oakville Sandstone and nearly overlaps the Catahoula Tuff (Shafer, 1973). (See Figure 4.12)

The water of the Goliad is under artesian pressure and is yielded to flowing and nonflowing wells. The average coefficient of transmissibility determined during drawdown of the fresh to slightly saline water section of the Goliad Sand in southwestern Kleberg County measured in well no. RR-83-41-803, was about 34,400 gpd per foot. The specific capacity of the well was 17.8 gpm per foot. This was derived from a screened interval of 126 feet near the north boundary of Kenedy and south boundary of Kleberg Counties.

Fresh water of domestic use quality in the Evangeline is found in well developed sands at depths of 500 feet and greater in the MSWLF area. From surface to the fresh water sands in the Evangeline the lithology is predominately a clay described as silty, calcareous, firm to hard with occasionally silty sands.

The regional Chicot aquifer lies approximately 220 feet below ground surface in the vicinity of the MSWLF according to two deep well logs obtained from a local mineral company. (See Section 4.2) The Light Olive Green Clay layer serves as aquiclude between the uppermost aquifer below the landfill site and the Chicot aquifer. In Kleberg County, and specifically the MSWLF, the waters from the Chicot aquifer are generally slightly-saline to saline and yield only marginal quantities of water.

The local unconfined water table aquifer tends to flow in all directions away from the landfill site. The only exception is that for a period of time after excessive rainfall events, ground water in this local uppermost aquifer tends to flow toward the site from the northwest. This determination is based on water levels recorded in wells completed for use in the current expansion phase. However, the largest gradients for ground water flow are in the northeast and southwest directions. The flow toward the southwest is along a caliche channel which slopes to the southwest toward some lower elevation caliche pits. The flow toward the northeast is toward the Santa Gertrudis creek. However, the ground water tends to flow through some fairly tight clay in that direction. The high point of ground water at the MSWLF site is at least partially a following of the surface topography and influenced by direct recharge from any ponding which is not promptly removed. Attachment 5, Appendix E gives a more thorough analysis of ground water direction and rate of ground water flow.

The initial interpretation, based on available data and monitor well density and location, indicated a predominate flow to the north or west. Completion of monitor and observation wells in the current expansion program indicate a northeast flow direction. Later analysis shows that ground water flows slowly away from MSWLF in all directions. This is based on measurements of the top of the saturated zone as evidence by water levels in wells. The initial flow direction determined by REI when the landfill was started was toward the northeast.

4.1 Water Quality

The water quality of the Goliad is highly variable. Chloride contents in the wells sampled ranged from 94 to 9,100 mg/l, exceeding 250 mg/l in 60% of the samples. Sulfate content ranged from 26 to 4,630 mg/l. In Kleberg County, 33% of the samples exceeded 250 mg/l sulfate. Dissolved-solids content ranged from 601 to 49,900 mg/l. Over 75% exceeded 1,000 mg/l dissolved-solids. In summary, ground water that meets most of the quality standards of the U.S. Public Health Service is available from wells less than 1,000 feet deep in the Goliad Sand, Principally in southern Jim Wells County, the western one-half of Kleberg County, and in a few other relatively small areas throughout the report area. Shallow, moderately saline to very saline water overlies the fresh to slightly saline water at most places (Shafer, 1973). (See Figure 4.13)

The Beaumont Clay and Lissie Formation, undifferentiated, (Chicot Aquifer) yields small quantities of slightly to moderately saline water to a few shallow wells used mostly for stock needs in eastern Kleberg and Kenedy Counties. Test wells drilled near Riviera, 15 miles south of Kingsville, in southern Kleberg County show that in this area the shallow sands of the Beaumont and Lissie (Chicot) usually contain very saline water. This group is not considered a supply of useable water because of the highly mineralized water associated with formations in most places. The casings of many wells are cemented through these

formations. (Shafer, 1973)

Water held in the Beaumont Clay and Lissie Formation, undifferentiated, (Chicot) is under water-table (unconfined) conditions. There were no recoverable aquifer tests from reference material on this formation as it occurs in the area of the site. This formation is not recognized as a useable source of ground water.

Historical ground water monitoring from in-place monitor wells indicates that the sulfates range approximately from 45 to 500 mg/l, chlorides from approximately 50 to 500 mg/l, and dissolved-solids from approximately 500 to 6,000 mg/l. Values of pH have consistently ranged between 7.00 and 8.00. More detailed analytical data from the ground water monitor wells at the site is given in Table 5.1 in Attachment 5.

4.2 Hydraulic Connection

No hydraulic connection was found between the uppermost fluvial-deltaic beds which will host the MSWLF and the deeper Chicot and Evangeline (Goliad) aquifers.

Deep elevations prepared from water well data located in the vicinity show that the Chicot aquifer is located approximately 200 feet below ground surface in the MSWLF vicinity. This data is confirmed by electric logs from two (2) deep uranium tests located on the southeast side and adjacent to the MSWLF acreage block (URI, Inc. well nos. 2001 & 2016). These wells exhibit the top of the main Chicot sand body at depths of 220 & 225' of measured depth, respectively. The top of the deeper Evangeline (Goliad) sands are found at approximately 500' MD. A confining clay, at the base of the fluvial—deltaic section which will host the MSWLF, is indicated in both URI wells to depths of 120' and 130' respectively. In addition, four deep borings (wells 21,23,24,25) at the MSWLF confirm that the "light olive green clay" is ubiquitous under the site with a minimum proven thickness of 38'.

TABLE 4.2.1

WELL#	ELEVATION (feet)	TOTAL DEPTH (feet)	TOP LT OLIVE GRN CLAY (ft.,+M.S.L.)	FOOTAGE OF CLAY
21	52.4	84	+6.4	38
23	49.5	86	+13.5	38
24	47.4	72	+15.4	40
25	61.1	88	+11.1	38

The "light olive green clay" is the aquiclude for the MSWLF facility.

Revision: 0


4.3 Recharge

Recharge within a 5 mile radius is from downward percolation of surface water, infiltration from streams, impoundments and water retained in abandoned caliche pits. (Figure 4.14) Flow through the soils is very slow.

4.4 Water Use

A survey of, and for, water wells within a 1 mile radius of the MSWLF site was prepared by Agency Information Consultants (AIC). All known water wells within the survey area produce water for domestic use from the Evangeline Aquifer (Goliad Sand). Thirty one wells were identified in the survey area. (See Figure 4.15) Depth to the top of the perforated or screened interval varies from 524 feet to 726 feet, with an average depth of 621 feet. (See Figures 4.12 & 4.13) There are no known water wells completed in the Chicot aquifer for potable water. There are a few stock wells. The water from the Chicot is mostly very saline. This salinity causes casing corrosion problems with the good fresh water wells in the Goliad aquifer unless they are cemented properly through the Chicot.

Figure 4.11 Regional Groundwater Elevations Evangeline (Goliad) Aquifer Texas Water Development Board Report #173 (July 1973)

www.C-LineProducts.com Style #62028 1-888-860-9120

> Figure 4.12 Regional Stratigraphic & Hydrogeologic Section EGA-Texas Coastal Zone Kingsville Area 1977

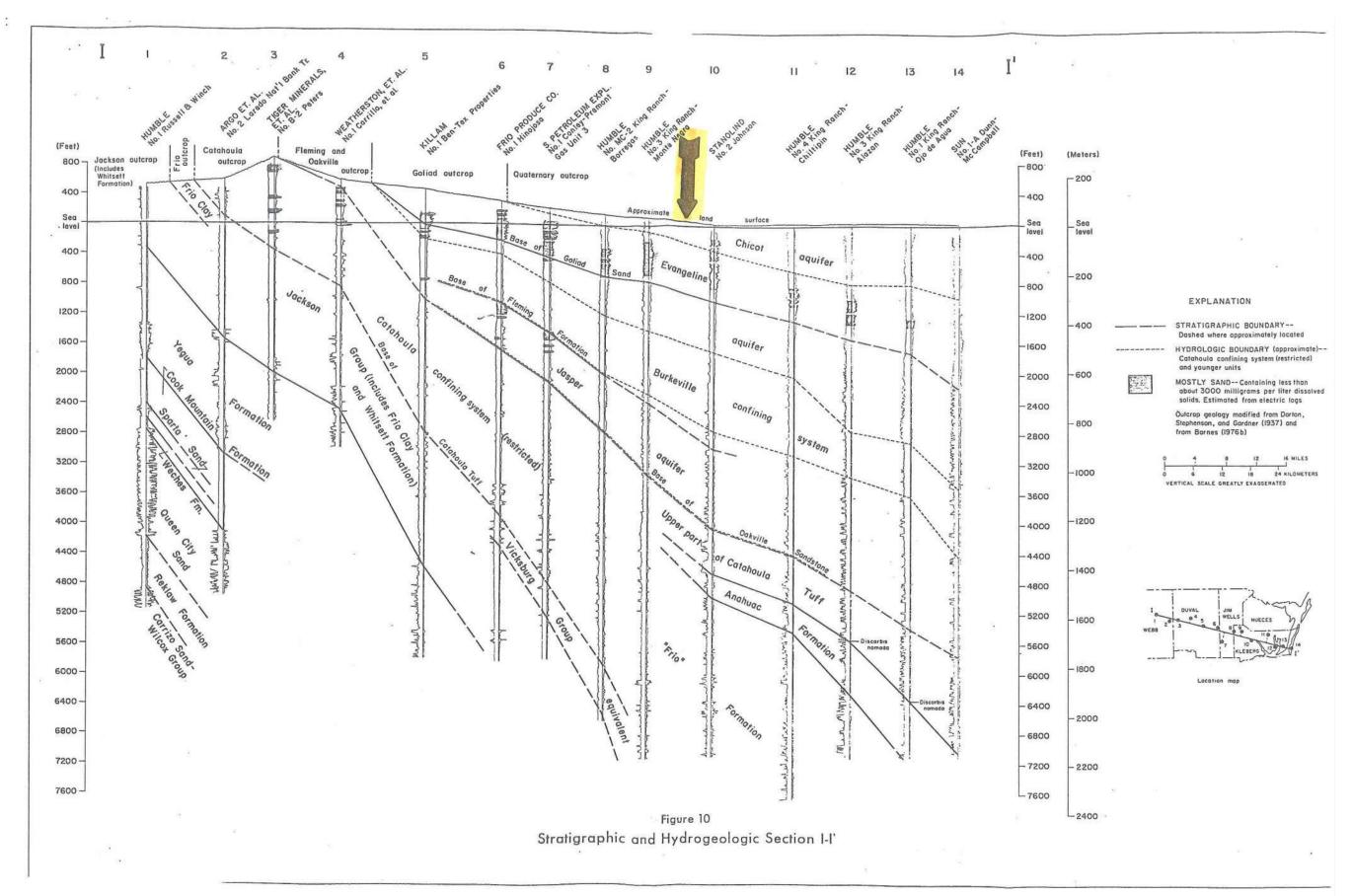
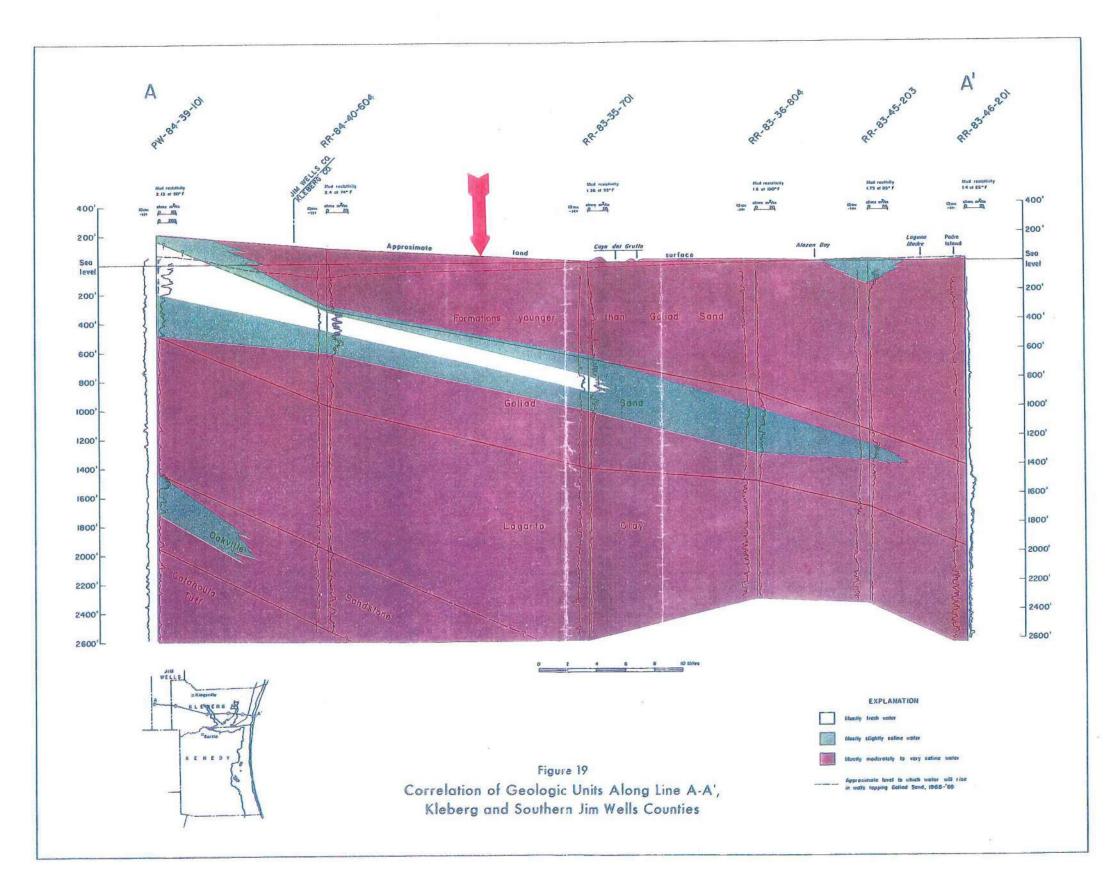
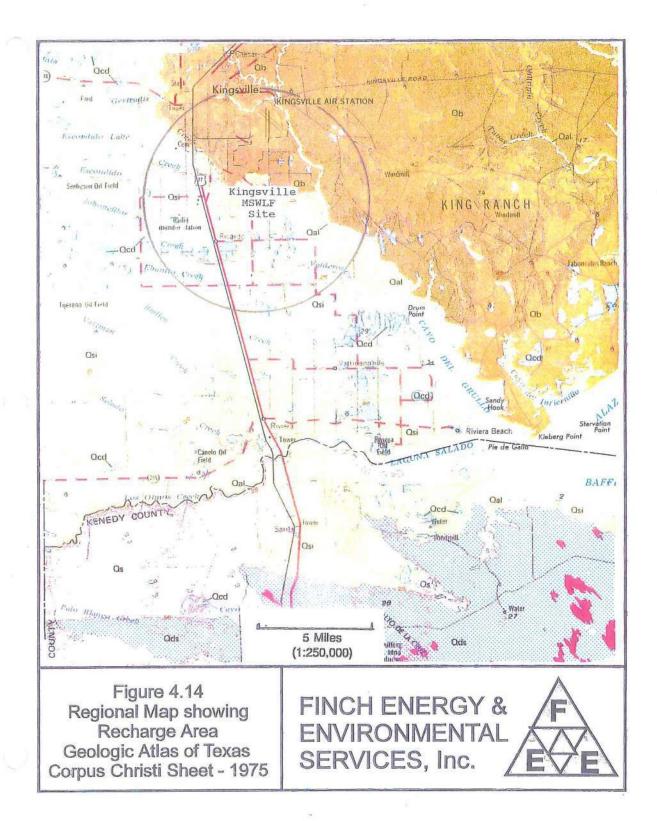
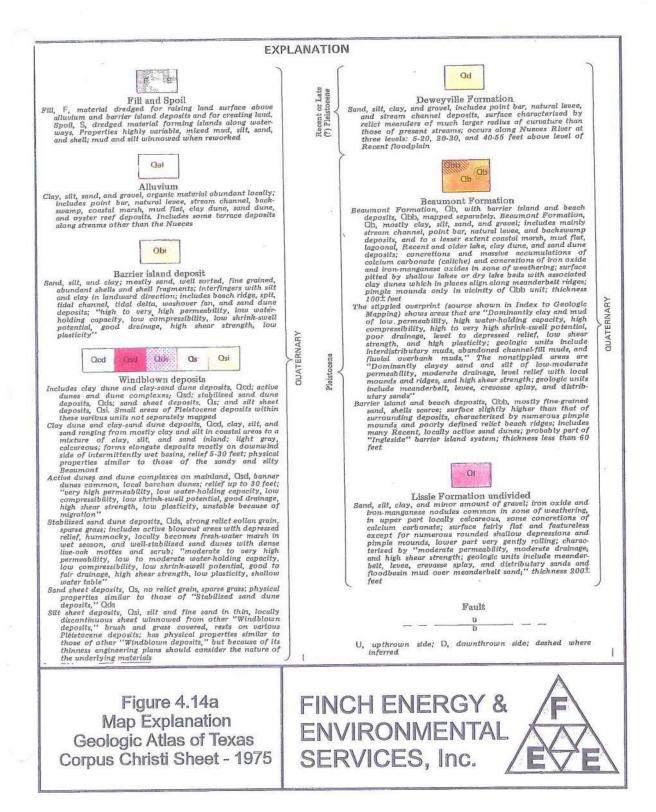
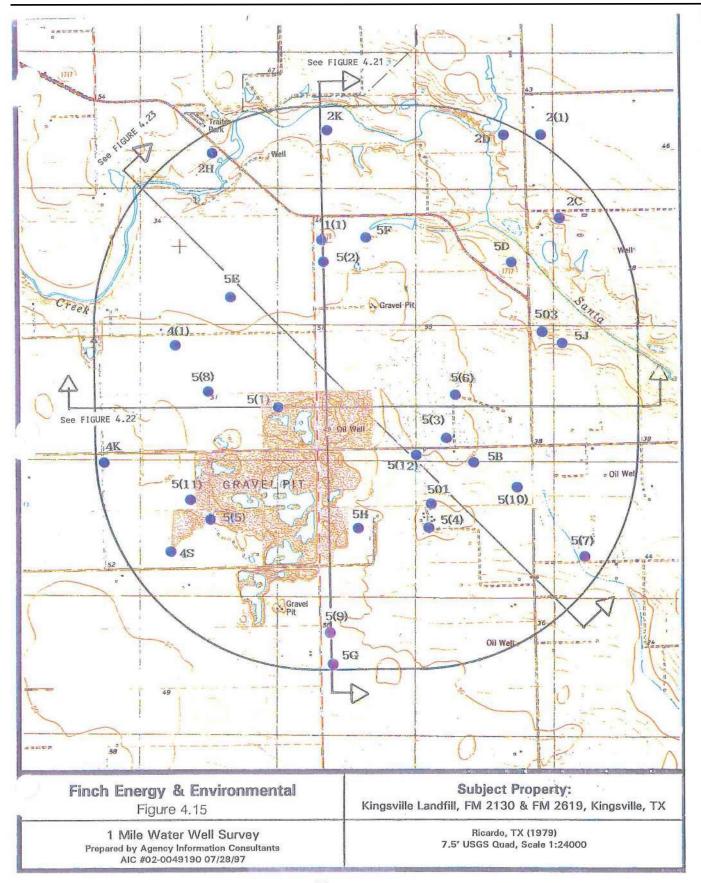






Figure 4.13
Regional Groundwater Quality
Cross-Section
EGA-Texas Coastal Zone
Kingsville Area 1977

5.0 SUBSURFACE REPORT

5.0 SUBSURFACE INVESTIGATION

Hydrogeological/geotechnical investigations were conducted at the City of Kingsville (COK) Municipal Solid Waste Landfill (MSWLF) to characterize subsurface conditions and assist with the development of landfill disposal cell designs as required in 30 TAC §330.56(d)(5)(A). The following sections describe the field activities performed as a part of the subsurface investigations at the COK MSWLF site.

5.1 Overview

Hydrogeologic/Geotechnical Site Assessment field activities included the following: 1) Reconnaissance/Geologic Mapping; 2) Drilling and Soil Sampling; 3) Piezometer Installation; 4) Piezometer Development; 5) Field Hydraulic Testing; and 6) Site Surveying. These field activities were performed to assess the following factors:

- * The availability, quality, and quantity of on-site soil which is suitable for cover and liner material;
- * The influence that geologic factors will have on landfill design;
- * The potentiometric conditions and predominant groundwater flow characteristics; and
- * Characterization of the site-specific groundwater flow regime in order to design a groundwater monitoring network that complies with State and Federal standards based upon subsurface conditions.

5.2 Site Reconnaissance and Mapping

F.E.E., Inc. conducted a site reconnaissance and field mapping effort during initial hydrogeologic/geotechnical activities. Specific tasks performed included the following:

terrain analysis;

locating surface water features; and

locating seeps, rock outcrops and formation contact exposures.

As a part of the site reconnaissance, the currently permitted site was traversed by a F.E.E., Inc employee in order to identify surface geologic or hydrologic features and to characterize the formations which crop out at the site. All stream beds and drainages were explored to identify formation outcrops and to locate surface water features (i.e.,

seeps, ponds). No seeps were noted on-site.

5.3 Drilling and Soil Sampling

F.E.E geologists provided technical oversight of all drilling and sampling activities. This section describes subsurface exploration procedures performed during the hydrogeological/geotechnical investigation activities.

5.3.1 Soil Borings

The field portion of this hydrogeological/geotechnical investigation consisted of the drilling and sampling of seven (7) geotechnical borings to assess subsurface hydrogeological and geotechnical conditions of the underlying materials. All soil borings were completed in accordance with the Soil Boring Plan approved by TNRCC in a letter dated June 4, 1997, (see Appendix A).

An original program of 12 borings was proposed and approved, with a stipulation that seven borings be completed initially. Upon completion of the initial seven borings the homogeneity of the sediments was demonstrated. This data was submitted to TNRCC, (see Appendix A), in the form of geological cross sections. Consequently, the remaining five borings were not being required at that time (see Appendix A). Five of these wells were subsequently completed as Monitor Wells. All borings were completed to a depth approximately 10 feet above MSL. Nine other previous soil borings were available to assist in the subsurface investigation. The completions will be discussed in the Ground Water Characterization Section. The location of these borings (as well as previous borings drilled at the site) are presented on Figure 4.17. In April, 1998 four (4) deeper soil borings were completed to better define the aquiclude below the landfill site per TNRCC's NOD letter. These deeper borings were drilled to varying depths between 72 feet and 88 feet below ground surface (BGS). Core samples were taken from these deep borings at two (2) foot intervals:

Professional Services, Inc (PSI), a F.E.E. drilling subcontractor, drilled the borings utilizing 4.25" I.D. hollow-stem auger during July, 1997. The subcontractor advanced the borings until target depths, or specific lithologic zone, were encountered. Borings were completed using a CME-75 Hollow System Auger rig. The CME-75 system uses a 5 foot long core barrel which recovers 3 inch diameter cores from a 10 inch boring.

In one well (completed as MW 16) zone of highly calcified sandy clay was encountered. Drilling time with auger methods was very slow and the interval was drilled using the split spoon. No commercial additives were used in the boring operation.

Water for mixing grout was obtained on site and supplied by the City of Kingsville from

a South Texas Water Authority connection. Installation and plugging of the borings were in accordance with current rules and prudent operational procedures. Documentation of this work has been submitted.

Subsurface soil and sediment core samples were collected from each soil boring on a continuous basis to a depth of approximately 30 beet below expected base grades (or approximately 50 feet below ground surface) and on 5-foot centers, thereafter, for lithologic classification and selection of geotechnical laboratory samples for potential analyses. Depths of the borings vary from +4.83 MSL to +11.38 feet MSL with on average of +8.37 feet MSL. The proposed depth of excavation is +40.00 feet MSL. This meets the stipulation of all borings being 5 feet deeper than the deepest excavation and also the 30 feet depth requirement. Core samples were collected using either a split spoon for unconsolidated samples or a 3-inch outside diameter (O.D.) Shelby tube for undisturbed samples of cohesive material. Upon sample retrieval, each core was classified as described in Section 5.3.2 below. Each sample was labeled (at a minimum) with the following information: project name; boring number; and sample depth range.

The geologist or geotechnical engineer sealed the soil core samples with plastic wrap, and plastic bags, then placed them in protective crates for transport to the laboratory. The geologist or geotechnical engineer also sealed the samples of cohesionless materials in plastic bags, and packaged them in protective crates for transport to the laboratory.

5.3.2 Classification and Logging of Soils

The F.E.E., Inc. geologist or geotechnical engineer visually classified the samples in the field in accordance with ASTM D2487 and D2488 (Standard Practice for Description and Identification of Soils, Visual-Manual Procedure) and used field soil borehole forms to record soil classification at each boring location. The borehole forms included additional information such as ground surface elevation, north and east coordinates, surface conditions, ground water elevation, driller's name, and the make of the drilling rig. The geologist or geotechnical engineer later checked the accuracy, consistency, and format. The soil borehole logs prepared as part of this investigation are included within Appendix B. (Hand drawn field logs will be supplied separately.)

5.4 Piezometer Installation and Development

A total of 7 piezometers (B-12 through B-18) were constructed during the July, 1997 phase of this investigation to evaluate the water-bearing strata underlying the site. All but B-17 and B-18 were converted to groundwater monitoring wells. During the April, 1998 phase of this investigation four more borings (B-21,23, 24, and 25) were completed. These borings were all grouted upon completion, except 24 which was made

into a monitor well. Appendix C includes detailed Piezometer Construction Summaries. The following sections describe piezometer installation and development protocols utilized during the investigation. Texas Water Well Driller's Reports for Borings B-12 through B-18, B-21, B-23, B-24, and B-25 are shown in Appendix K.

5.4.1 Piezometer Installation

All piezometers were constructed using new, 2" I.D. (B-17 and B-18) or 4" I.D., Schedule 40, flush-threaded polyvinyl chloride (PVC) well risers, 5 or 10-foot screens, bottom plugs, and fittings. Five piezometers, B-12 through B-16, were converted to groundwater monitoring wells. Later, in April, 1998 soil boring 24 was made into a monitor well. Each piezometer was fitted with a vented top-end cap and all the joints were screwed together with O-rings (no glue was used). centralizers were also installed that were made of inert material compatible with the casing on piezometers. Riser lengths ranged between 2.5 and 3.0 feet above ground surface. The geologist or geotechnical engineer measured each piezometer's screen and riser lengths to the nearest 0.01 foot and recorded all the information pertaining the construction of each piezometer on a Piezometer Construction Summary form prior to installation.

The sand filter pack consisted of washed and pre-graded 20/40 sand (95% minimum silica and visibly free of dust, mica, and organic matter), and extended from the bottom of the borehole to approximately two feet above the screened interval. A one-foot fine sand filter pack seal ("sugar sand", 100% passing the No. 30 sieve and less than 2% passing the No. 200 sieve, and visibly free of clay, mica, and organic matter) followed the 20/40 filter pack to help prevent any intrusion of high pH water associated with the bentonite seal.

A minimum three-foot bentonite seal, utilizing bentonite pellets, immediately followed placement of the sugar sand. Where more than twenty feet of water was present in the borehole, a high solids bentonite slurry was pumped or carefully tremied into place. A one-foot layer of sugar sand was immediately tremied to provide weight during hydration of the bentonite seal and help enhance the expansion of the pellets sideways. Approximately five gallons of clean, potable water was then added and a minimum two-hour hydration time was allowed for the bentonite to hydrate before proceeding further.

A bentonite powder grout consisting of Benseal bentonite, bentonite catalyst, and clean potable water was then mixed by recirculation with a grout pump and tremied via a side-discharge tremie pipe into the annular space from the top of the sugar sand to a depth of five feet below the ground surface upon hydration of the bentonite seal. The bottom tremie pipe had side-discharge exits to avoid washing of the sugar sand and consequent erosion of the bentonite seal. The grout was allowed to settle a minimum of twelve hours. More grout was added, when necessary, to bring the top of the grout to five feet

below the ground surface.

The five-foot annular space separating the top of the bentonite powder grout and the ground surface was filled with a Type I Portland Cement grout, making sure to slope the cement away from the well at the surface to prevent infiltration; however, care was taken not to create a mushroom that would later be subject to frost heave. The cement cap was checked for settlement twenty-four hours after installation and additional cement was placed, as needed, to create slightly mounded conditions. A vented, five-foot long, six-inch square, locking protective casing with removable cap covered the piezometer stick-up and extended 2 feet below and 3 to 3.5 feet above the ground surface. A 1/4-inch drain plug was installed just above the concrete cap and concrete was placed in the annular space between the protective casing and riser up to the ground surface. To complete installation, gravel was placed from the ground surface to six inches below the top of the riser.

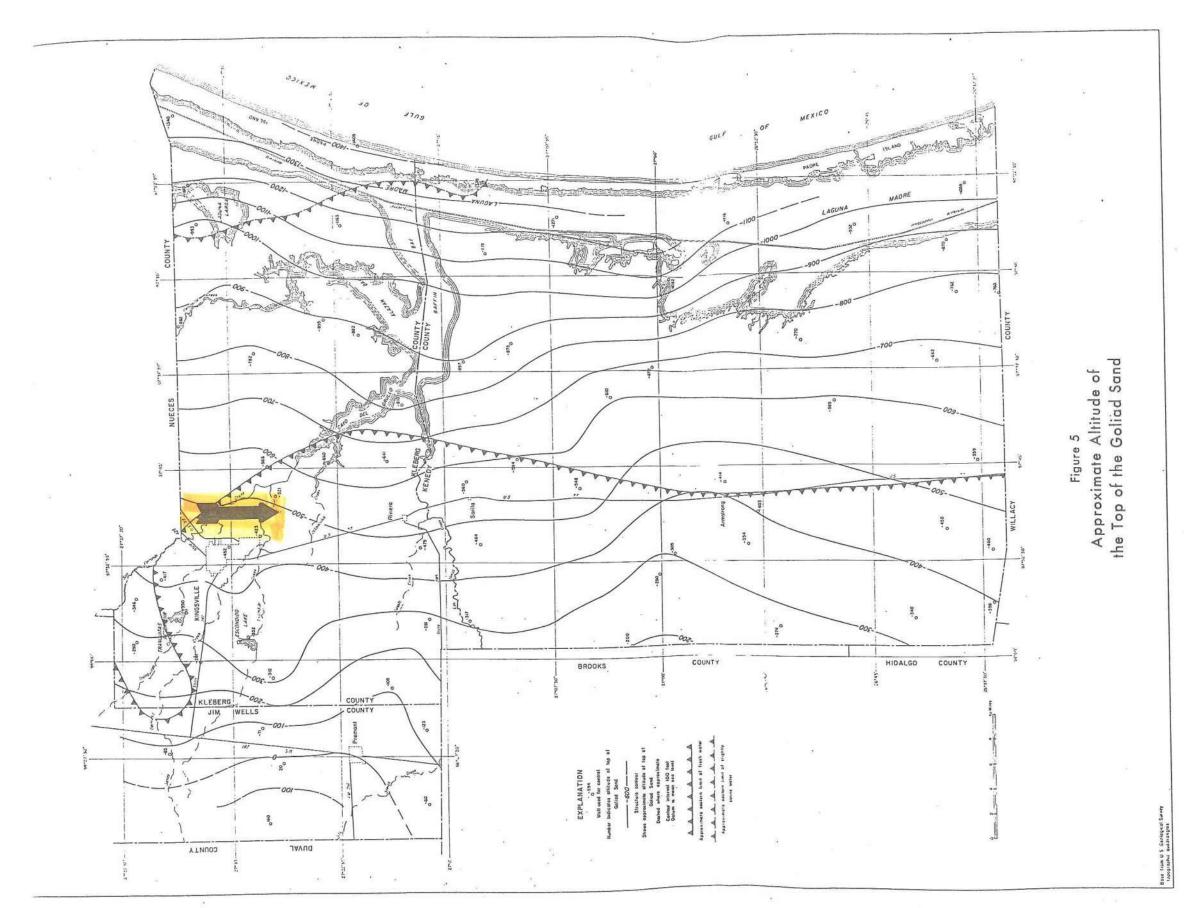
To finalize surface completion, a circular, mounded concrete pad (2-inch diameter piezometers) or a 5'X5'X6" sloping concrete pad (4-inch diameter piezometers) was constructed for each piezometer, and the protective casings were locked with locks which were all keyed-alike.

5.4.2 Piezometer Development

Each piezometer installed during this investigation was vigorously developed to insure proper hydraulic connection with the screened formation. Development of piezometers consisted of a combination of surging with a PVC surge block, followed by bailing with Teflon bailers, and a modified air-lift method of surging the well with filtered air to evacuate fluids and suspended solids within the well bore. Both of these procedures were conducted to maximize hydraulic communication within the screened formation. Each piezometer was developed until the discharge was relatively free of fine sand and silt, and the field parameters collected from discharge (pH and specific conductance) had stabilized. A minimum of four well volumes was evacuated from each piezometer during the development process. A copy of the piezometer development records are included within Appendix C.

5.5 Drilling Equipment Decontamination Procedures

All drill rigs, tools, and downhole equipment were thoroughly decontaminated using a pressurized steam cleaner prior to, and upon completion of, drilling activities at the site. Decontamination of equipment between drilling locations was performed when that location included the installation of a piezometer. Clean, potable water used for decontamination, piezometer installation and development, was obtained from the onsite water source.


5.6 Horizontal and Vertical Datum Survey Activities

Following completion of each phase of field activities, McCumber Surveying performed a site survey of subsurface exploration boring locations performed during this investigation. The survey was performed at the completion of field efforts to provide accurate locations of all subsurface exploration borings and piezometer installations. Standard ground control methods were utilized to conduct each survey.

Horizontal and vertical control utilized for the site survey is taken from Texas State Planar Coordinates, and is referenced to the National Geodetic Vertical Datum (NGVD) of 1929, formerly known as the Mean Sea Level Datum. Tables found in Attachment 5 summarize site survey data collected during this investigation.

Figure 4.16
Regional Elevation Map
Of the Toliad
TWDB-Groundwater Resource
July 1973

REVISION 1 38

6.0 SITE SPECIFIC CONDITIONS

6.0 SITE-SPECIFIC STRATIGRAPHIC CONDITIONS AND SUBSURFACE GEOLOGIC INTERPRETATIONS

This section describes the soils, sediments, geologic and groundwater conditions encountered by F.E.E., Inc. during the Hydrogeological/Geotechnical Investigations at the City of Kingsville, (COK), Municipal Solid Waste Landfill, (MSWLF) site as required in 30 TAC §330.56(d). The section also describes the characteristics of the soil samples collected and tested during the investigation. The locations of all subsurface boring explorations performed for the design of engineered cells, and for the Geological/Geotechnical investigation are shown on Figure 4.17. Subsurface geologic correlations showing stratigraphy and structure beneath the site are presented on the following exhibits included herein;

Cross Section Location Map

Cross sections A-A' through I-I' (9 total) [Note Maximum ground water levels.]

Structure Map - Top "Light Olive Green Clay"

Isopach Map Sand Units I & II

Isopach Map Sand Units III & IV

Information from sample borings at the COK - MSWLF site and electrical logs of uranium test wells which immediately offset the site to the southeast were used in the construction of the geologic maps and cross sections as part of this investigation.

The primary geologic formations exposed at the surface of the site are recent Holocene South Texas Eolian Plain Deposits. The topsoil (approx 0 feet - 20 feet) consists of a clay which is black, silty and contains humic material. This soil is overlain in the extreme northeast corner with a veneer of loess. Sediments encountered in borings at the site are Holocene to Pleistocene in age and consist of clays, silts, sands, and caliches deposited in two (2) separate and distinct environments of deposition. Cross section A – A' serves to illustrate theses environments of deposition. The cross section traverses the MSWLF site using four (4) deep borings all deep enough to penetrate a minimum thickness of 38' of a massive, low permeability, light olive green clay ("Light Olive Green Clay") believed to have been deposited in a marine (estuarian) environment. The interpretation of a marine environment of deposition for this unit is based upon the presence of sand filled burrows in the top surface of the massively bedded clay. The clay also contains sparse pelecypod molds scattered throughout and a single, correlative, thin bedded, pebble conglomerate (rip up clasts) believed to represent a storm deposit.

As noted in Section 4.2 the "Light Olive Green Clay" is the aquiclude for the MSWLF facility. In turn, the "Light Olive Green Clay" is capped by a sheet sand ("Orange sand") possibly 2 to 10' thick across the site of the MSWLF. The "Orange sand" is believed to have been deposited in a near shore or beach environment based on sample descriptions. The sand is extremely well sorted and clean, grains are well rounded and composed of approximately 90% fine quartz grains and 10% fine multicolored shell fragments giving the overall sand color an orange cast.

Stratigraphically above the "Orange sand", the environment of deposition changes to fluvial-deltaic for the remaining 40 to 50' of section, measured back to surface. These beds are comprised of sands, silts, caliches and clays deposited as superimposed channel sands and clayey dunes or bars. A detailed cross section net was constructed using all sample borings at the MSWLF and four significant sand bodies are believed to be present within the fluvial-deltaic sequence. Location of these sand bodies are shown on isopach maps included herewith. Bodies I & II, are superimposed, caliche or sand filled channels with Body I having the larger areal extent. Bodies III & IV are interpreted as dunes or bars of limited extent and are comprised of clayey sand. All of the above sand bodies are incised into or embedded within, a tan, silty clay containing abundant mottles of organic matter.

Taken together, the marine clay section ("Light Olive Green Clay") overlain by fluvial-deltaics section represents a single regressive cycle, with respect to sea level, at the top of the Pleistocene Beaumont formation. The sea level regression was probably caused by an onset of a period of Wisconsan (Stage unknown) glacial lice formation. Bone fragments of large vertebrates and mammoth teeth recovered from the fluvial-deltaic section in nearby areas, i.e. Taylor Ranch, date from approximately 8,000 to 10,000 years B. P. It is believed that the entire fluvial-deltaic section is comprised of Holocene sediments with the Holocene – Pleistocene boundary represented by the top of the "Light Olive Green Clay" or "Orange sand".

The shallow subsurface geological structure at the Kingsville MSWLF site is shown by the Structure Map- Top "Light Olive Green Clay" to be monoclinal dip to the northeast at approximately 20 feet per mile. This horizon was chosen is most representative of structure affecting and underlying the MSWLF site. Any structural mapping on beds above the "Light Olive Green Clay" are less correlative and would reflect local scouring of channel sands causing structural inconsistencies due to stratigraphic variation within the fluvial-deltaic section. Correlations are excellent on the top of the "Light Olive Green Clay" and the surface is the most likely to be planar in nature. Some scouring of this surface probably occurs at the extreme southwest corner of the MSWLF site due to the incisement of the overlying Body I, caliche bearing channel.

Deposition of the above sediments postdates uplift of the Kingsville Dome. Pre-uplift formations are Miocene and older and exhibit west dip at depth in the vicinity of the MSWLF site. There is no evidence of folding or soft sediment deformation in subsurface boring samples. Some fracture and slump deformation does occur on steeply excavated caliche outcrops:

Quantitative descriptions of the physical characteristics of the investigated sediments are presented in Appendix G, Geochemical Laboratory Test Report and Appendix B, Boring Logs. A qualitative description of the shallow beds which can be correlated across the area as exhibited on cross sections A-A' through I-I, is presented below. The descriptions should aid in the confirmation of interpretations made regarding subsurface structure and environments of deposition of the sand bodies and the clays within and upon which the sand bodies were deposited.

6.0.1 Body I- Caliche Bearing Channel

This is the youngest, most extensive, sand containing body that can be correlated across the site. Body I is internally complex and comprised of a melange of interbeds of caliche, clays and sands which, in themselves, are noncorrelative. The individual beds within this body appear to be of limited extent, and probably represent braided deposits within a single channel approximately ½ mile in width. The base of this channel is placed at the base of the lowest caliche encountered in the borings at the site. When grouped together, it can be shown via cross section and isopach mapping that the body can obtain a maximum thickness of 40' and, as a whole, cuts downward into underlying beds. Body I was deposited as a channel system which trends in a down dip direction, southwest to northeast, across the MSWLF site. Much of the caliche contained within this body has been previously removed from the site by mining operations.

6.0.2 Body II- Sand Filled Channel

Body II was deposited as a channel filled with a homogeneous, well sorted, very fine grained to fine grained, clean, unconsolidated sand. Body II differs from Body I in the simplicity of fill sediment. The preserved length and width of this channel sand is less than one half mile due to truncation and incisement by the overlying channel, Body I. Body II is interpreted as being a channel due to downcutting evident on the cross sections. Maximum preserved thickness of this channel sand is 20' as evidenced in Boring Nos. 10 and 17. Deposition of the Body II channel sand was oriented in a dip direction, southwest to northeast across the site.

6.0.3 Body III- Clayey Sand (Clay Dune)

Sand Body III lies under the eastern edge of the MSWLF site and is composed of a

homogeneous, very fine grained, well sorted, clayey sand. Well # 13 is the only known penetration of the sand encountering a thickness of 17. At it's base, the sand appears conformable with the underlying "Orange" sand which is interpreted as a near shore or beach sand. Sand Body III is interpreted as a clay dune based on clay content, sorting and stratigraphic position within an overall regressive section. Sand Body III could possibly be present in the two URI deep wells but poor sample descriptions of the rotary drilled wells preclude an interpretation and the E-logs obtained were shut off below this shallow interval.

6.0.4 Body IV- Clayey Sand (Clay Dune)

Sand Body IV is believed to be a time and stratigraphic equivalent of Sand Body III, described above, and underlies a portion of the western edge of the MSWLF site. Boring #s 16 and 23 penetrated 18' and 12'respectively, immediately above the underlying "Orange" sand. Body IV sand is similar in all respects to the homogeneous, very fine grained, well sorted, clayey sand which comprises Body III above. Cross section G-G'(wells 16 and 23) illustrates the top of Sand Body IV as being concave downward with a flat base, indicating deposition as a "buildup" or Clay Dune. Again, Sand Body IV appears conformable with the underlying "Orange" which is interpreted as a near shore or beach sand.

Sand Bodies III and IV above are typical of the type IX soil which is comprised of stabilized clay dunes and dune complexes as indicated by the Environmental Atlas.

6.0.5 Sandy Clay Bed

The Sandy Clay Bed was deposited penecontemporaneous with Bodies I through IV and is composed of a homogeneous; tan, sandy clay containing abundant decomposed organic material. Thickness of this clay ranges from 40 to 60' under the MSWLF site with the above decribed Sand Bodies deposited within or adjacent to this clayey interval. The basal contact is abrupt with the underlying "Orange" Sand.

6.0.6 "Orange" Sand

As noted earlier, the "Orange sand" appears to have been deposited in a near shore or beach environment. The sand is extremely well sorted and clean, grains are well rounded and composed of approximately 90% fine quartz grains and 10% fine multicolored shell fragments giving the overall sand color an orange cast. The thin (< 5'), sheet-like nature of the sand represents a beach environment of short duration developed at the top of the Beaumont clay (Light Olive Green Clay). It is present in all well control of sufficient depth.

6.0.7 "Light Olive Green Clay"

Tops on the "Light Olive Green Clay" are necessary to make the above interpretations of shallower beds in that it is the most definitive, planar marker bed under the MSWLF site. As noted earlier, this massive, low permeability, clay was deposited in a marine environment based upon the presence of sand filled burrows in it's top contact with the overlying "Orange" sand. The clay also contains sparse pelecypod molds scattered throughout and a single, correlative, thin bedded, pebble conglomerate (rip up clasts) believed to represent a storm deposit. This clay is pure and therefore exhibits characteristic low permeabilities with a proven thickness of at least 38'. E-logs from the URI deep uranium wells indicate a much thicker section is present under the site.

6.1 Holocene Stratigraphy as related to Groundwater Migration Pathways

Detailed correlation of borings show that the Holocene sediments which will host the proposed City of Kingsville MSWLF were deposited in a fluvial-deltaic environment. The massive "Light Olive Green Clay" which is believed to be of Pleistocene age and deposited in a near shore marine environment underlies the section. As noted previously, the clay serves as the aquiclude between the Holocene sediments hosting the MSWLF and the underlying, saline "Chicot" sand and the even deeper regional "Evangeline" (Goliad) aquifer.

Although excellent vertical separation exists between the Holocene sediments which will host the MSWLF and underlying Pleistocene beds, lateral migration of groundwater occurs within and through the host beds. From a potentiometric standpoint, it is evident from existing monitor well data that migration of groundwater within the Holocene host sediments is occurring in almost all directions away from the MSWLF site, the exception being to the northwest.

From a geologic perspective, it is evident that migration of groundwater should occur primarily away from the MSWLF site to the northeast and southwest. Controlling this trend is the presence of the incised channel containing sands, clays and caliche noted on cross sections and maps as Sand Body I. This body, which hosts the thin to massively bedded caliche deposits in the area, strikes northeast and is approximately in mile in width. Body I trends directly through both the existing and proposed landfill sites. Other sand bodies in the host section are noted on the cross sections as II, III, and IV. Sand body II is, again, an incised, sand filled channel with limited areal extent. Sand Body II is truncated along its strike on the northeast and southwest by the overlying Body II. Sand Bodies III and IV are interpreted as being clay dunes or bars of limited areal extent. It should be noted that the entire Holocene section which contains all of the above sand bodies is permeable and therefore all are in communication. Even so, the

orientation of Sand Body I should exert an influence on preferential ground water migration to the northeast and southwest and away from the City of Kingsville's MSWLF site.

Note that ground water modeling using site specific data was performed using HELP3 and Multi-Media computer models. The results of these studies are given in Attachment 15, Appendices B & C, and in Attachment 10, Appendices C & D. The HELP3 model is used to estimate liner leakage rates for inputs to the Multi-Media model. The maximum rates were of course encountered for cases with minimum solid waste cover over the bottom liner system. The Multi-Media model used site specific data in the form of the average hydraulic conductivity measured in the wells on site and the average gradient over the entire site, i.e. gradient of 3.31 5.19 x 10-3 ft/ft to the northeast and hydraulic conductivity of 130 m/yr (4.12 x 10-4 cm/sec).

The primary impact of construction of the lined landfill cells will be the gradual reduction of any groundwater recharge to the uppermost aquifer from surface rainfall. Current recharge from the surface causes some dilution of groundwater and can potentially carry surface contamination to groundwater, as in the case of agricultural or oil and gas materials.

The primary impact of ponds and mined areas within the landfill site is dilution caused by surface recharge. This recharge and associated groundwater dilution will be reduced as onsite ponds and mined areas are eliminated as landfill expansion proceeds.

6.2 Hydrogeologic Conditions

This section describes groundwater conditions encountered during this investigation. The local groundwater flow regime at the site was determined by the collection of physical data (such as the elevation of the potentiometric surface) and the completion of in-situ hydraulic conductivity (bail) testing from on-site groundwater monitoring points. Depth-to-water measurements were obtained from existing on-site monitor wells and piezometers from August 4, 1997 every 2 weeks to February 18, 1998. Previous data collected from monitor wells during the period from March 29, 1991 through June 25, 1997 are also included. Two additional ground water level measurements are also included for May 18 and June 16, 1998. The depth-to-water measurements were subtracted from a surveyed reference datum (top of PVC casing) to establish a potentiometric surface relative to NGVD. The groundwater elevation data and resultant potentiometric contour maps for each relatively permeable stratum are presented in Attachment 5as Figures 5.10 through 5.28, respectively, Appendices A, B, and C. The water level data measured from soil boring and monitoring well measurements (hydrographs) are included within Appendix D.

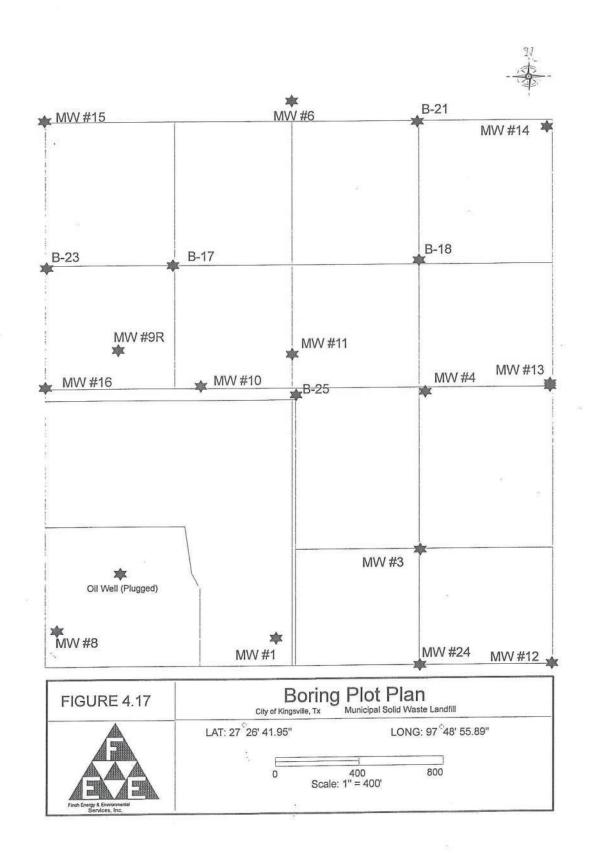
The potentiometric contours presented within each map were constructed using the program Surfer (Version 6.04) by straight-line (linear) interpolation between data points. The primary layer potentiometric contour map from the water level measurement event indicated that ground water appears to flow generally outward from the landfill site in all directions. There are rather strong gradients to the northeast and to the southwest. There is some mounding near the center of the site. The estimated hydraulic gradient toward the northeast is 6.91x10⁻³ ft/ft. The estimated hydraulic gradient toward the southwest is 8.18x10⁻³ ft/ft. The estimated hydraulic gradient toward the southeast is 1.21x10⁻³ ft/ft. The estimated gradient from the northwest is 2.16x10⁻³ ft/ft. (These gradients were estimated from 05-18-98 contour.) The hydraulic gradient was calculated for each of the four quadrants of the landfill site and for the entire site for each monitoring data set over a ten month period from August 4, 1997 through June 16, 1998. These calculations are shown in Attachment 15, Appendix G. The average gradient for the four quadrants over that 10 month period are as follows. The average hydraulic gradient toward the northeast is 7.99 x 10⁻³ ft/ft. The average hydraulic gradient toward the southwest is 2.16 x 10⁻³ ft/ft. The average hydraulic gradient toward the southeast is 1.44 x 10⁻³ ft/ft. The average hydraulic gradient toward the northwest is 3.87 x 10⁻³ ft/ft. Note that the gradient in the northwest quadrant actually changed direction over the 10 month period. The average hydraulic gradient and direction over the entire site is 3.31 5.19 x 10⁻³ ft/ft toward the northeast. This flow gradient and direction is generally consistent with the 9/29/97 and 9/15/97 measuring events and appears to be influenced by Santa Gertrudis Creek located to the northnortheast.

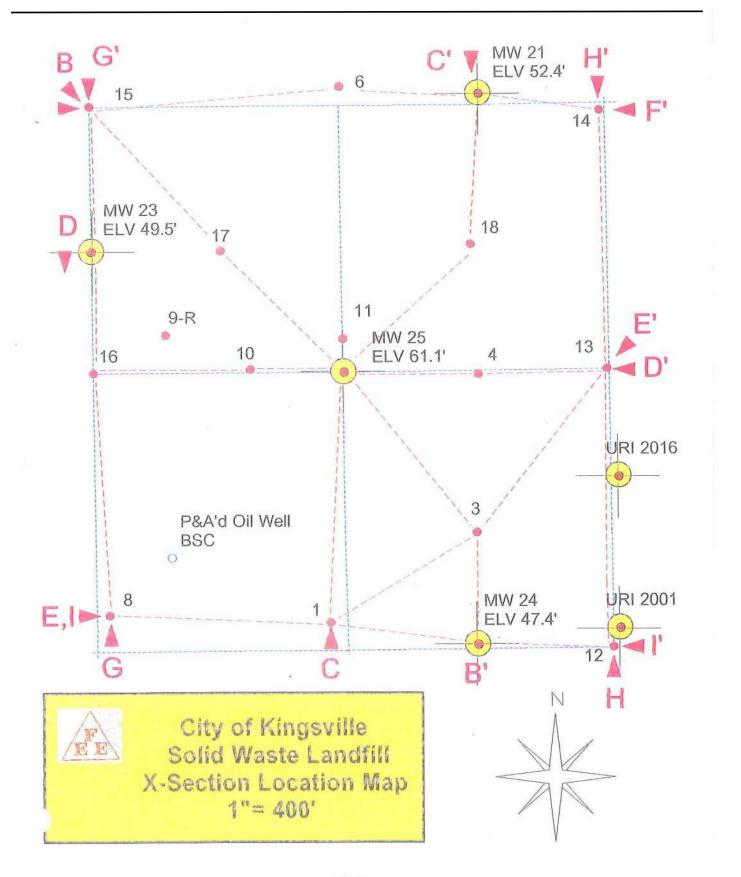
F.E.E., Inc. prepared a hydrograph of existing monitor wells on site using data collected from previous ground water sampling events since May 1991, and data collected during this investigation. Based on the seasonal data for the site collected to date, the

potentiometric surface was slightly lower during periods of low precipitation (summer and early fall) and slightly higher during periods of excess precipitation (winter and spring). The hydrograph indicates no significant changes in groundwater elevations since 1991 until the excessive precipitation event of October 8 -12, 1997. (Appendix F).

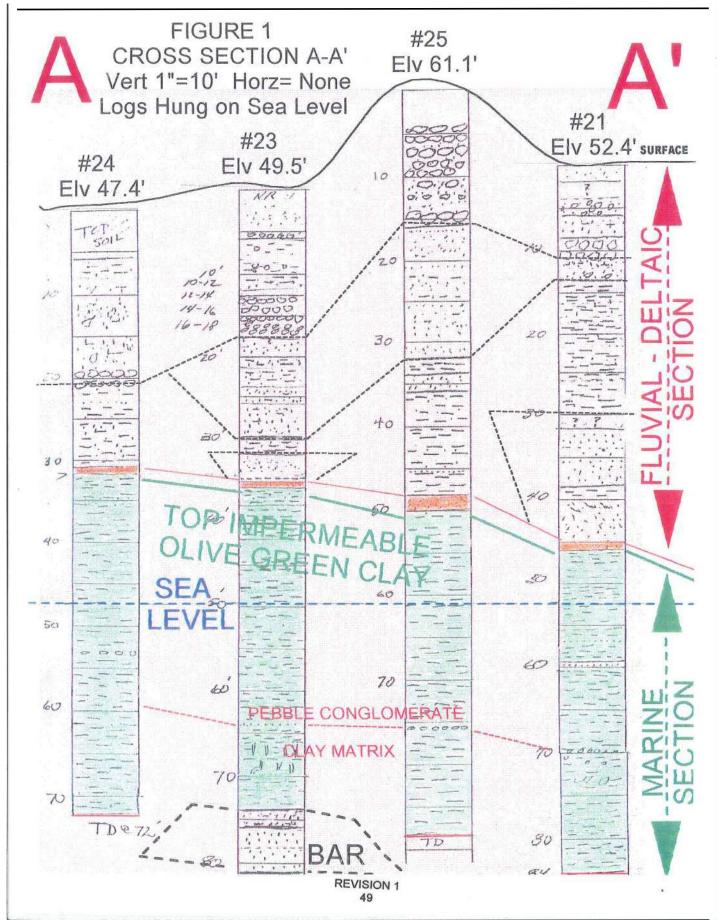
6.2.1 Surface Water Hydrology

COK MSWLF is located entirely within the Kleberg County Drainage Watershed. All of the soils are characterized by low permeability and poor drainage high to very high permeability and drainage which results in high runoff potential significant recharge from surface percolation. The average yearly rainfall total for the Kingsville area is approximately 30 inches, and is more or less evenly distributed throughout the year. However, monthly rainfall totals generally fall below the overall average of four inches per month during the late fall, winter, and spring. Monthly totals for the summer and early fall generally exceed the overall average.

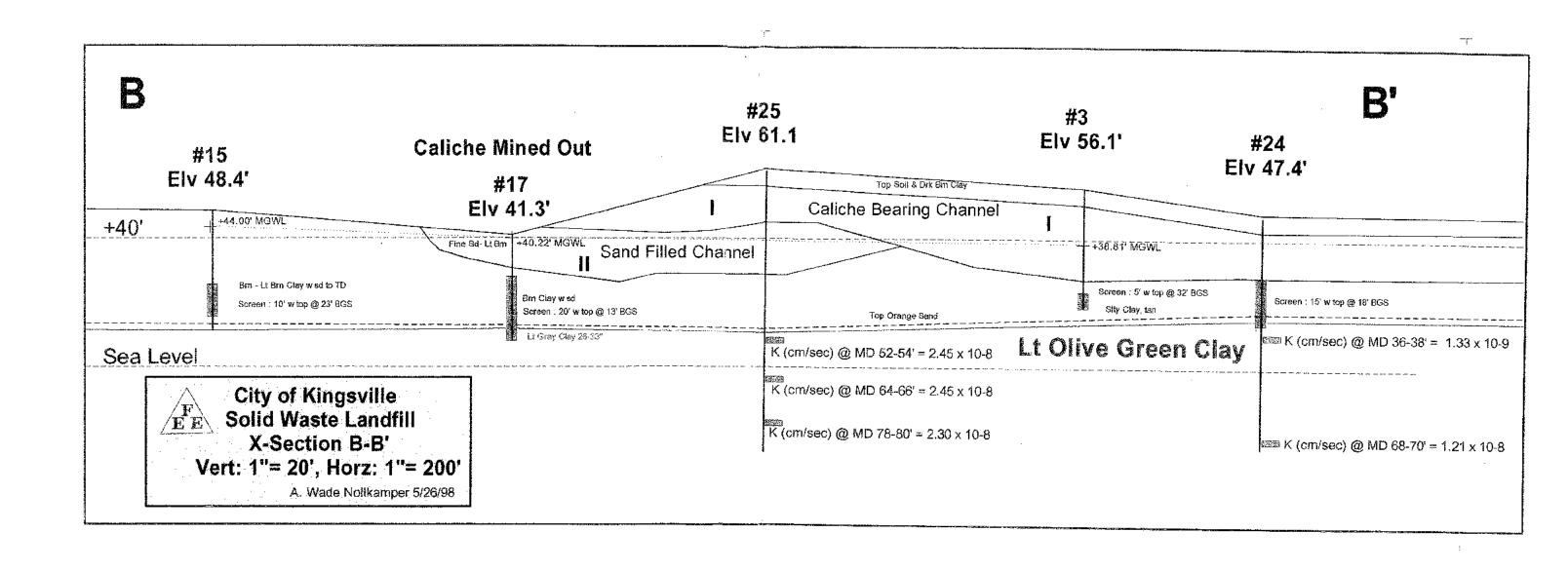

The topography of the watershed is gently sloping. Ground elevations in the Kleberg County Drainage Watershed vary from 125 feet in the extreme northwest to sea level in the East (Gulf of Mexico). Predevelopment ground contours at COK MSWLF varied from approximately 50 to 65 feet NGVD. Ground slope in the area varies from about two feet per mile to 6 feet per mile.

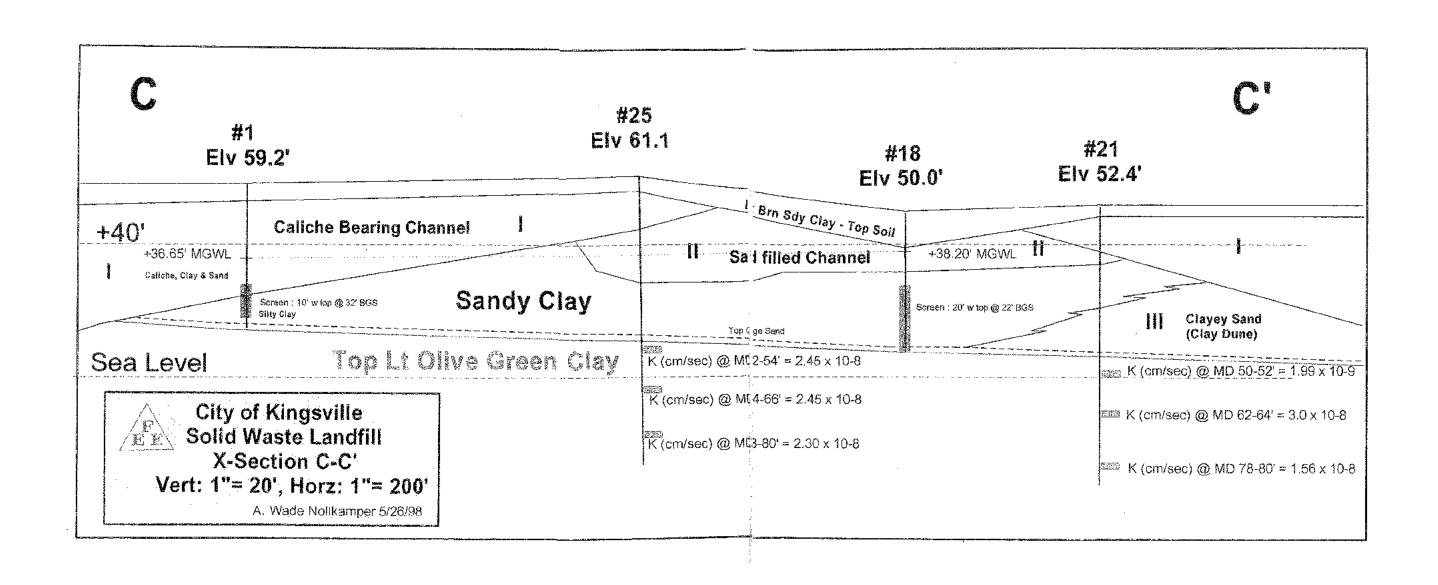

Santa Gertrudis Creek flows from the northwest to the southeast approximately one mile northeast of COK MSWLF before resuming its easterly flow towards Baffin Bay. Surface water runoff from the facility and the vicinity generally follows the easterly down-dip of the surface towards Baffin Bay via Santa Gertrudis Creek east of the site. Uncontaminated surface water from the southern half of the site flows to Santa Gertrudis Creek via drainage ditches to the south of the site, which also crosses the facility's southwest corner. Uncontaminated surface water from the northern half of the site flows to a drainage ditch, which also flows to Santa Gertrudis Creek and ultimately into Baffin Bay.

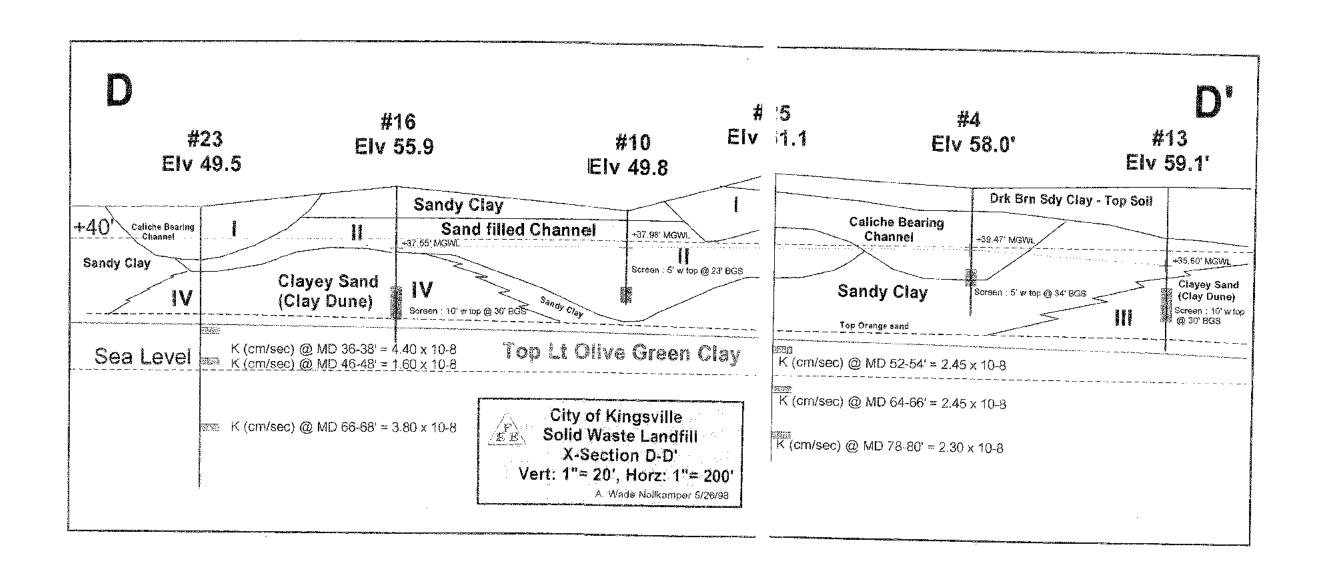
6.2.2 Groundwater Hydrology

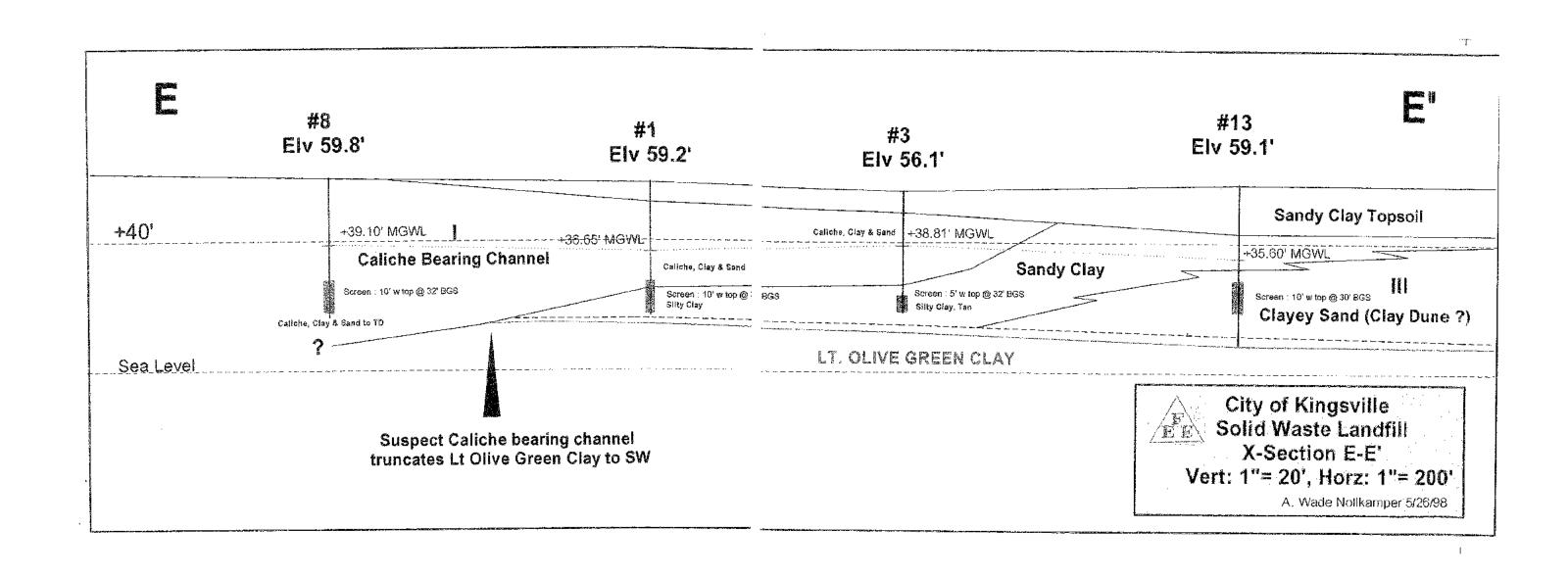

Aquifer (slug) tests were performed in piezometers and monitor wells screened in the uppermost aquifer sand unit utilizing both rising head and falling head methodologies where possible. Results of these tests are shown in Attachment 5 as Appendix E, and are included as Appendix E of this Attachment. Based upon these results, the average (geometric mean) horizontal hydraulic conductivity of the uppermost aquifer is approximately 4.1 x 10⁻⁴ cm/sec in the subsurface soils above +10' MSL. The average vertical hydraulic conductivity of the Light Olive Green Clay layer is 3.31x10⁻⁸ cm/sec. These results were obtained using bail, or pump, tests and analyzed using the Horslev graphical method. Note that the Horslev method uses the sand filter pack around the monitor well screen rather than the well screen length in this calculation (Fetter, 1988).

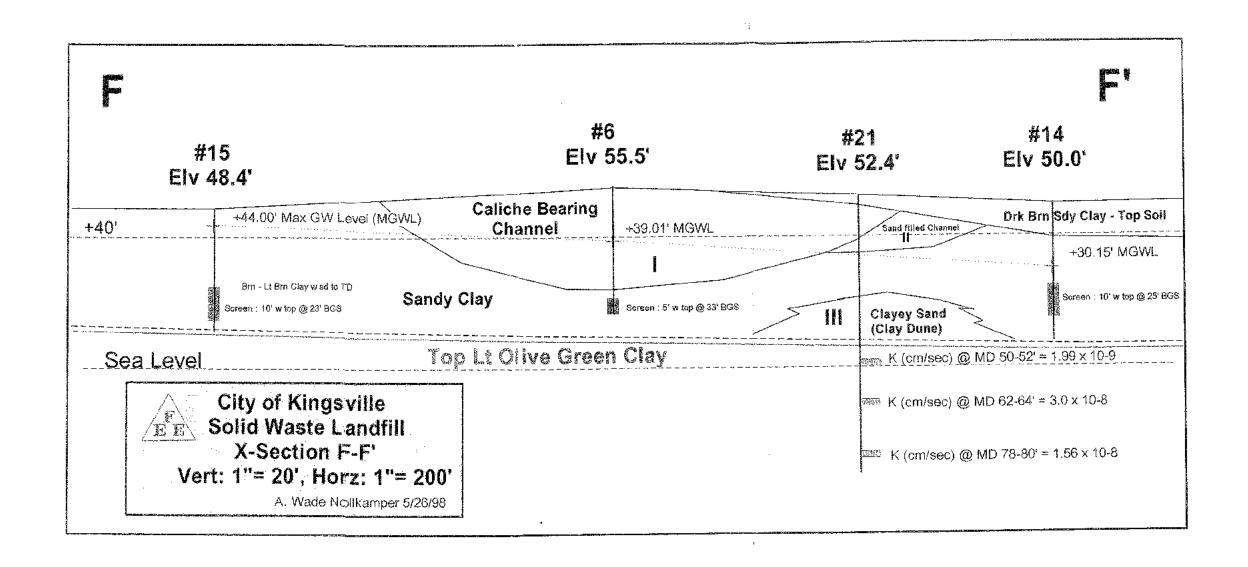
Part III, Attachment 4, Appendix 1, p.g. 64

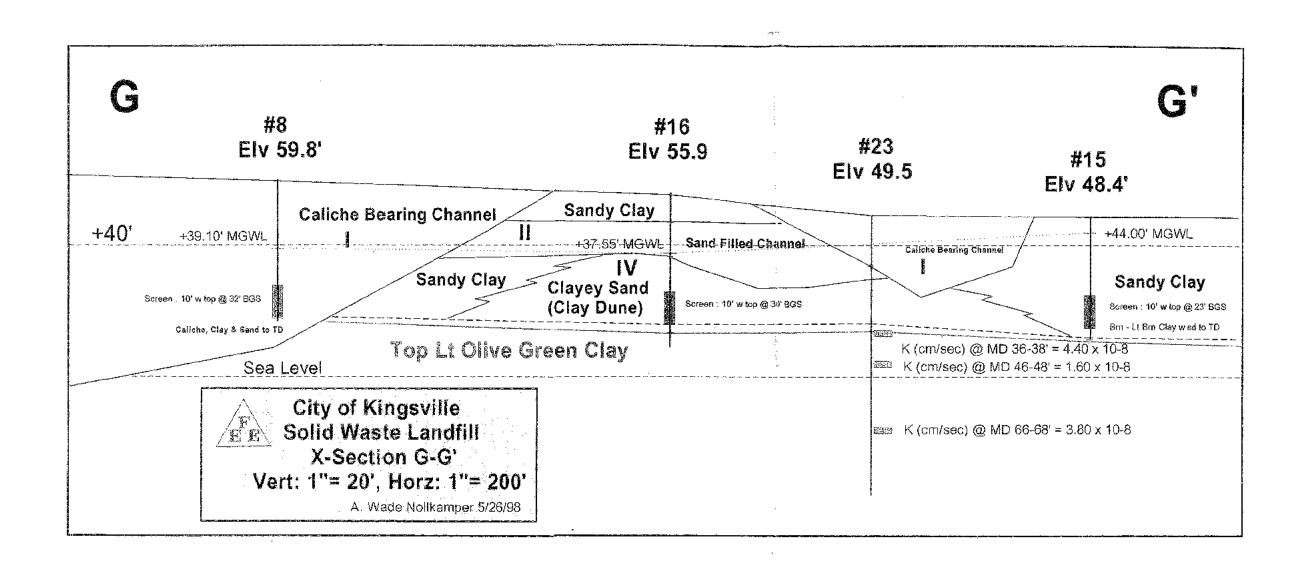


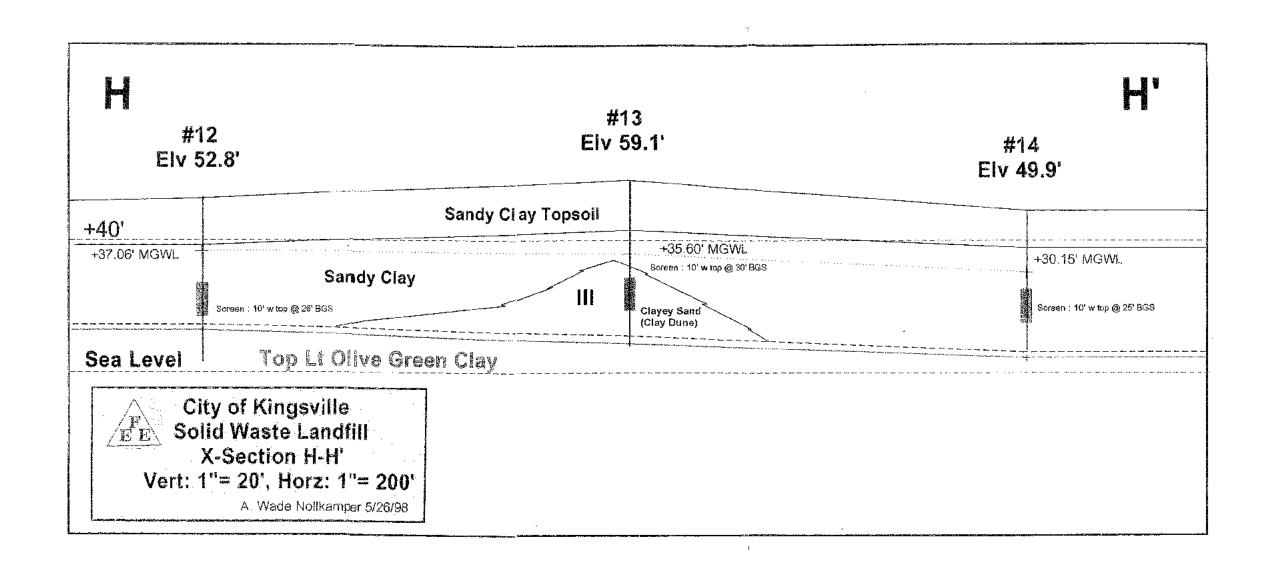

REVISION 1 48

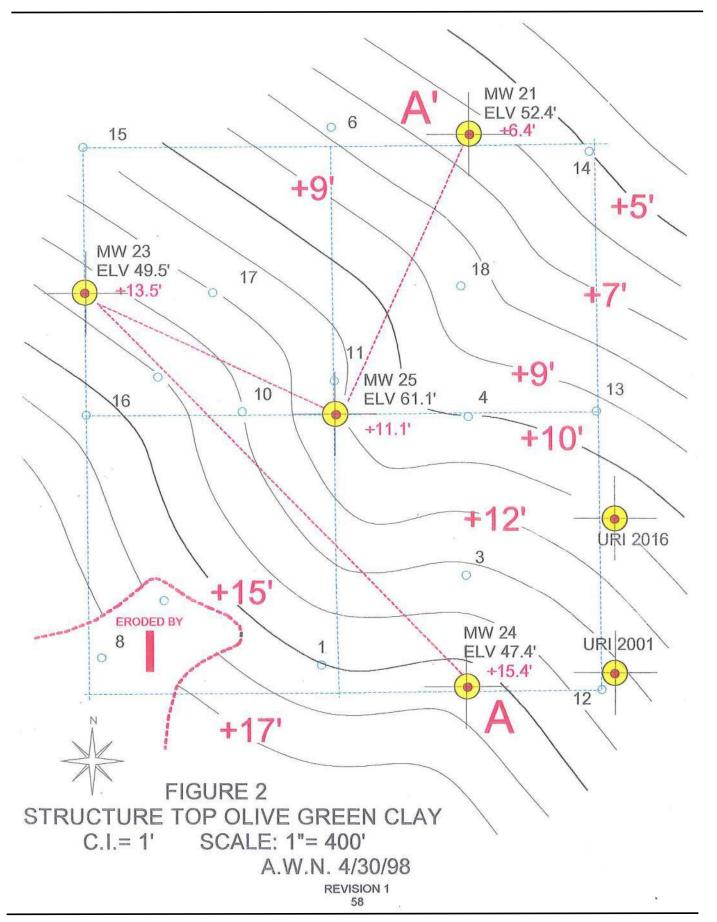


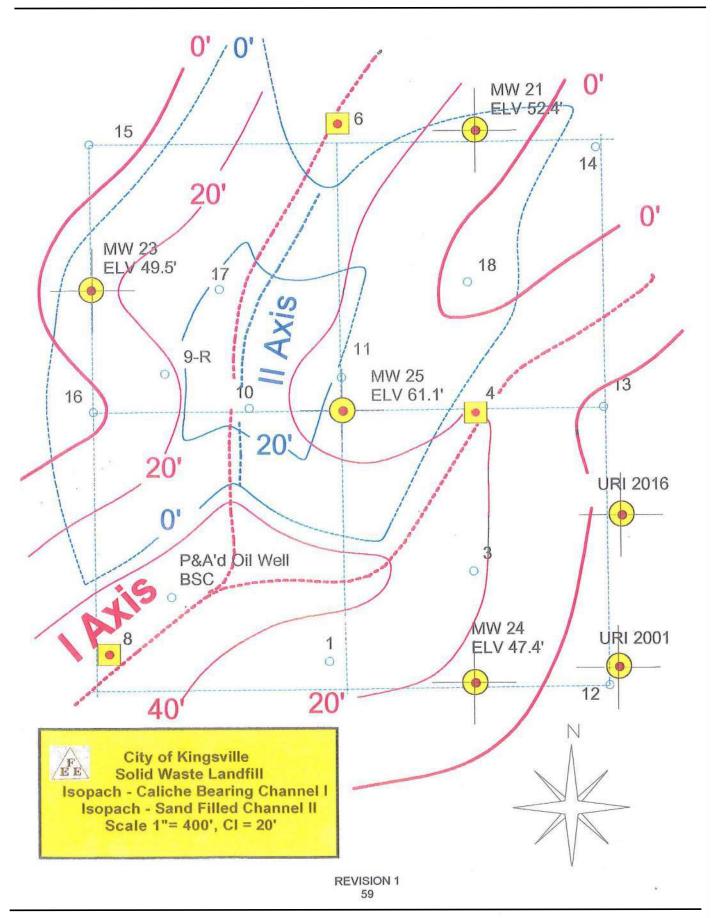

Part III, Attachment 4, Appendix 1, p.g. 67

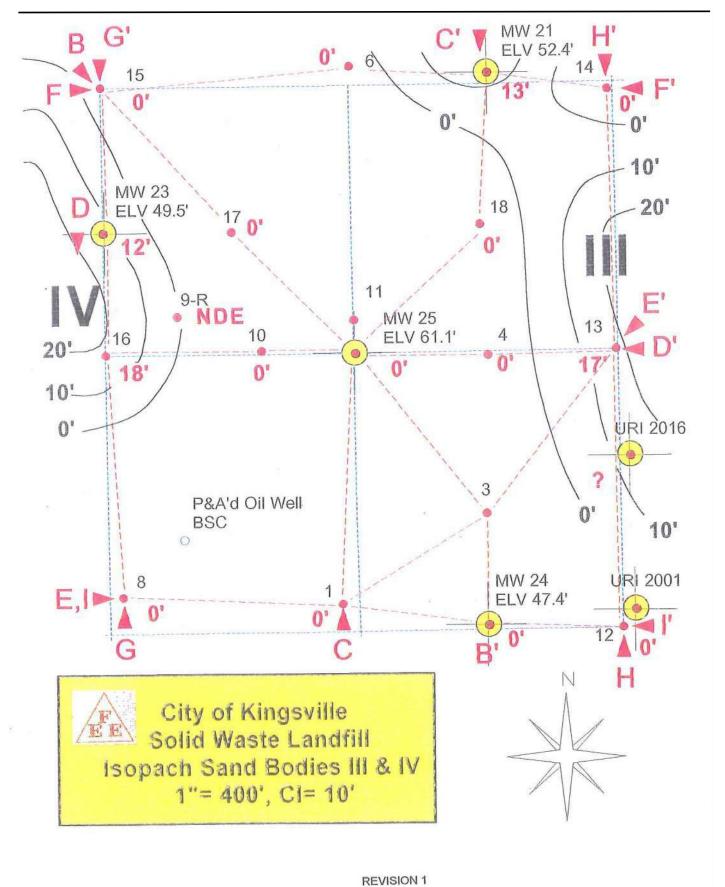

Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0











an equation derived from Darcy's Law,

 $V = Ki/n_e$ where:

V =velocity (length/time)

K =hydraulic conductivity (length/time)

i =hydraulic gradient (length/length)

n_e=effective porosity (decimal)

As calculated from the potentiometric maps of groundwater flow within each stratum (See Attachment 5, Appendix G), the horizontal hydraulic gradient across the site ranges from 1.44 x 10⁻³ ft/ft to 7.99 x 10⁻³ ft/ft. Horizontal hydraulic conductivity values within each stratum, which are stated above, were obtained from in-situ hydraulic conductivity tests (Appendix E). An effective porosity for a silty clay loam (the predominant lithology screened by piezometers in each stratum) is estimated to be 0.43 (Dean, et. al., 1989). Using these parameters, the horizontal velocity of ground water within uppermost aquifer deposits beneath the site is estimated to range from 0.0014 0.0033 ft/day to 0.0068 ft/day, or 0.5 1.2 ft/year to 2.5 3.1 ft/year, respectively.

F.E.E. prepared a hydrograph of existing monitor wells on site using data collected from previous ground water sampling events since May 1991, and data collected during this investigation. Based on the seasonal data for the site collected to date, the potentiometric surface was slightly lower during periods of low precipitation (summer and early fall) and slightly higher during periods of excess precipitation (winter and spring). The hydrograph indicates no significant changes in groundwater elevations since 1991 until the excessive precipitation event of October 8 -12, 1997. (Appendix F).

THIS PARTIAL PAGE LEFT BLANK INTENTIONALLY

6.2.3 Relationship of Ponded Water to Water Table

During the six day period from September 19 through September 25, 1967 massive amounts of rainfall fell in South Texas which exceeded annual average rainfall (30 inches). This large rainfall resulted in numerous ponds of water in the relatively flat South Texas area. A joint study of the relationship of this ponded water to groundwater levels in the uppermost, unconfined aquifer was made jointly by the United States Geological Survey and the Texas Water Development Board. (TDWB, #138, December, 1971) This data is relevant to water levels below the City of Kingsville, Texas (COK) Municipal solid Waste Landfill (MSWLF) site.

The King Ranch site was most representative of the COK MSWLF site. It had water in ponds well above the normal water level in the uppermost aquifer. The massive rainfall from Hurricane Beulah resulted in water table water levels continuing to rise below and around the pond for a period of eight to eleven months after these above normal rainfall events. The COK MSWLF had a similar large rainfall event during the period October 8 through 12, 1997.

The COK MSWLF site has several excavations which are adjacent to the currently permitted MSWLF and on the same land for which MSWLF expansion is proposed. These excavations were prepared for two reasons: first, to provide cover soil for the existing MSWLF; second, to prepare the excavations for future MSWLF cells. The net result of these excavations was to provide depressions in the earth's surface which collect ponded water from rainfall events. This ponded water provides recharge to the uppermost, unconfined aquifer by percolation through the unsaturated zone to the ground water table. This recharge causes higher than normal water levels (mounding) below and near these ponds. This is the same result as experienced in the 1968-69 TDWB studies of ponded water on the King Ranch.

The King Ranch study showed that water table water levels were influenced by recharge from ponded water as far as 500 feet from the pond. This was confirmed by both water levels and dilution of total dissolved solids (TDS) in the ground water. The COK MSWLF site experienced similar results after the excessive rainfall events of October 8-12,1997. Unfortunately, this rainfall event was right in the middle of a six month study of water levels being made as part of the permitting process for the expansion of the COK MSWLF. This event requires that the design be modified to protect against such events so that groundwater levels will not rise into bottom liners of the expanded landfill. The proposed design change is to provide pumping capacity for non-active excavations such that ponded water is not allowed to accumulate in excavations after rainfall events. The rainfall in expanded active areas will be handled by the leachate collection system.

In April, May and June, 1998, both the topography and ground water levels on the landfill site and off-site were mapped. The topographic map and the groundwater contour during the May, 1998 period confirm that the ground water flow from the landfill is leaving the landfill in all directions except to the northwest where groundwater is entering the uppermost aquifer under the landfill. This study shows a very steep gradient to the northeast toward monitor well #14 as indicated previously. However, there is also ground water flow to the southwest toward the caliche pit on the southwest corner of the intersection of FM 2619 and CR 2030. There is also ground water flow toward the Martin Hamilton caliche pit at the southeast corner of FM 2619 and CR 2030. There is also ground water flow toward the VT Collins caliche pit at the northwest corner of FM 2619 and CR 2030. There is flow toward the landfill from the northwest corner of the landfill i.e. monitor well #15. By superimposing the current topographic map onto the current ground water contour, it appears that there is no major disruption of ground water flow due to the local depressions. There does seem to be a small impedance to flow under the low point of the old landfill on the northeast corner of the intersection of FM 2619 and CR 2030. This impedance is indicated by a flattening of the ground water contour in the vicinity of the low area at the southwest comer of the 235 closed landfill, i.e. P&A'd Oil Well. There certainly is recharge from the surface ponding as indicated earlier from the study by Baker of King Ranch ponding studies after Hurricane Beulah.

The May 1998 studies show that there were at that time nine (9) ponds or depressions in the vicinity of the landfill which intersect the ground water table. Eight of these depressions are located in adjacent caliche pits and one is located on site in a former caliche pit which is now inactive. These ponds are shown blue cross hatching on the topographic map in Appendix N. A Surfer ground water contour map using depression water surfaces and ground water monitor well levels was prepared for May 18, 1998. This contour is also shown in Appendix N. The Topographic Map and the Ground Water Contour Map are of the same scale and may be overlain for analysis. The number of ponds or depressions may vary as ground water level varies due to drought or excessive precipitation events. There are also five other ponds or depressions on the landfill site which hold water after rainfall but do not intersect the ground water table. One pond is the excavation where sector 2 is proposed on the southeast corner of the 160 acres. The second pond is about center on the east side of the landfill just north of the service road coming to the current office and weigh station. The third pond (much shallower) is due north of the second pond and also on the east side. The fourth pond is in the same triangular shaped area as the leachate collection pond contaminated water evaporation pond but immediately to the north and east. The fifth pond is a long narrow pond immediately south of monitor well #6 at the center of the north side of the landfill. The only pond on site which intersects ground water is in the northwest 40 acre quadrant about the center of the west side and extending about half way across the quadrant. These ponds which do not intersect ground water can be identified on the topographic map in Appendix N by the numbers Pd-1, 2, 3, 4 and 5. These ponds will dry up after pumping or dry conditions.

The uppermost aquifer water table in the vicinity of the landfill site is almost totally supplied by recharge from the surface. This recharge is accelerated by the presence of ponds or depressions as described above which provide a static head through saturated soil. This is explained in the King Ranch ponding study above. The water table in the uppermost aquifer approximately follows the land surface since most of the recharge is from the surface. Since the landfill site is the high point in the area, it also contains the high point in the water table. Ground water tends to flow away from the landfill on all sides except to the northwest during most of the six month test period. However, in the earlier weeks of the test period (August & September, 1997) the ground water gradient was away from the landfill toward the northwest, also. Therefore, the monitor well system will need to monitor the points of compliance on all sides of the landfill site. The steepest ground water gradients are to the northeast and to the southwest. The gradient to the northeast is steep due to stiff clay formation on its way toward Santa Gertrudis creek. The gradient to the southwest is steep due to the caliche channel which rather steeply slopes toward the southwest (relative to the rather flat surrounding terrain).

7.0 GROUNDWATER CHARACTERIZATION

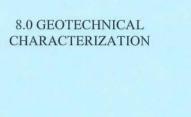
This section describes the historical groundwater conditions that have existed at the City of Kingsville MSWLF site as required in 30 TAC §330.56(e). A delineation of the waste management area, the property boundary, and the proposed locations of all groundwater monitoring wells are shown on Figure 4.17.

7.1 Background

Currently a total of five groundwater monitoring wells exist to monitor quality in the uppermost aquifer sands along the perimeter of the currently permitted fill area. A series of sampling and analysis events to characterize the background quality of the groundwater occurred in the third and fourth quarters of 1996, and the first, second, and third quarters of 1997.

Beginning in the third quarter of 1996, the groundwater monitoring requirements included the annual sampling of each well for total organic carbon (TOC), iron, manganese, pH, chloride, potassium, total dissolved solids, and a groundwater elevation measurement. Following establishment of background values, the following additional parameters were sampled: calcium, magnesium, sodium, carbonate, phenolphthalein alkalinity as CaCO₃, alkalinity as CaCO₃, hardness as CaCO₃, bicarbonate, sulphate, specific conductance, anion/cation balance, fluoride, and nitrate (as nitrogen). No known plumes of contamination have been identified as entering the groundwater from the facility.

7.2 Groundwater Quality


In order to compare with regional groundwater quality data, relevant analytes were selected from groundwater samples collected from groundwater monitor wells screened within the uppermost aquifer sands at the City of Kingsville MSWLF site. These analytes included pH, manganese (dissolved), iron (dissolved), chlorides, and total dissolved solids (TDS). Groundwater samples collected from the uppermost aquifer sand (MW-1 through MW-11) have reported pH values (field) ranging from 7.08 standard units (s.u.) from MW-4 to 7.66 s.u. from MW-11. Dissolved manganese concentration have ranged from Non-Detect from MW-10 to 0.67 µg/l from MW-3. Dissolved iron concentration have ranged from 66 milligrams per liter (mg/l or parts per million - ppm) from MW-11 to 2600 mg/l from MW-4. TDS concentrations ranged from 1580 mg/l (MW-11) to 5,780 mg/l (MW-4). More complete analytical data from the MSWLF ground water monitor wells is available in Table 5.1 of Attachment 5.

As part of the study performed by Shafer (1973), 272 groundwater samples were collected from water wells in the Kleberg, Kennedy, and Southern Jim Wells County

area, ranging in depth from 25 feet below ground surface (ft bgs) to 1,206 ft bgs. Groundwater samples were collected from 1913 to 1969 in order to determine the quality of groundwater supplies in the area. The analyses consisted of dissolved mineral constituents, which determined the fitness of water for industrial, agricultural, and domestic use without reference to the sanitary quality of the sample. A summary list of chemical analyses of groundwater samples collected from the Goliad aquifer in North Central Kleberg County is included within Table 5.2.

In general, the samples were fairly uniform throughout the northwestern portion of Kleberg County. Specific conductance and chloride content generally increased with depth, as a result of brackish or salt water intrusion. The Total Dissolved Solids contents were high and ranged from 894 ppm to 2,000 ppm. Figure 4.16 shows the extent of salt water intrusion from the Gulf of Mexico into the Evangeline (Goliad) aquifer in 1973.

The analytical results of the groundwater samples from the site reported values well within the regional values reported in the studies by Shafer (1973). The highest value for chloride has been reported at 2,600 mg/l, which was within the regional chloride values which ranged from 135 mg/l to 2,700 mg/l. The highest value for TDS has been 5,780 mg/l, well within range of the regional values of 175 mg/l to 21,200 mg/l.

8.0 GEOTECHNICAL CHARACTERIZATION

In order to determine the soil characteristics of the shallow soils at the site and to determine the suitability for site soils for liner material as well as evaluate depths, geotechnical laboratory testing of selected soil samples was performed. In accordance with 30 TAC §330.56(d)(5)(B), the following sections present a summary of the geotechnical properties of shallow soils beneath the site.

8.1 Geotechnical Laboratory Testing

All soil samples collected during the F.E.E., Inc. July, 1997 investigation were transported to the geotechnical laboratory where tests were performed on selected samples in order to evaluate and further classify the samples. Geotechnical laboratory test results are summarized by boring on Table 4.1 and by stratigraphic unit on Table 4.2. Geotechnical tests were performed on samples by Professional Services, Inc (PSI), of Corpus Christi, Texas. During the second phase of geotechnical studies at the landfill site in April, 1998, additional samples were taken from four (4) deep borings. These samples were also tested for selected geotechnical parameters at the PSI laboratories. The complete geotechnical laboratory test results are presented in Appendix G.

Atterberg Limits (ASTM D-4318), percent passing the No. 200 mesh sieve (ASTM D-1140), and full gradation tests (ASTM D-422) were performed on selected soil samples to determine the index of properties on the subsurface materials. A total of 44 Atterberg Limits and 24 grain size analyses were performed. The index and classification test results are summarized on Tables 4.1 and 4.2, and on the individual boring logs included in Appendix B. Grain size distribution curves are presented in Appendix G.1.

Short-term and long-term bearing strength characteristics and the moisture and density of the soils were evaluated by means of unconfined compression tests (ASTM D-2166), and eleven unconsolidated-undrained three-point triaxial compression tests (ASTM D-2850). The strength test results are summarized on Tables 4.1 and 4.2 and on the boring logs in Appendix B. The individual laboratory strength test results are included in Appendix G.2.

Three consolidation (odometer) tests (ASTM D-2435) were performed on samples obtained from the borings to evaluate the compressibility and rebound characteristics of cohesive materials subjected to varying load conditions. Stress-strain curves plotted using the test data are shown in Appendix G.2. Settlements within the soils underlying the landfill due to the imposed waste load were estimated using the information from these curves.

Horizontal and vertical permeability characteristics of the cohesive soils were evaluated

by means of flexible wall permeability tests (ASTM D-5084). Thirteen vertical permeability tests and twelve horizontal permeability tests were performed on samples obtained from the borings. Permeability test results are summarized on Tables 4.1 and 4.2. The individual laboratory permeability test data sheets are presented in Appendix G.4.

8.2 Geotechnical Data Evaluation

This section summarizes the results of the geotechnical laboratory testing performed on soil samples collected during the hydrogeological investigation performed by F.E.E., Inc. at the City of Kingsville, Texas (COK) Municipal Solid Waste Landfill (MSWLF) during the month of July, 1997. A discussion of the geotechnical results for each of the stratigraphic units is presented below.

8.2.1 Top Soil and dark Brown Clay Unit

Very little geotechnical data was determined from top soil samples.

8.2.2 Caliche Bearing Channel (I) Layer

The Caliche Bearing Channel consists of a caliche vein running from northeast to southwest across the landfill site. The Isopach (Figure 4.29) shows that the thickness varies from 0 to 40 feet in thickness across the site. The 40 foot thickness is at the extreme southwest corner. The zero is on the edges of the channel. The channel splits and goes to both sides of monitor wells 18 and 14. The main channel in the new site are is approximately 20 feet thick maximum. Much of this layer has already been excavated in the caliche mining process which ceased more than twenty years ago.

The moisture content of this stratum ranged from 8.3 to 11.5 percent with an average of approximately 9.6 percent, and the caliche layer had an average dry density of 81 pounds per cubic foot (pcf). The liquid limits and plasticity indices ranged from 31 to 39 and 13 to 19, respectively, with an average liquid limit and plasticity index of 35 and 16, respectively.

Unconfined compression tests performed on samples from this unit indicate an average cohesion of 5,660 pounds per square foot (psf). Permeability tests performed on samples from this stratum indicated an average horizontal permeability of 3.0x10⁻⁴ cm/sec.

8.2.3 Sand Filled Channel (II) Layer

The Sand Filled Channel (II) is a discontinuous layer located below the main caliche

bearing channel. Where the caliche has been excavated the Sand Filled Channel is exposed in the vicinity of monitor well #17. The maximum thickness of this layer of approximately 20 feet occurs in the vicinity of monitor wells # 10 and #17. The precise location and shape of this discontinuous unit is shown in Isopach map Figure 4.29. The Sand Filled Channel is composed primarily of SC and SP-SC soils.

The moisture content of this stratum ranged from 18 to 35 percent, with an average of approximately 26 percent. The Sand Filled Channel layer had an average dry density of 82 pcf, and an average wet density of 104 pcf. The liquid limits and plasticity indices ranged from 41 to 58 and non to 33, respectively, with an average liquid limit and plasticity index of 47 and 17, respectively (neglecting the non plasticity index readings).

Cohesion intercept from unconsolidated-undrained triaxial compression tests ranged from 3,100 to 13,000 psf with an average of 8,600 psf. Consolidated-undrained triaxial compression tests were performed on samples from this unit indicating an average effective cohesion of 200 psf and an effective angle of internal friction of 24 degrees. Vertical and horizontal permeability tests performed on samples from this stratum indicated an average vertical and horizontal permeability of 3.0x10⁻⁵ cm/sec and 1.0x10⁻⁴ cm/sec, respectively. Percent passing the No. 200 mesh averaged 40 percent.

8.2.4 Clayey Sand (Clay Dune) (III) Layer

The Clayey Sand (Clay Dune) (III) Layer is present at the extreme eastern side of the landfill site. (See Figure 4.30) It is present below the top soil and sandy clay units below monitor well #13. The Clayey Sand (III) Layer and consists SC, SP-SC and CH soils. The unit is encountered typically between elevations 6 and 26 feet NGVD. This is a discontinuous clay dune unit. The maximum thickness of the unit is estimated to be about 30 feet. (See Figure 4.26)

Moisture tests were performed on samples from this unit, indicating a water content of 23 percent. The liquid limits and plasticity indices ranged from 56 to 63 and 30 to 48, respectively, with an average liquid limit and plasticity index of 59 and 27, respectively. Permeability tests performed on this layer indicated vertical and horizontal permeabilities of 2.3 X 10⁻⁵ and 1.75 X 10⁻⁵ cm/sec, respectively.

8.2.5 Clayey Sand (Clay Dune) (IV) Layer

The Clayey Sand (Clay Dune) (IV) Layer is present under the Caliche Bearing Channel and the Sand Filled Channel and the Sandy Clay unit at the extreme western edge of the landfill site. Section D - D', Figure 4.22, shows this Clay Dune to be of maximum thickness of about 24 feet and centered between monitor wells 16 and 23. The Clayey Sand (IV) Unit consists primarily of SC and SP-SC type soils. Figure 4.30 is the isopach

Part III, Attachment 4, Appendix 1, p.g. 89

Revision: 0

of this formation.

The moisture content of the Clayey Sand (IV) Layer ranged from 19 to 25 percent, with an average of approximately 22 percent. The liquid limits and plasticity indices of this layer averaged 52 and 21, respectively. The percent passing the No. 200 sieve mesh ranged between 30 and 46 percent with an average of 19 percent. Compressive strength of this layer was 5,500 psf. Effective cohesion and angle of internal friction for this layer were 200 psf and 24 degrees, respectively. Vertical permeability was 3.3x10⁻⁶ cm/sec.

8.2.6 Sandy (Silty) Clay Unit

The Sandy (Silty) Clay Unit is the most continuous soil unit above the aquiclude described below. The other discontinuous units (Caliche Bearing Channel, Sand Filled Channel, and two Clay Dunes (III & IV) seem to be located within the Sandy (Silty) Clay Unit. This unit is found in every boring log at the site except 7, 8 and 23. Borings 7 & 8 are totally in the Caliche Bearing Channel. Boring 23 penetrates three types of discontinuous units which separate it from the Sandy (Silty) Clay Unit. (See Section D-D', Figure 4.22) The Sandy (Silty) Clay Unit is composed primarily of CH type soils with minor amounts of CL and SC types.

The moisture content of the Sandy (Silty) Clay Unit ranged from 9 to 38 percent with an average moisture content of 23 percent. The Liquid Limit of this soil ranged from 30 to 83 % with an average of 60 %. The Plasticity Index ranged from 15 to 60 % with an average of 39 %. The percent passing the No. 200 sieve mesh ranged from 31 to 85 % with an average of 60 %. Unconfined compressive strength of this soil averaged 7,680 psf. Effective cohesion and angle of internal friction for this unit were 200 psf and 24 degrees, respectively. The average vertical and horizontal permeabilities were 1.0x10⁻⁵ cm/sec and 2.8x10⁻⁶ cm/sec, respectively.

8.2.7 Light Olive Green Clay Confining Layer - Aquiclude

This Light Olive Green Clay Unit was the only truly continuous layer unit at the landfill site. The top of this layer is shown in Figure 4.28 to vary from 5 feet above MSL at the extreme northeast corner of the landfill site to about 17 feet above MSL at the extreme southwest corner of the landfill site where it is slightly truncated by the Caliche Bearing Channel sloping gently towards the southwest. This Unit is at least 38 feet thick at the landfill site. All of the deep borings terminated in this unit. It forms the aquiclude for the local uppermost aquifer in the vicinity of the landfill site.

The moisture content of this soil varied from 18 % to 38 % and averaged 29 %. The average wet and dry densities of this soil are 125 pcf and 98 pcf, respectively. The liquid

limit of this soil unit varied from 51 % to 79 % and averaged 67%. The Plasticity Index of this soil varied from 25 % to 51 % and averaged 35 %. The average percent passing a number 200 mesh sieve was 81 %. The average unconfined compressive strength of this clay was 8,300 psf. The vertical permeability of this clay averaged 3.3x10⁻⁸cm/sec. The vertical permeability ranged from 1.33x10⁻⁹ cm/sec to 6.18x10⁻⁸ cm/sec.

Table 4.1 SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING City of Kingsville MSWLF, Permit 235 B

Kingsville, Texas

Horizontal

returie (E.) († 1491.)

		09	(1) 200 (2)		48 (3) 1.7	33 (3) 2.4				51			(1) 200 (2)		0.0001	62 5.80E-06	99				3.40E-07 5E-06	(3) 2.3	48	46 (3) 3.2	0.00046 3E-05		(3) 0.38	30	
			28		28	26		29	24				25	-	12		26		36	29		29		28			24		
			41		51	48		53	51				59		30		43		59	59		63		69			99		
			112.3		102.3	96.1										100.7					94.8	101.4		94	93.6		6.96		
			127.53		121.84	118.76										108.79					114.94	123.27		116.5	112.63		112.92		
7.2		14.1	13.6		19.1	23.6		24.7	23.2	25.2		29	30.2			8	9.4			21.3	21.3	21.6	18.6	23.9	20.3		26.9	24.7	
CL		CL	J		SC	SC		CH	H	CH		CH	CH		_z	CL	ر ا		당	CH	CH	CH	SC	SC	SC		SC	SPSC	
0-2		2-2	2-8		14-19	19-24		29-34	34-36	36-41		46-47	47-48	0-2	2-4	2-8	8-10		15-20	20-25	25-26	26-27	27-30	30-35	35-36	37-40			t
S1	S2	S3	S4	SS	Se	S7	88	88	S10	S11	S12	S13	S14	S1	S2	S3	S4	SS					S10				S14		
B-12	52.38													B-13	59.13														

1 Effective Cohesion (psf)

2 Effective Angle of Internal Priction (degrees)
3 Unconfined Compressive Strength (tsf)

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING City of Kingsville MSWLF, Permit 235 B

		T	T	Т	Т	Τ				Т			1	Г	Г		Т									Г	Г	1
Tests anks			(3) 4.0							(3) 3.0	1						(3) 1.55							(3) 1.53				
Other Tests Remarks			(2) 26							(2) 24							(2) 21							(2)24				
			(1) 200							(1) 200							(1) 200						(3) 1.56	(1) 200				
Horizontal (cm/sec)			5E-07	5E-07																								
Sieve Vertigal Honzontal						6.90E-05			1.20E-07									3E-07					2.40E-07					
Sleve		56	53				46	99			85				47	51		55		65				53		28		
Index.		36	0	37		33		27	33		37	15			19			46	56	26	09			32		35		
(100) (0,0)		44		63		58		20	61		64	41			30			89	79	79	83			20		52		
Densily		1047	95.1	95.1		86.99		88.3	98.54		82.1				112.6		100.4		84.2					100				
Content (Bensily) Densily (96) (pet) (pot)		116.69	113.11	113.11		108.57		114.2	123.66		104.29				126.4		113.38		97.04					121.79				
Comigni (%)		11.5	14.4	19	22.2	24.8	28.5	29.3	25.7		26	29.5			12.3	11.6	12.9	15.3	15.3	15.3	21.2		20.1	21.3	4	(26.5)	(53))
808(a		0	72	H	HJ.	СН	SC	CL	CH		CH	C			SC	CL	CH	CH	CH	CH	CH		CH	CH	6	CH	(CH)	1
(Sign (Sign)	cc	5-10	10-11	11-15	15-20	20-25	25-30	30-33	33-34	34-35	35-37	39-40		0-2	5-10	10-12	12-13	13-14	14-16	16-19	19-22		23-24	24-25	4	(25-28)	(28-29)	,
Number	50	SS	S3	S4	SS	Se	S7	S8	89	S10	S11	S12		S1	S2	S3	S4	SS	Se	S7	S8	88	S10	S11	S12	S13	S14	
Ground El INDINGER	D 44	49.94											4	B-15	48.39													

Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees)
3 Unconfined Comments Unconfined Compressive Strength (1sf)

Table 4.1 (cont'd) SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING City of Kingsville MSWLF, Permit 235 B Kingsville, Texas

B-16	S1	0-5	J J	-	00	0,0,					
55.96	S2	3-5		9.3	114.66	104.9					
	S3	5-10	SC	11.6			45	23	31		\dagger
	S4										
	SS										
	9S										
	S7										
	S8	16-18	SP-SC	27.3				NON	22		
	S	18-20	SP-SC	22.3			43	13	24		
	S10										
	S11										
	S12										
	S13										
	S14	26-29	SC	24.5			20	29	30		
	S15										
	S16									1000	
	S17	33-35	SC	19.4			41	24	46	1.20E-05	
	S18	35-37	SC	21						4E-06	
	S19										
	S20										
	S21										
	\$22										
	203	45-47	HO	30.6	110.03	84.3	79	51	83		

Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees)

Table 4.1 (cont'd)
SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING
City of Kingsville MSWLF, Permit 235 B
Kingsville, Texas

	0													
41.35	S2	2-5	SP-SC	21.6				NON						
	S3	2-8	SP-SC	35					25					
	S4	8-9	SP-SC	31.4	85.07	64.6		NON	3	0.0001	3E-05			
	SS	9-10	CL	32			41	19	99	-				
	9S													
	S7													
	88	17-18	끙	31.5	95.09	82.7	99	46						
	88													
	S10													
	S11													
	S12	24-29	공	38	108.86	78.9	74	52	83					
	S13													
	S14	31-32	HS.	23										
	S15	32-33	CH		115.38	93.8	62	41		6.70E-07		(1) 200	(2) 24 (3)	(3) 2.27
B-18	S1	0-2												
50.04	SZ	3-5												
	S3	2-9	KH	15.2	97.82	84.9	59	44	09					
	S4	9-10	CL	14.8	127.25	110.8						(1) 200	(2) 21 ((3) 5.4
	SS	10-15	ᆼ	18.3					45				1	/ .
	98	1												
	S7	12-18	끙	23.8	122.97	99.3	58	33	22			(1) 200	(2) 24 ((3) 4 91
	S8											201 (:)	1	2:: (2
	88													
	S10	24-29	공	26.5			99	47	78					
	S11	29-30	KH	31.9						0.0023				
	S12													
	S13													
	S14	34-39	CH	34.9			73	48	81					
	212	30.42	7	24.4	40075	* **0						000	, , , , , , , , , ,	1 1 10

1 Effective Cohesion (psf)

Effective Angle of Internal Friction (degrees)
 Unconfined Compressive Strength (tsf)

Revision 1

ING RESULTS BY BORING Permit 235 B SUMMARY OF GEOTECHNICA City of Kingsyille

	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 2.3	(3) 2.3	(3) 3.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5				(3) 4.3				(3) 4.5	(3) 4.0	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 3.8	(3) 4.5
																									1.99x10 ⁻⁹					
																									95					
																									40					
																									75					
																									37.8					
1-2	2-4	4-6	8-9	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-42	42-44	44-46	46-48	48-50	50-52	52-54	54-56	56-58	58-60	60-62
S1	S2	S3	S4	S5	Se	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S30	S31
B-21	52.41															210														

2 Effective Angle of Internal Friction (degrees)3 Unconfined Compressive Strength (1sf) Effective Cohesion (psf)

NG RESULTS BY BORING Permit 235 B

Other Fests Remarks	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 2.5	(3) 3.5	(3) 2.8	(3) 3.0	(3) 4.0	(3) 4.5	(3) 4.5		(3) 15	(3) 4.5	(3) 2.0	(3) 0.8	(3) 0.5	212 (2)					(3) 2.0	(3) 2.3			(3) 4.5		(3) 3.0	(3) 3.8
Permeability (Vertical Torrisona (on/sec)	8								8																					
Permeal Vertical (om/sec) (3.00×10-8								1.56x10-8																					4.4×10-8
#200 Sieve (%)	86								78																					88
Plastic Index (%)	25								33																					37
Equid Limit (%)	51								62																					73
THE PERSON NAMED IN																														
Wet Dry Density Density (pof) (pof)																														
Wafer CS Gortent	27.7								24.6																					36.9
SOSA																														
Depth (ff bgs)	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	1.0	2.4	4-6	8-9	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36	36-38
Sample Number	S32	S33	S34	S35	S36	S37	838	S39	S40	S41	S42	2	SS	S3	S4	SS	Se	S7	SS S	88	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19
Boring Sample Ground Number (#MSL)	B-21	52.41	(cont'd.)									B-23	49.5																	

2 Effective Angle of Internal Friction (degrees)

Revision 1

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING City of Kingsville MSWLF, Permit 235 B

S22 42-44	B-23 52.41	S20 S21	38-40							
44.46 44.46 46.48 46.48 46.48 46.48 50.52 50.52 52.54 80 56.58 58.60 56.58 58.60 60.62 32 66.68 24.3 66.7 59 70.72 72.74 76.78 80.82 80.82 82.84 1-2 4.6 6-8 8-10 10.12 10.12	(cont'd.)	S22	42-44							
S24 46-48 1.6×10³ S25 548-50 1.6×10³ S26 50-52 1.6×10³ S27 52-54 1.6×10³ S28 56-58 1.6×10³ S29 56-58 27.7 62 S30 58-60 27.7 62 32 80 S31 60-62 32 80 1 1 S31 60-62 32 80 1 1 S32 66-68 24.3 69 31 76 3.80×10³ S34 66-86 24.3 69 31 76 3.80×10³ S35 76-78 80 1 1 1 1 S39 76-78 80 1		S23	44-46							(3) 4.5
S25 48-50 Rescrict Res		S24	46-48						1.6x10-8	(3) 4.5
S26 50-52 9 S27 52-54 9 S28 54-56 9 S29 56-58 9 S31 60-62 32 80 S31 64-64 9 31 76 S34 66-68 24.3 59 31 76 3.80x10* S36 70-72 9 1 76 3.80x10* 1		S25	48-50							(3) 3.0
S27 62-54 Per-64 Per-65		S26	50-52							(3) 4.0
\$28 54-56 \$27.7 \$62 32 \$80 \$30 \$6-68 \$27.7 \$62 \$3 \$80 \$80 \$31 \$6-66 \$24.3 \$6 \$8 \$8 \$8 \$1 \$8 \$1 <td< td=""><td></td><td>S27</td><td>52-54</td><td></td><td></td><td></td><td></td><td></td><td></td><td>(3) 4.5</td></td<>		S27	52-54							(3) 4.5
S29 56-58 C 32 80 C		S28	54-56							(3)
S30 58-60 27.7 62 32 80 S31 60-62 3.3 80 80 S33 64-66 8 24.3 80 80 S34 66-68 24.3 80 31 76 380x10*8 S36 70-72 8 80		S29	56-58							(3)
S31 60-62 S32 62-64		830	28-60	27.7		62	32	80		(3)
S32 62-64 Carrier <		S31	60-62							(3)
S33 64-66 24.3 69 31 76 3.80x10-8 S34 66-68 24.3 69 31 76 3.80x10-8 S35 70-72		S32	62-64							(3)
S34 66-68 24.3 59 31 76 3.80x10-8 S35 68-70 8-7		S33	64-66							(3)
S35 68-70 S36 70-72 S37 72-74 S38 74-76 S39 76-78 S40 78-80 S41 80-82 S42 82-84 S4 4-6 S3 4-6 S4 6-8 S5 8-10 S6 10-12		S34	89-99	24.3		59	31	9/	3.80×10 ⁻⁸	(3)
S36 70-72 S37 72-74 6 S38 74-76 72-74 72-74 S39 76-78 8 8 S40 78-80 8 8 S41 80-82 8 8 S42 82-84 8 8 S1 1-2 8 8 S2 2-4 8 9 S3 4-6 8 9 S4 6-8 9 9 S5 8-10 9 9 S6 10-12 9 9		S35	68-70							(8)
S37 72-74 Control <		S36	70-72							(3)
S38 74-76 S39 76-78 S40 78-80 S41 80-82 S42 82-84 S1 1-2 S2 2-4 S3 4-6 S4 6-8 S5 8-10 S6 10-12		S37	72-74							(3)
S39 76-78 S40 78-80 S41 80-82 S42 82-84 S1 1-2 S2 2-4 S3 4-6 S4 6-8 S5 8-10 S6 10-12		838	74-76							(3)
\$40 78-80 \$41 80-82 \$42 82-84 \$1 1-2 \$2 2-4 \$3 4-6 \$4 6-8 \$5 8-10 \$6 10-12		833	76-78							
\$41 \$0-82 \$42 \$2-84 \$1 1-2 \$2 \$2-4 \$3 \$4-6 \$4 \$6-8 \$5 \$8-10 \$6 \$10-12		S40	78-80							
S42 82-84 S1 1-2 S2 2-4 S3 4-6 S4 6-8 S5 8-10 S6 10-12		S41	80-82							(3) 4.5
SS		S42	82-84							(3) 4.5
S2 2-4 S3 4-6 S4 6-8 S5 8-10 S6 10-12	B-24	S1	1-2							(3)
S3 4-6 S4 6-8 S5 8-10 S6 10-12	47.38	S2	2-4							(3)
8-10 8-10		S3	4-6							(3)
10-12		S4	8-9							(3)
		SS	8-10							
		Se Se	10-12							

Effective Cohesion (psf)
 Effective Angle of Internal Friction (degrees)
 Unconfined Compressive Strength (tsf)

Table 4.1 (cont'd)

UMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING

City of Kingsville MSWLF, Permit 235 B

Kingsville, Texas

Épérisity Limit Index Siève Vertical Orizone Other Tests (pcf) (%) (%) (cm/sec) (cm/sec) Remarks				(3) 4.5	(3) 4.3	(3) 4.5	(3) 4.5	(3) 4.5		79 38 80 8.30x10-7	(3) 4.3	1.33×10-9 (3) 4.5		(3) 4.5	(3) 4.5	(3) 3.5	(3) 4.5	(3) 4.5	71 36 68 3.28×10 ⁻⁹ (3) 4.5		(3) 4.5	(3) 2.3	(3) 4.5	(3) 4.3	(3) 1.8	(3) 4.5	50 30 66 6.00x10 ⁻⁷ (3) 4.5	3 0 00 7
USGS. Content Density Density (pcf)										36.4									27.7								17.7	
(ft. ogs)	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-42	42-44	44-46	46-48	48-50	50-52	52-54	54-56	56-58	58-60	60-62	62-64	64-66	89-99	68 70
Number	88	88	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	830	S31	S32	S33	S34	232
Ground El Number (ft-MSL)	B-24	47.38	(cont'd.)																									

1 Effective Cohesion (psf)2 Effective Angle of Internal Friction (degrees)3 Unconfined Compressive Strength (tsf)

Revision 1

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING City of Kingsville MSWLF, Permit 235 B

estis Tres	u	5	r.	2													α		α	2 6	2	7	2 6	0 6	2	0	2	5 45	2	2	4
Other Tests Pemarks	(3) 15	1 (0)	(3) 4 5	1 (0)													(3) 3 8	0(0)	8 (12)	(3) 8	(3) 2.5	(3) 4.3	(3) 4.3	(3) 3.3	0 (0)	(3) 3.0	(3) 45	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4 5
Permeability Vertical Gensec, (cm/sec,																											10-8	2			
lo Perili Je Verril Jerrils		-								1										<u> </u>							2 45x10-8	T			
c #200 (: Sieve (%)	-			-		-																					87				
Plastic Index (^{9/6})																											43				
																											77				
Density (931)																															
Pansily (pot)																															
Water Content (%)																											31.8				
DISCS																															
(i, 5939)	1-2	2-4	4-6	8-9	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-42	42-44	44-46	46-48	48-50	50-52	52-54	54-56	56-58	58-60	60-62
	S1	S2	S3	S4	SS	Se	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S30	S31
Ground El Mumber (FMSL)	B-25	61.12																													

1 Effective Cohesion (psf)2 Effective Angle of Internal Friction (degrees)3 Unconfined Compressive Strength (tsf)

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY BORING City of Kingsville MSWLF, Permit 235 B

Borng No | Sample | Depth |

OtnerTests Remarks	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.3	(3) 4.5	(3) 4.5	(3) 4.3	(3) 4.3	(0) 4.0	(3) 4.3	(3) 4.3	(3) 4.5	(3) 4.5										
Sieve Vertical Oricone. (cri/sec) (cri/sec)																							
Vertical (cm/sec)		2 30 10-8	7.007.0						6 18v10-9	0.100													
#200 Sieve (%)		65	10						83	0													
Index (%)		30	3						34	5													
No. of the last of		77							58	8													
Density (pol)																							
Density (pdf)																							
Content (%)		30.5		-					20.5														
SOSA																							
(ft 1935)	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84.86	0010										
Number	S32	S33	S34	S35	S36	S37	S38	839	S40	S41	S42	243		1						0.0			
Ground Ell Number (ft. 1983) USGS Content Density Density Limit (ft. 1983) (ft. 1983) (ft. 1983) (ft. 1983)	B-25	61.12	(cont'd.)																				

Revision 1

1 Effective Cohesion (psf)2 Effective Angle of Internal Friction (degrees)3 Unconfined Compressive Strength (tsf)

G RESULTS BY STRATIGRAPHIC UNIT WLF, Permit 235 B SUMMARY OF GEOTECHNICAL TESTING CITY OF KINGSVILLE M.

						(3) 4.5	(3) 4.5	(3) 4.5	0.1. (0)															
-															1.6x10-4			2 0x10-4	1 0x10-4					
																			5 8×10-6					
100		17																						
		34																						
3		8.3																						
0-1	1-2	2-3	3-4	4-6	1-2	4-5	1-3	3-5	1-3	3-5	0-1	1-2	0-5	0-2	2-3	2-2	7-8	9-15	0-2	2-4	2-8	8-10	10-15	
S-1	S-2	S-3	S-4	S-5	S-1	S-2	S-1	S-2	S-1	S-2	S-1	S-2	S-1	S-1	S-2	S-3	S-4	S-5	S-1	S-2	S-3	S-4	S-5	
B-1					B-2		B-4		B-5		B-10		B-11	B-12					B-13					

Part III, Attachment 4, Appendix 1, p.g. 102

Effective Cohesion (psf)

(3)4.5Table 4.2 (cont'd) SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Kingsville, Texas Vertical Horizonial (cm/sec) 1.0x10-4 1.4x10-4 5.8x10-6 #200 Sleve (%) Top Soil (Dark Brown Clay) Uni pinon Tugʻil 34 Dry Density Density 8.3 SOSO 0-2 2-5 5-9 9-10 0-2 2-4 4-6 4-6 4-6 10-11 Number Number Average: B-14 B-18 B-25 B-21 B-24 82

Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (tsf) Effective Cohesion (psf)

Table 4.2 (cont'd.) SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B

Kingsville, Texas

Other Tests Remarks												(3) 4 6	(3) 4.3			(2) 4 6	(5) 4.3								
Permeability rtical Horizontal i/sec) (cnr/sec)																								3.0x10 ⁻⁴	
Water Wet Dhy Liquid Plastic #200 Permeability S Content Density Limit Index Sieve Vertical Horizontal (%) (%) (%) (cm/sec)	Caliche Bearing Channel (I) Unit		13	2		19																		16	
Liquíd V Limit (%)	aring Ch		31			39																		35	
Density (porj)	iche Be																							81	
er Wet	Cal																								-
CS Conte			9.1			8.3																		11.5	
Depth USCS (fl.bgs)		6.5-7.0	7.0-8.5	8.5-10.5	10.5-12	12-13	14-15	20-21	23-24	24-25	30-31	8-10	13-15	8-10	14-16	8-10	12.5-14.5	18-19	23-25	8-9	13-15	18-20	23-25	29-30	
Sample Number		S-6	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15	S-3	S-4	S-1	S-2	S-3		S-5	9-S	S-3	S-4	S-5	9-8	S-7	
Boring		B-1										B-2		B-3		B-4				B-5					

Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (1st)

Revision 1

ESÚLTS BY STRATIGRAPHIC UNIT F. Permit 235 B SUMMARY OF GEOTECHNICAL TES IIIT City of Kingsville M Kingsvi

Wet Div Initial District	Content Density Density Limit Index Sieve Vertical Horizontal Other Tests	Caliche Bearing Channel (II Thit	7																	(3) 45	(2) 4:0	0.4 (0)	(0) 4.3	0.4.0	(3) 4.5		
	SOSO					2	2																				
. □ Depth	(# hae)	A CHARLES	3-5	6-2	12-14	17.5-19.5	23.5-25.5	28-30	8-0	8-18	18-24	24-28	28-30	31-36	36-43	0-10	10-20	5-10	10-15	4-6	8-9	8-10	10-12	12-14	-		
Sample	Number	T. P. S.	S-1	S-2	S-3	S-4	S-5	9-S	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-1	S-2	S-2	S-3	S-3	S-4	S-5	9-S	S-7			
Boring	Number Number		B-6						B-8							B-9		B-11		B-21							

Revision 1

Effective Cohesion (psf)
 Effective Angle of Internal Friction (degrees)
 Unconfined Compressive Strength (tsf)

Hanson Professional Services Inc. Submittal Date: September 2018

Table 4 SUMMARY OF GEOTECHNICAL TEST City of Kingsville A

s(S)																								5	
Other Tests Remarks			(3) 4.5	(3) 4.5	(3) 2.0	(3) 0.8	(3) 0.5		(3) 3.0	(-)															
Vertical Horizontal (cm/sec)																									
Vertical (cm/sec)																									
Sieve (%)	Unit																								
. (%)	=																								0,
(%)	Caliche Bearing Channel																								100
(pcf) (pcf)	he Beari																								3
(pcf)	Calic																								
(%																									000
6000																									
(ft bgs)		0-5	2-4	4-6	8-9	8-10	10-12	12-14	14-16	8-9	8-10	10-12	12-14	14-16	16-18	18-20	8-9	8-10	10-12	12-14	14-16	16-18			
Darina Darina Darina		S-1	S-2	S-3	S-4	S-5	9-S	S-7	S-8	S-4	S-5	S-6	S-7	S-8	8-9	S-10	S-4	S-5	9-8	S-7	8-S	8-9			
Mallibel		B-23								B-24							B-25								Average.

Revision 1

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees)

Unconfined Compressive Str

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Kingsville, Texas Table 4.2 (cont'd)

Other Tests Remarks																							
#200 Permeability Sieve Vertical Horzontal																				3x10-5			
Vertical Horizo (Cm/sec) (cm/s																				0.0001			
#200 Sleve															22	24			25		99		
Plastic Index (%)	Sand Filled Channel (II) Unit														NON	13		NON		NON	19		
Eleption Limit (%)	d Chan															43					41		
Day Density (pol)	nd Fille																			64.6			
Wet Bry Density Density (pof) (pof)	Sa																			85.07			
Water Wet Bry Content Density Density (%) (pof) (pof)															27.3	22.3		21.6	35	31.4	32		T
nses															SP-SC	SP-SC		SP-SC	SP-SC	SP-SC	CL		
Deotin (fr. egs)		10-20	20-28	28-36	2-2	2-11	15-20	22-24	26-28	31-34	10-11	11-12	12-14	14-16	16-18	18-20	0-2	2-5	2-8	8-9	9-10		
Sample Number		S-2	S-3	S-4	S-1	S-3	S-4	S-5	9-S	2-S	S-4	S-5	S-6	S-7	S-8	S-9	S-1	S-2	S-3	S-4	S-5		
Boring Sample Number Number		B-9			B-9R	B-10	B-11				B-16						B-17						

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (1sf)

cont'd) i RESULTS BY STRATIGRAPHIC UNIT VLF, Permit 235 B SUMMARY OF GEOTECHNICAL TESTI City of Kingsyille N

(pct) (pct	Number	Number Number		SOSO	4694000	SEE SEED	Density		хари	Sieve	Sieve Vertical Horizontal	Horizontal	Other Tesis
Sand Filled Channel (II) Unit Section 18.3 Section 18.3 Section 18.3 Section 18.20 Se			(£ggg)		(9/6)	(bcl)	(pet)	(%)	(%)	1%)	(cm/sec)	(cm/sec)	Remarks
S-5 11-15 CH 18.3 S-6 15-17 S-7 17-18 CH 23.8 122.97 99.3 58 33 57 S-9 16-18 S-9 16-18 S-10 18-20 S-11 20-22 S-12 22-24 S-15 28-30 S-16 30-32 S-17 32-34 S						San	d Filled	Channel	(III) Unit				
S-6 15-17 CH 23.8 122.97 99.3 58 33 57 0 S-9 16-18 8 33 57 8 9	B-18	S-5	11-15	СН	18.3					45			
S-7 17-18 CH 23.8 122.97 99.3 58 33 57 CH 23.8 122.97 99.3 58 33 57 CH CH 23.8 122.97 99.3 58 33 57 CH		9-8	15-17										
S-8 14-16 S-9 16-18 S-0 16-18 S-10 18-20 S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-15 30-32 S-17 32-34 S-16 30-32 S-17 32-34 S-18 S-19 S-19 S-19 S-19 S-19 S-19 S-19 S-19		S-7	17-18	СН	23.8	122.97	99.3	58	33	57			(1) 200 (2) 24 (3) 4 91
S-9 16-18 S-9 16-18 S-10 18-20 S-10 18-20 S-10 18-20 S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-16 30-32 S-17 32-34 S-17 32-34 S-17 32-34 S-17 32-34 S-18 30-30 S-19 30-30 S-10 30-30 S-	B-21	S-8	14-16										(3) 4 5
S-9 16-18 S-10 18-20 S-10 18-20 S-10 18-20 S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34 S-17 32-34 S-17 32-34 S-17 32-34 S-18 30-32 S-19 32-34 S-19 32-34 S-10 32-34 S		S-9	16-18										(3) 4.5
S-10 18-20 S-9 16-18 S-10 18-20 S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34 S	B-23	S-9	16-18										2: (2)
S-10 18-20 S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-16 30-32 S-17 32-34		S-10	18-20										
S-10 18-20 S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34 S-17 32-34 S-18 S-18 S-19 S-19 S-19 S-19 S-19 S-19 S-19 S-19	B-25	8-9	16-18										
S-11 20-22 S-12 22-24 S-13 24-26 S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34 S-17 32-34 S-17 32-34 S-17 32-34 S-17 32-34 S-18 1.95 47.3 17.3 39.8 0.0001 3x10-5		S-10	18-20										
S-12 22-24 S-13 24-26 S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34		S-11	20-22										
S-13 24-26 S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34 S-17 32-34		S-12	22-24										
S-14 26-28 S-15 28-30 S-16 30-32 S-17 32-34 S-17 32-34		S-13	24-26										
S-15 28-30 S-16 30-32 S-17 32-34 S-17 32-34		S-14	26-28										
S-16 30-32 S-17 32-34 S-17 32-34 S-18 S-19 S-19 S-19 S-19 S-19 S-19 S-19 S-19		S-15	28-30										
S-17 32-34		S-16	30-32										
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3x10-5		S-17	32-34										(3) 45
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3x10-5													2:: (2)
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3x10-5													
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3×10-5													
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3×10-5													
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3x10 ⁻⁵													
26.46 104.02 81.95 47.3 17.3 39.8 0.0001 3x10 ⁻⁵													
	Average:				26.46	104.02	81.95	47.3	17.3	39.8	0.0001	3×10-5	(1) 200 (2) 24 (3) 4 6

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (Isf)

Table 4.2 (cont'd)
SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Kingsville,

Texas

	Other Tests	S S S S S S S S S S S S S S S S S S S	6 6/6/	(3)4.3	(3) 3.0	7.0 (0)		00 0 (0)	(3) 0.30						(3) 4.3							(3) 3.27
eability	Horizontal	間を行うのできると	6.0240-6	0.0x10		3~40-5	0170															1.75×10 ⁻⁵
Permit	Sieve. Vertical Horizontal		2 1040-7	0.44.0		4 Gv10-5	2000															41.3 2.3x10-5
#200	Sleve.	Init		48	46				30	3												41.3
Plastic	Xepui (%)	e) (III) (20	24	28			24	i	NON	202							T				27
Liquid		lav Dun	63	3	59			56			T									T		59.3
Div	Density Limit (pof) (%)	Sand (C	1014		94	93.6		6.96														96.48
Wet	USCS: Content: Density Density (20) (901) (port)	Clayey Sand (Clay Dune) (III) Unit	123.97		116.5	112.63		112.92														111.51
Water	Content- (%)		21.6	18.6	23.9	20.3		26.9	24.7	26.7												23.24
000	OSCS		HS	SC	SC	SC		SC	SPSC	SPSC												
			26-27	27-30	31-35	35-36	37-40	40-45	45-46	48-49	32-34	34-36	36-38	38-40	40-42	42-44	44-46					
Sample	Mulifiber		S-9	S-10	S-11	S-12	S-13	S-14	S-15	S-16	S-17	S-18	S-19	S-20	S-21	S-22	S-23					
Bonng	riginael mainaell (frigs)		B-13								B-21											Average:

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (tsf)

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Table 4.2 (cont'd) Kingsville, Texas

Liquid Plastic

Bollinn Bollinn	Politice	(fi bgs)	SCS	Content (%)	Density (pcf)	Density (pot)	Umil (%)	mdex.	Sieve (%)	(fi bgs) (%) (pcf) (pcf) (pcf) (%) (mixed (mixed) (mixed) (mixed) (mixed) (mixed)	Orizontal ¹	Other Tests Remarks
					Clay	Clayey Sand (Clay Dune) (IV) Unit	(Clay D	une) (IV	Unit		Bill Branch Trees	Name and the second
B-16	S-9	18-20	Sp-SC	22.3			43	13	VC		-	
	S-10	20-22					2	2	4.7			
	S-11	23-24										
	S-12	24-25										
	S-13	25-26										
	S-14	26-29	SC	24.5			50	20	30			
eto	S-15	29-31					3	6.0	20			
	S-16	31-33										
	S-17	33-35	SC	19.4			41	2.4	36	4 25.40-5		
	S-18	35-37	SC	21				1.7	7	1.2X10°		
	S-19	37-39								4X10°		
	S-20	39-41										
	S-21	41-43										
B-23	S-11	20-22										
	S-12	22-24										0000
	S-13	24-26										(3) 2.0
	S-14	26-28			100							(3) 2.3
	S-15	28-30										
	S-16	30-32										2 7 107
	S-17	32-34										(3) 4.5
	S-18	34-36										00107
							-					(3) 3.0
Average:				21.8	116.5	96.48	52	21 13	18 83	2 2240-6		75.0.10/
					Company of the Compan	The state of the s		>	0	O O Y		

Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (tsf)

OFFISIO	Samola	THE PERSON OF TH	AND PROPERTY OF THE PARTY OF TH	THE SERVICE PROTECTION								
irriber	Nitralber Number	THE RESIDENCE OF	(Sees)	water Ophien (%)		語の意思	ory Instity	Bity Equic Plestic Pensity Limit Index.		#200 Sieve: Vē	Remeability Vertical Horzone	0)
7	0.41	00 10				Sar	idy (Silt	/) Clav U	2	(0)	(sec) (dm/sec)	r Remarks
	0-17	32-36						-	_	-	-	
R-2	- N	23.25										
1	S-7	25-23		8.3	+		66			5.6	5.6x10-6	(3) 4.5
B-3	S-3	29-31				+	1					
	S-4	32-34				1	1	1				
B-4	S-7	28-30					1			1		
	88	33-35				-	-					
	8-9	38-40					-					
B-5	S-8	33-35					1	1				(3) 4.2
	S-9	38-40					+					
	S-10	46-48				+	1					
B-6	S-7	33-35				-						
	S-8	38-40				-	1					
B-9	S-5	36-48				-						
B-9R	S-2	10-12				-	1					
	S-3	15-17				+	1					
B-10	S-4	11-12				-	+					
	S-5	13-14				-						
	S-6	14-15				-						
	S-7	15-16				-	1					
	8-8	17-19				-	+		-			
	S-9	19-29				1						

1 Effective Cohesion (psf)
2 Effective Angle of Internal Friction (degrees)
3 Unconfined Compressive Strength (tsf)

SÚLTS BY STRATIGRAPHIC UNIT Permit 235 B SUMMARY OF GEOTECHNICAL TEST City of Kingsville A

Number	Number Number		5386	Content	Content Density Density	Density	- Emili	mdex.	Sieve	Vertical	Limit Index Seve Vertical Horzonia	Office Tests Pomente
		SBQ III		[(0/2)	Control of the contro	Sandy (Silfy) Clay I hit	ty) Clay	nit	1 707	Cilibacole	(carried)	Califolia
B-11	2-7	31-35				allay loll	ty) Oldy					
1	8-8	36-40										
	8-9	41-45										
	S-10	46-48					18					
B-12	S-6	14-19	SC	19.1	121.84	102.3	51	28	48			(3) 1.7
	S-7	19-24	SC	23.6	118.76	96.1	48	26	33			(3) 2.4
	S-8	24-29	공									
	8-6 S	29-34	공	24.7			53	29				
	S-10	34-36	F	23.2			51	24				
	S-11	36-39	공	25.2					51			
B-13	9-8	15-20	H				59	36				
	S-7	20-25	F	21.3			59	29				
	8-8	25-26	H)	21.3	114.94	94.8				3.4×10 ⁻⁷	5x10-6	
B-14	S-4	11-15	H)	19	113.11	95.1	63	37			5x10-7	
	S-5	15-20	H	22.2								
	9-S	20-25	ES.	24.8	108.57	86.99	58	33		6.9×10 ⁻⁵		
	S-7	25-30	SC	28.5					46			
	8-8	30-33	ರ	29.3	114.2	88.3	20	27	99			
	8-9	33-34	끙	25.7	123.66	98.64	61	33		1.2x10-7		
	S-10	34-35										
	S-11	35-37	끙	26	104.29	82.1	64	37	82			
	S-12	39-40	CL	29.5			41	15				

2 Effective Angle of Internal Friction (degrees)3 Unconfined Compressive Strength (tsf)

G RESÚLTS BY STRATIGRAPHIC UNIT WLF, Permit 235 B Table 4. SUMMARY OF GEOTECHNICAL TESTI City of Kingsyille M

Other Tests Remarks					1) 200 (2) 21 (3) 1.55						(3) 1.56	1) 200 (2) 24 (3) 1.53						(1) 200 (2) 24 (3) 2.9									
Vertical Horizontal (cm/sec) (cm/sec)					(1,	0-7					10-7	(1															
Sieve Verti			47	51		55 3x10-7		65			2.4×10-7	53	58						31							83	
index (%)	Unit		19			46	56	56	09			32	35						23			46				52	
(99)	Sandy (Silty) Clay		30			89	62	79	83			90	52						45			99				74	
Density (pot)	Sandy (S		112.6		100.4		84.2					100						104.9				82.7				78.9	
Density (pof)			126.4		113.38		97.04					121.79						114.66				95.09				108.86	
Gentent (%)	Samuel Control of the		12.3	11.6	12.9	15.3	15.3	15.3	21.2		20.1	21.3	26.5	29				9.3	11.6			31.5				38	
ebsn			SC	딩	CH	CH	СН	СН	СН		H	CH	НЭ	CH			CL		SC			75				공	
(fi. 1995)		0-2	5-10	10-12	12-13	13-14	14-16	16-19	19-22	22-23	23-24	24-25	25-28	28-29	29-31	31-37	0-2	3-5	2-8	10-15	15-17	17-18	19-22	22-23	23-24	24-29	
redmaN redman		S-1	S-2	S-3	S-4	S-5	9-8	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15	S-1	S-2	S-3	9-8	S-7	8-8	8-9	S-10	S-11	S-12	
vielomin)		B-15													92		B-16		35=3	B-17							

Effective Angle of Internal Friction (degrees) 1 Effective Cohesion (psf)

S BY STRATIGRAPHIC UNIT nit 235 B SUMMARY OF GEOTECHNICAL TEST City of Kingsville

OmenTests	Remarks	idajos insertas kariojais kariokas karios kariokas karios karios karios karios karios karios karios karios kari								(1) 200 (2) 24 (3) 1.57	(3) 2.3	(3) 2.3	(3) 3.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.5	(3) 4.3	(3) 4.5	(3) 4.5	(3) 4.5			
#200 Remeability Steve Werling Horizontal	(omisec) (omisec)	and the land and the control of the				2.3x10-7																		80 8.3x10 ⁻⁷	
19 000	0.00	1			78				81															80	
Pigstic	0%)	Unit			47				48															38	
	(%)	Sandy (Silty) Clay Unit			99				73															79	
Wer Day Density Density	(locl)	Sandy (S								81.4															
Wer	(pet) (pet)	0,								106.75													11 - 2-11010-5-		
Water	(%)				26.5	31.9			34.9	31.1														36.4	
8081					CH	CH			CL	K															
ndec	(ft bgs)		19-21	21-23	24-29	29-30	30-31	31-34	34-39	39-42	18-20	20-22	22-24	24-26	26-28	28-30	30-32	20-22	22-24	4-26	26-28	28-30	30-32	32-34	
Sorrig Sample Depti Number Number			S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15	S-10	S-11	S-12	S-13	S-14	S-15	S-16	S-11	S-12	S-13	S-14	S-15	S-16	S-17	
Sorrig Number			B-18								S-21					93		B-24							

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees)3 Unconfined Compressive Strength (tsf)

(1) 200 (2) 24 (3) 3.84 (3) 2.8 (3) 3.8 (3) 2.5 (3) 4.3 (3) 4.3 (3) 3.3 (3)3.83.0 (3) Table 4.2 (cont'd) SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Kingsville, Texas 2.75x10-6 Vertical Horizontal (cm/sec) (cm/sec) Permeability 1.02×10-5 #200) Sleve (9%) 59.5 Wet Day Equid Plastic Density Limit Index (pdf) (94) (96) 39.1 Sandy (Silty) Clay Unit 60.1 93.1 112.7 Content 23.3 44-46 46-48 48-50 50-52 36-38 38-40 40-42 42-44 34-36 Sample Average: B-25

1 Effective Cohesion (psf)

² Effective Angle of Internal Friction (degrees)

SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Table 4.2 (cont'd)

Kingsville, Texas

Light Olive Green Clay (Aquiclude) Unit Coop	Ses	29 29 30.2 30.6 30.6 27.8 27.8
		41-46 46-47 47-48 41-43 43-45 45-47 29-31 31-32 32-33 46-48 48-50 50-52 50-52 56-58 60-62 60-62

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (1st)

(3) 2.5 (3) 3.5 (3) 3.5 (3) 4.5 (4) 4.5 (4) 4.5 (5) 4.5 (5) 4.5 (6) 4. Table 4.2 (cont'd) SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Kingsville, Texas II Hofizontal Permeability Vertical (cm/sec) 1.56×10-8 1.6x10-8 4.4×10-8 3.8×10-8 9/ #200 Sieve. (%) 80 78 88 Light Olive Green Clay (Aquiclude) Unit Plastic Iridex (%) 32 31 33 37 59 62 62 73 Content Density Density (%) 27.7 24 36.9 24.6 76-78 80-82 80-82 82-84 36-38 36-40 40-42 42-44 46-48 48-50 50-52 52-54 54-56 56-58 58-60 60-62 62-64 64-66 66-68 S-31 S-32 S-34 Number B-23 B-21

Effective Cohesion (psf)

Effective Angle of Internal Friction (degrees) Unconfined Compressive Strength (tsf)

Other Tests Remarks (3) 3.3 (3) 2.5 (3) 4.3 (3) 4.5 (3) 4.3 (3) 4.5 (3) 4.5 (3)4.5(3) 4.5 (3) 3.5 (3) 4.5 (3) 4.5 (3)4.5(3) 4.5 (3) 4.5 (3) 2.3 (3) 4.5 Table 4.2 (cont'd) SUMMARY OF GEOTECHNICAL TESTING RESULTS BY STRATIGRAPHIC UNIT City of Kingsville MSWLF, Permit 235 B Kingsville, Texas Permeability Vertical Honzontal (cm/sec) (cm/sec) 3.28×10-9 1.33×10-9 #200 Sleve (%) 68 80 Light Olive Green Clay (Aquiclude) Unit Equid Plastic | Limit | Index | (%) 36 38 4 Density Density (pcf) (pcf) 86.2 105.3 114.5 125.8 Weiter 27.7 36.4 42-44 46-48 48-50 52-54 54-56 56-58 58-60 76-78 78-80 80-82 82-84 84-86 32-34 34-36 36-38 40-42 50-52 S-22 S-23 S-24 S-25 S-26 S-27 S-28 S-29 S-30 B-23 B-24

Effective Cohesion (psf)

Effective Angle of Internal Friction (degrees) Unconfined Compressive Strength (tsf) 00

BY STRATIGRAPHIC UNIT 235 B SUMMARY OF GEOTECHNICAL TEST City of Kingsville

Soring	Borng sample) leptin		water	Wei	DNy	piolog	Plastic	#700	Permeability	
Number	Jedimun		1900 P		Density	Sensity	Filmin	ndex		Vertical Horizontal	
		(s60 p)		(0,0)	(jod)	(bct)	(9/2)	(%)	爨	(cm/sec) = (cm/sec)	Kemarks
	A CONTRACTOR OF THE PARTY OF TH				Light Olive Green Clay (Aquiclude)	re Green	Clay (Ac	(uiclude	Unit		
B-24	S-31	60-62									(3) 4.3
	S-32	62-64									(3) 1.8
	S-33	64-66									(3) 4.5
	S-34	89-99		17.7			50	30	99		(3) 4.5
	S-35	68-70								1.21x10 ⁻⁸	(3) 3.5
	S-36	70-72									(3) 3.0
B-25	S-27	52-54		31.8			77	43	87	2.45x10 ⁻⁸	(3) 4.5
	S-28	54-56									(3) 4.5
	S-29	56-58									(3) 4.5
	S-30	58-60			139	104.3					(3) 4.5
	S-31	60-62									(3) 4.5
	S-32	62-64									(3) 4.5
	S-33	64-66		30.5			77	39	92	2.3x10 ⁻⁸	(3) 4.5
	S-34	89-99									(3) 4.5
	S-35	68-70									(3) 4.5
9	S-36	70-72									(3) 4.5
	S-37	72-74									(3) 4.5
	S-38	74-76					V.				(3) 4.5
	S-39	76-78									(3) 4.5
	S-40	78-80		20.5			58	31	68	6.18x10 ⁻⁸	(3) 4.5
	S-41	80-82									(3) 4.5
	S-42	82-84									(3) 4.5
	S-43	84-86									(3) 4.5
	S-44	88-98									(3) 4.5
Average:				28.53	124.78	97.5	66.57	35.07	80.54	3.31x10 ⁻⁸	(3) 4.15

1 Effective Cohesion (psf)

2 Effective Angle of Internal Friction (degrees) 3 Unconfined Compressive Strength (tsf)

8.3 Engineering Analyses

The following sections present the results and methodologies of the engineering analyses pertaining to the design of the landfill. The soil conditions described in the preceding section were used throughout the analyses.

8.3.1 Slope Stability

F.E.E., Inc. used the program PCSTABL5M, developed at Purdue University, to determine the stability of the final cover configuration slopes and open cut excavation sideslopes. The landfill facility is outside the 0.10 g seismic impact zone, at a seismic contour interval below 0.05 g. Therefore, the modeled slopes were not analyzed under dynamic (earthquake) loading conditions. A seismic impact zone is defined as an area with a 10 percent or greater probability that a maximum horizontal acceleration on lithified earth material, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10 g in 250 years.

Generalized cross-sections of the modeled final closed landfill configuration showing the most critical failure surfaces calculated are presented in Appendix H.1. These figures also contain tables summarizing the soil strength properties used in the models. Final cover slope stability calculations are also presented in Appendix H.1.

8.3.1.1 Final Cover Slopes

Slope stability analyses were performed on the final cover configuration to determine the maximum allowable height that will satisfy the minimum factor of safety (2.0) requirement for the short-term and long-term cases under static loading conditions. The computer program PCSTABL5M determines the factor of safety for a circular-type failure surface using the Bishop Modified method and for a block-type failure surface, using the Simplified Wedge method.

The calculations include an assumption that the short-term stability will be more critical than the long-term stability. The long-term conditions produce an increase in the foundation strength as a result of the gradual dissipation of pore water pressure. Pore water pressure dissipation is associated with the consolidation of the foundation soils as a result of the added waste load. Long-term consolidated-undrained laboratory strength test results confirm this significant increase in strength from long-term loading.

Under the condition that the final cover cap is properly compacted, the maximum allowable landfill height that will satisfy a minimum factor of safety of 2.0 (short-term case) under static loading conditions is approximately 125 NGVD. The final cover configuration was then designed beginning at the inside crest of the perimeter levee

(elevation 60 NGVD) and proceeding up at a 4H:1V slope to elevation 119 feet NGVD, then along a 6 percent slope to a maximum peak elevation of 125 feet NGVD. After determining the maximum landfill height and side slopes, hundreds of trial failure surfaces were generated to verify the slope stability. The assumptions made for the slope stability analyses are as follows:

- The potentiometric head will be one and one half feet below the base excavation elevation of the top of the protective soil cover above the sumps. (Base Excavation The Protective Soil cover above the sump is 42.5' MSL; GW level is 41.0' MSL)
- 2) The landfill will slope approximately two percent along the base. The slope stability analyses was performed assuming a flat bottom.
- A two-foot compacted cohesive soil liner (covered by synthetic geoclay liner) with a cohesion intercept of 200 psf and a total density of 112 pcf will be placed along the excavation sideslopes and over the bottom of the landfill.
- 4) A textured (double-sided) 60-mil HDPE geomembrane will be placed over the compacted cohesive soil liner along the base and sideslopes of new landfill cells 2 through 7. An angle of internal friction of 20 degrees was assumed for the soil/HDPE geomembrane interface.
- 5) The granular drainage blanket for the leachate collection system was conservatively assumed to have a similar strength characteristics as the solid waste.
- Various resources were investigated to determine geotechnical design strength values for the solid waste. A significant amount of research has been conducted since 1988 on the subject of slope stability modeling techniques for waste fills. Based on these resources, F.E.E., Inc. used an average total density of 32 pcf, a cohesion intercept of 1000 psf, and an angle of internal friction of 20 degrees for the solid waste.
- 7) The final cover load was not included in the analyses since it's contribution to the driving force will be negligible.
- The minimum allowable factor of safety will be 2.0 for static loading conditions.
- 9) Based on excavation depths, the relatively strong underlying in-situ soils, and the low interface friction angle of the cohesive soil/smooth HDPE liner, the most critical failure will be a block-type failure along the compacted cohesive soil/smooth HDPE geomembrane interface located in the existing landfill area.
- 10) The perimeter levee fill was assumed to have the same geotechnical properties as

as the compacted cohesive soil liner.

8.3.1.2 Open Cut Excavation Slopes

Slope stability analyses were performed on temporary open cut excavations from crest of perimeter levee elevation 60 feet NGVD to average base grade elevation 40 feet NGVD at both 4H:1V and 3H:1V sideslopes. The 3H:1V was selected. The cross sections consist of a typical open cut excavation. A perimeter levee was included in the model. The excavation sideslopes were analyzed using short-term soil strength properties based on the sampling and testing of soils underlying the landfill area. A long-term strength analysis was not performed since the excavation will be backfilled with refuse prior to the development of long-term strength characteristics. Minimum factor of safety of 2.55 was calculated for circular-type failure surfaces, respectively. Both exceed the minimum design factor of safety requirement of 2.0 for static loading conditions. The open cut excavation slope stability calculations are presented in Appendix H.1.

8.3.2 Settlement Analysis

The settlement analysis was performed by Mr Ralph N. Lewis of Professional Services, Inc. (PSI). His calculations show that conservatively the final landfill cover will settle 3.0 inches at the center and 1.5 inches at the edge of the landfill. The settlement calculations are shown in Appendix H.2

8.3.3 Perforated Pipe

The maximum anticipated deflection of the leachate collection system pipe due to the loads imposed by the waste overburden was analyzed using the Driscopipe Design Manual and Spangler's modified formula. The sections where pipes are under maximum loading conditions were analyzed for the six-inch diameter, SDR 17 HDPE or Schedule 80 PVC perforated collection lines that are located in trenches along the floor of the landfill. The results of the calculations indicated an estimated maximum deflection of approximately 1.0 percent (0.064 inches) for the six-inch diameter collection lines under maximum loading conditions. These deflections are within the maximum allowable cross-sectional deflection of 4.2 percent for HDPE, as recommended by Driscopipe and 5.0 percent for PVC, as recommended by American Water Works Association. The perforated pipe deflection calculations are presented in Appendix H.3.

8.3.4 Liner Puncture Resistance

The puncture resistance of the protective geotextile fabric wrapped around the gravel in the leachate collection system was analyzed. The most critical case for puncture will occur when the drainage sand is placed over the geotextile. During placement of the sand, the contact pressure of the bulldozer tracks will induce stresses between the gravel and the geotextile. The analysis, as presented in Appendix H.4, shows there should not be any puncture of the geotextile by the gravel.

8.3.5 Anchor Trench Analysis

The filling sequence of the landfill will cause stresses due to the weight of the waste on the sidewall liner. To keep the liner in place when the stresses occur requires the anchoring of the liners in an anchor trench at the top of the slope. Ideally, the anchor trench is designed so that the liner will pull out before tearing or shearing. The recommended run out length of the liner, the allowable anchor trench depth, and all calculations are presented in Appendix H.5.

8.4 Landfill Design

Disposal Cells 1 through 7 at City of Kingsville MSWLF have been designed in accordance with current TNRCC and EPA Subtitle D regulations. The existing landfill layout, final design, and various construction design details are presented in Attachments 1,2,6,7,12, and 15 of the Site Development Plan (Part III). The temporary construction dewatering system, liner, leachate collection system, and final cover components of the landfill are discussed herein.

8.4.1 Temporary Construction Dewatering System

Disposal cells located within the proposed expansion area (2 through 7) will be constructed utilizing a temporary construction dewatering system beneath the composite liner system. The purpose of this temporary dewatering system is in case excessive rain fall occurs during the construction period causing an abnormal rise in ground water levels.

Excavation of the proposed disposal cells will be initiated as indicated in the Site Development Plan (Part III). The excavation of the disposal cells will be made through the various units to the approximate base grade elevations presented in the Site Development Plan. During excavation activities temporary sumps will be constructed for the collection of groundwater from excessive precipitation. Water collected in the sumps will be pumped, using pumps and hoses, to the facility's detention ponds via the perimeter drainage system and discharged in accordance with the existing discharge permits (TNRCC Discharge Permit No. 10696001 and NPDES Permit No. TX0023418). As excavation proceeds, the groundwater table will be lowered or drained, as required, allowing completion of excavation activities and commencement of composite liner construction.

Composite liner construction will occur at the maximum excavation depths (i.e. minimum excavation elevations) as designed with regard to the design base grades for the proposed excavation area. The disposal cells within the expansion area (2 through 7) will be constructed utilizing a temporary construction dewatering system installed beneath the soil component of the composite liner system. The dewatering system will enable the removal of any residual groundwater which may accumulate during disposal cell excavation to subgrade elevations and during liner construction. The system shall cover the entire bottom and portions of the sideslopes of the excavated cells. The dewatering system shall consist of a geocomposite composed of a high density polyethylene (HDPE) drainage net with geotextile heat-bonded to each side. The filter fabrics or geotextiles shall have the appropriate physical filtration and permissivity properties (thickness, permeability, etc.) to prevent clogging by the underlying and overlying clayey soils. The riser pipe for the dewatering sump, installed parallel to the sideslope of the cell shall exit the cell in such a manner as not to penetrate the composite lining system within the planned limits of waste disposal, as indicated in Figure 15.12.

The requirements of this temporary construction dewatering system were evaluated with respect to the amount of rainfall precipitation anticipated and the ability of the geocomposite to transmit the rainfall precipitation to the sump. As excavation proceeds, should excessive precipitation cause increases in groundwater level, the groundwater will be removed by pumping. As indicated by these calculations, the anticipated initial (maximum) flow from this unit through the base of a typical cell is 40 gallons per acre per day.

The required transmissivity for the temporary construction dewatering system to transmit the maximum flows from precipitation expected during construction of the liner system was also estimated to be 40 gal/acre/day. Based on these calculations, the geocomposite must have a transmissivity greater than, or equal to, 4.0 X 10⁻⁶ m²/sec to be capable of transmitting the anticipated flows. The geocomposite to be used for construction of this system has a transmissivity of 1.0 X 10⁻³m²/sec (factor of safety = 250), which significantly exceeds the required transmissivity for the system. The factor of safety for this design is sufficient to allow for minor residual seepage from excessive precipitation.

The temporary construction dewatering system, including sumps, will be developed prior to construction to address specific conditions of individual disposal cell(s). Pumping of the construction dewatering system will be discontinued, with the system abandoned in place, after construction of the composite liner system is completed. Water collected by the temporary construction dewatering system will be discharged in accordance with he facility's existing discharge permits.

8.4.2 Composite Liner System

In accordance with the requirements of the 30TAC §330.200, the liner system to be installed in cells 2 through 7 will consist of a minimum one-foot thick compacted soil liner with a hydraulic conductivity of 1x10⁻⁵ cm/sec or less, overlain by a GeoClay synthetic liner, overlain by a 60-mil HDPE liner. This composite liner system will be installed over the entire floor and sideslope areas of the cells. A plan view of the completed liner system (base grades) is shown on Figures 15.2 through 15.7 of Attachment 15. The composite liner system (compacted cohesive soil and flexible membrane liner) shall be constructed using the guidelines of the Soils and Liner Quality Control Plan presented as Attachment 10 of the Site Development Plan (Part III).

8.4.3 Leachate Collection System

The design of the leachate collection system (LSC) for new cells within the landfill includes two-foot deep leachate collection trenches designed to collect leachate from a granular drainage layer on each side of the cell. The floor area on each side of the leachate collection pipe is sloped toward the pipe at a minimum grade of two percent. The leachate collection trenches will contain perforated, six-inch diameter SDR-17 HDPE or Schedule 80 PVC pipe surrounded by gravel. Filter geotextile will completely surround the gravel to prevent clogging of the leachate collection pipes.

A cross section through the collection trench and LCS pipe detail is shown on Figures 15.9 and 15.10 of Attachment 15. The gravel-filled collection trench is sloped on a minimum one half percent slope toward a LCS sump, located at the outer edge of the cells. A one-foot thick granular drainage layer, with a minimum permeability of 6x10-3 cm/sec, overlies the geomembrane liner and LCS trenches. A one-foot thick protective cover layer, with a minimum permeability of 1x10-4 cm/sec, will overlie the granular drainage blanket to provide protection for the LCS. Two feet of protective cover will overlie the geocomposite drainage layer if utilized in place of the granular drainage layer (see Figure 15.11).

8.4.4 Landfill Closure System

The final cover design and placement will be in accordance with the final closure plan requirements. The thickness and design of the final cover are given in Attachment 12. This design is based upon the design of a combination synthetic Geoclay and 60 mil HDPE Flexible Membrane bottom liner. The final cover system is comprised of, from the bottom up, 18 inches of compacted earthen material with a hydraulic conductivity of 1x10⁻⁵ cm/sec or less, a flexible membrane liner, a geonet/geotextile drainage layer, and 18 inches of protective soil cover, of which the uppermost 6 inches will be soil capable of supporting native vegetation. Six inches of permeable soil (hydraulic conductivity ≥

1x10⁻³ cm/sec) may be used in place of the geonet/geotextile drainage layer and included as part of the 18-inch protective cover. The minimum grade on the final cover is approximately six percent and approximately 25% on the embankment slopes. At locations where the final cover ends at the perimeter levees, a gravel toe drain replaces the lower six inches of the vegetative cover and the drainage material is extended outward from the cover to enhance drainage. Final cover contours and final cover details are depicted in Figures 12.1 and 12.2 of the Final Closure Plan (Attachment 12).

8.4.5 Surface Water Runoff and Erosion Control

Surface water runoff from the City of Kingsville, Texas MSWLF will be managed through a hydraulic control system composed of vegetated slopes, diversion berms, terrace channels, letdown chutes, energy dissipaters, erosion control devices, and surface water detention ponds. Plans, design details and supporting calculations for surface water runoff and erosion control are presented in Attachment 6.

9.0 CONCLUSIONS AND RECOMMENDATIONS

9.1 Geology/Hydrogeology

Based upon the results of field and laboratory investigations performed during this study, the following conclusions have been developed:

- The site is located in the Gulf Coastal Plain of Texas with the Beaumont Clay and Lissie Formation undifferentiated near the surface. This formation underlies thin loess (Eolian silt) deposits on the surface.
- The site is underlain by sediments that can be divided into five discontinuous units [Caliche Bearing Channel Unit (I), Sand Filled Channel Unit (II), Clayey Sand (Clay Dune) (III), Clayey Sand (Clay Dune) (IV), Sandy (Silty) Clay] and one continuous unit [Light Olive Green Clay Aquiclude]. The water bearing zone is made up of the five discontinuous units which are all in communication. The normal ground water level is at approximately 35 ft NGVD.
- The uppermost aquifer beneath the base grade of the existing site can be defined as a discontinuous fluvial-deltaic environment which is all in which all units are in hydraulic communication with each other and bounded by the 38 foot thick plus Light Olive Green Clay aquiclude at depths of 5' to 17' above mean sea level. Groundwater movement is to all sides of the landfill except to the Northwest. The gradient varies from about of 6.91 X 10⁻³ ft/ft to the northeast to 1.2x10⁻³ ft/ft to the southeast to 8.18x10⁻³ ft/ft to the southwest. A horizontal flow velocity of 0.5 to 5 ft/year at a depth of 45' below ground surface.
- The MSWLF site has a Light Olive Green Clay layer of more than 38 feet thickness which forms an aquiclude between the uppermost local aquifer and the Chicot aquifer which is the uppermost regional aquifer. The Chicot aquifer is located between 200 and 300 feet below mean sea level (MSL) and does not contain potable water.

9.2 Proposed Monitoring Well Network

Based upon an understanding of the local ground water flow regime and site stratigraphy, the site groundwater monitoring network will monitor the local uppermost aquifer confined by the Light Olive Green Clay given in this report. The monitor well network completed within the local uppermost aquifer will be comprised of a total of twenty four (24) monitor wells at various stages through the life of this landfill. The sequence of monitor well activation and plugging is given in Appendix M. A sector by sector discussion of the

106

wells at various stages through the life of this landfill. The sequence of monitor well activation and plugging is given in Appendix M. A sector by sector discussion of the sequence of activation and plugging and points of compliance follows:

Sector 2 Monitor wells 1, 3, 4, 10, 11, 12, 19, and 24 will be the active monitor well circuit when sector 2 is opened. Monitor wells 8, 13, and 28 will be active, but not point of compliance wells. Monitor wells 3, 12, 19, and 24 will be the point of compliance wells for the new sector 2. Monitor wells 1, 10, and 11 will continue to serve as point of compliance wells for the previous sector 235-A (sector 1) as it will not be finally closed at this point. Monitor well 4 is slightly too far away to be a true point of compliance well, but will serve as a back-up for monitor well 3 which will have to be plugged and abandoned before sector 2 is completely filled due to the advancement of placement of solid waste. Since the main direction of ground water flow is away from the site toward the northeast and the southwest, monitor wells 8, 28, and 13 will serve as monitoring wells in those directions.

Sector 3 Monitor wells 1, 4, 10, 11, 12, 13, 19, and 24 will be the active monitor well circuit when sector 3 is opened. Monitor wells 8 and 28 will be active, but not point of compliance wells. Monitor wells 4, 13, and 19 will be the point of compliance wells for new sector 3. Monitor wells 12, and 24 will continue to serve as point of compliance wells for sector 2. Monitor wells 1, 10, and 11 will continue to serve as point of compliance wells for sector 1. Monitor wells 8 and 28 will continue to serve as monitoring wells for flow toward the southwest.

Sector 4 Monitor wells 1, 10, 11, 12, 13, 14, 18, 19, 20, and 21 will be the active monitor well circuit when sector 4 is opened. Monitor wells 6, 8, 26 and 28 will be active, but not point of compliance wells. Monitor wells 13, 14, 18, 20 and 21 will be point of compliance wells for the new sector 4. Monitor wells 13 and 19 will continue to serve as point of compliance wells for sector 3. Monitor wells 12 and 24 will continue to serve as point of compliance wells for sector 2. Monitor wells 1, 10 and 11 will continue to serve as point of compliance wells for sector 1. Monitor wells 8 and 28 will continue to serve as monitoring wells for flow toward the southwest. Monitor well 26 will serve as a backup for monitor well 18 which will have to be plugged and abandoned due to the advancement of placed solid waste prior to the completion of sector 4. Monitor wells 6 will serve as monitoring well for flow toward the northwest.

Sector 5 Monitor wells 1, 10, 11, 12, 13, 14, 20, 21, and 26 will be the active monitor well circuit when sector 5 is opened. Monitor wells 6, 10, 11, 21 and 26 will be point of compliance wells for the new sector 5. Monitor wells 13, 14 and 20 will continue to serve as point of compliance wells for sector 4. Monitor wells 13 and 19 will continue to serve as point of compliance wells for sector 3. Monitor wells 12, 19 and 24 will continue to serve as point of compliance wells for sector 2. Monitor wells 1, 10, 11, and 24 will continue to serve as point of compliance wells for sector 1. Monitor well 22 will serve as a backup to monitor well 26 which will have to be plugged and abandoned prior to the completion of

sector 5 due to the advancement of placement of solid waste. Monitor well 11 will also have to be plugged and abandoned prior to the completion of filling sector 5 due to the advancing placement of solid waste. Monitor wells 8, 27 and 28 will serve as monitor wells for flow toward the southwest.

Sector 6 Monitor wells 1, 6, 10, 12, 13, 14, 17, 20, 21 and 22 will be the active monitor well circuit when sector 6 is opened. Monitor wells 6, 10, 17, and 22 will be the point of compliance wells for new sector 6. Monitor wells 10 will have to be relocated prior to the completion of sector 6. It will be required to plug and abandon the old 10 and drill a new one approximately 25 feet to the south of it's current location to stay on the perimeter of the landfill and out of the advancing placement of solid waste. Monitor well 17 will also have to be plugged and abandoned due to the advancement of placement of solid waste prior to the filling of sector 6. Monitor well 21 will continue to serve as point of compliance will for sector 5. Monitor wells 13, 14, 20 and 21 will continue to serve as point of compliance wells for sector 4. Monitor wells 13 and 19 will continue to serve as point of compliance wells for sector 3. Monitor wells 12, 19 and 24 will continue to serve as point of compliance wells for sector 2. Monitor wells 1, 10 (relocated) and 24 will continue to serve as point of serve as point of compliance wells for sector 1. Monitor wells 8, 27 and 28 will continue to serve as monitor wells for flow toward the southwest.

Sector 7 Monitor wells 1, 6, 10 (relocated), 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24 will be the active monitor well circuit when sector 7 is opened. Monitor wells 6 and 22 will continue to serve as point of compliance wells for sector 6. Monitor wells 6 and 21 will continue to serve as point of compliance wells for sector 5. Monitor wells 13, 14, 20 and 21 will continue to serve as point of compliance wells for sector 4. Monitor wells 13 and 19 will continue to serve as point of compliance wells for sector 3. Monitor wells 12, 19 and 24 will continue to serve as point of compliance wells for sector 2. Monitor wells 1, 10 (relocated) and 24 will continue to serve as point of compliance wells for sector 1. Monitor wells 8, 27 and 28 will continue to serve as monitoring wells for flow toward the southwest,

This design will provide for a monitor well spacing of not more than 650 feet around the perimeter of the landfill site. The seven (7) Phase I wells were drilled as soil borings in July, 1997. Five (5) of these wells which are around the MSWLF perimeter will be used as designated monitor wells. The remaining two (2) wells were completed as piezometers, and are used primarily for ground water level measurements. The piezometers were completed in accordance with TAC 238.44 specifications and will be removed as operations require. Four (4) more soil borings were drilled in April 1998. One of these four borings was made into a monitor well. Eight more monitor wells will be required over the life of the 235-B permit.

The first seven borings were drilled at the approved location to depths of approximately ten (10) feet above MSL. These monitor wells were plugged back and completed at total depths of 15 to 20 feet above MSL. In April, 1998 four deep borings were drilled to depths

107a

Part III, Attachment 4, Appendix 1, p.g. 130

of 72 to 88 feet below ground surface (BGS). One of these borings (No. 24) was converted into a monitor well and plugged back to the top of the aquiclude clay.

Ten (10) of the seventeen (17) monitor wells which exist at the time of this permit application are completed in or within one foot of the Light Olive Green Clay aquiclude. These ten wells include all of the wells drilled for this permit application (MW-12 through MW-18 and MW-24). Monitor well #1 is also within one foot of the aquiclude. Seven wells terminate within at least eight feet above the aquiclude. It would seem reasonable to redrill and deepen these two wells on the exterior of the landfill site, i.e. #6 and #8. Further, Monitor well #6 should will eventually have to be moved about 45 feet south of its current location to remove it from CR 2040 right-of-way. All Any wells deepened will be terminated in the aquiclude clay. The rest of the wells should be maintained but not deepened nor plugged and abandoned. They will be useful for water level information. Monitor wells # 10 or #11 should could be deepened by the time sector 5 becomes active as they can serve as exterior well to the active landfill. If #10 is chosen to be deepened, it should be moved south about 20 feet and out of the active area when sector 6 is activated.

As discussed in section 6.1, all of the fluvial-deltaic sand bodies above the light olive green clay aquiclude are in communication with each other. These units essentially act as one body from a hydrogeologic standpoint. The caliche bearing channel running northeast to southwest is the primary avenue for pollutant migration as indicated by the rather steep gradients in those two directions. However, the groundwater flows away from the landfill in all directions except to the northwest, currently. There were some earlier dates in which the ground water flowed toward the northwest also. Thus, the point of compliance must be around the entire landfill site. The ground water flow to the northeast (MW #14) is strongly influenced by the clay environment surrounding that well and possibly by the clay dune (III) on top of the aquiclude clay at the northwest corner of the site.

Since this is an unconfined aquifer, there is direct recharge from the surface by percolation through the soil. Ponding in the area will create hydrostatic head to accelerate this recharge process. As discussed in section 6.3.2, there are a significant number of ponds in the area of the landfill. There are fourteen potential ponds in the area of the landfill. Nine of these are permanent ponds in which the ground water intersects the surface. One of these is in the northwest quadrant of the landfill. The other eight are off site. In addition, there are five depressions on the landfill site which will hold water after extensive rainfall, but which do not intersect with the ground water table. The plan for this permit is to properly fill and compact the pond on site which intersects the ground water table, and to obtain pumps to rapidly remove water from the temporary ponds outside of the waste area to surface drainage to minimize infiltration. This is shown in Attachment 15. Both of these will serve to drastically reduce the water level in this uppermost unconfined aquifer.

Background values will be have been established for these wells this MSWLF site as required from the six quarters of background data from MW-1, 3, 4, 10 and 11 for permit

235-A. That data will be has been submitted as appropriate. Present data suggest a groundwater flow direction away from the landfill site in all directions except to the northwest. Therefore, the points of compliance for the water table aquifer for Sector 2 will be located on all sides with monitor wells 1, 3, 24, 12, and 19 designated as the Points of Compliance of the MSWLF site as indicated above. Monitor Wells 4, 8, 10, and 11 will remain activated for water level contours and back up. A new monitor well, # 28 will be drilled between #1 and #8 to trace the ground water flow to the southwest toward the lower level caliche pits in that direction. It may be necessary periodically to alter the use of northwest perimeter monitor wells depending on the direction of ground water flow. The drainage ditch on FM 2619 next to MW #15 should be deepened and lined in order to minimize the infiltration on of water removed from the landfill site and pumped into surface drainage.

At the present time (235-A), this is a single unit facility. The proposed new landfill (235-B) is comprised of several sectors which will be activated in various stages of operation (i.e. closure, active, and proposed expansion).

The construction and operation of the new landfill should have a minimal impact on ground water flow with the possible exception of the extreme northwest corner. This may also be prevented by removing ponded water in depressions to surface water and by lining the ditch next to MW# 15 as described above.

The current monitor well network for Cell 1 includes existing monitor wells MW-1, 3, 4, 10, & 11. New monitor wells will be activated and the new monitor well network certified as each individual cell is activated. These certifications will be submitted to the Executive Director as required in TAC regulations. Monitor Well Site Survey data is shown in Appendix M.

The Monitor Wells have been completed as specified in TAC 330.242 specifications. The certification for these new monitor wells is given in Appendix M. Monitor wells will be constructed following ASTM guidelines. A schematic for proposed monitor wells in included as Appendix I.

As previously discussed, the uppermost aquifer beneath the site is the Light Olive Green Clay units shown in this report. As previously discussed, the Light Olive Green Clay layer in this report is the aquiclude beneath the uppermost aquifer at the site. It is, therefore, proposed that the groundwater monitoring system for City of Kingsville MSWLF monitor the local uppermost aquifer as bounded by the Light Olive Green Clay. Proposed groundwater monitoring well locations, which comprise a network designed to monitor groundwater quality around the permitted landfill and expansion area, are shown on Figure 4.17. Figure 5.2 in Attachment 5. Point of Compliance wells are also shown on this figure. Recommended elevations for well screens along with approximate horizontal survey coordinates at each proposed location are summarized in Appendix B Table 5.3 and Table

108a

5.6 in Attachment 5.


THIS PARTIAL PAGE LEFT BLANK INTENTIONALLY

As required by §330.231(e)(3), the Executive Director will be notified in writing of any changes in the direction and rate of groundwater flow that may require the installation of additional monitor wells. Any additional monitor wells installed will be addressed in a modification to the Site Development Plan.

The site groundwater monitoring network will be sampled for constituents listed in the Groundwater Sampling and Analysis Plan (GWSAP), presented as Attachment 11 of Part III. The development of background values for each constituent, and the sampling, analysis and statistical comparison procedures to be utilized in evaluation of groundwater monitoring data, are also addressed in the GWSAP.

9.3 Landfill Design

The information presented within this report was used in developing a geotechnical characterization of the site for utilization in the landfill design process. The characterization was used in the foundation analysis of the landfill design as related to slope stability, settlement, and constructability. The information presented in Section 7.0 "Geotechnical Characterization" and Appendix H "Engineering Design Calculation and Analysis" is provided in accordance with 30 TAC §330.203(d), to the executive director as demonstration of the foundation evaluation for the design presented within the Permit Amendment Application.

10.0 REFERENCES

Aerial Maps, Soil Compositions. USDA Soil Conservation Service, Kleberg County.

Agency Information Consultants (AIC), "Water Well Survey: Kingsville Landfill, CR 2130 & FM 2619, Kingsville, Texas", Project No. AIC#02-0049190, (July 30, 1997)

Arredondo, Alonzo Galvan, "Geology and Hydrogeology of the Kingsville Dome in situ Leach Uranium Mine", M.S. Thesis, Texas A&M University, (1991).

Algermissen, S.T., et al, Probablistic Earthquake Acceleration and Velocity Maps for the United States and Puerto Rico, (1990).

Baker, E. T., Jr., Stratigraphic and Hydrogeologic Framework of part of the Coastal Plain of Texas: U. S. Geological Survey-Report #236, (1979).

Barnes, V. E., Geologic Atlas of Texas, Corpus Christi sheet: Bureau of Economic Geology, University of Texas at Austin, scale 1:250,000 (1975).

Brown, L. F., Jr., McGowen, J. H., Evans, T. J., Groat, C. G., and Fisher, W. L., Environmental Geologic Atlas of the Texas Coastal Zone - Kingsville Area: Bureau of Economic Geology, University of Texas at Austin, (1977).

Davis, Scott D., Pennington, Wayne D., and Carlson, Steven M., A Comperdium of Earthquake Activity in Texas: Bureau of Economic Geology - Geological Circular #89-3, (1989).

Fetter, C.W., Applied Hydrology, 2nd Ed. Merrill Publishing Company, Columbus, Ohio (1988).

Iowa State University. Maps - Soils Data Base; National Cooperative Soil Survey, USA

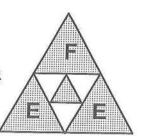
Kreitler, Charles W., Lineations and Faults in the Texas Coastal Zone: Bureau of Economic Geology Report of Investigations #85, (1976).

Mason, C. C., Availability of Ground Water from the Goliad Sand in the Alice Area, Texas Water Commission Bulletin #6301, (1963).

Muller, Daniel A., and Price, Robert D., Ground-water Availability in Texas, Estimates and Projections Through 2030: Texas Department of Water Resources Report #238, (1979).

Norman, Carl E., Geologic Investigation of City of Kingsville Landfill and Surrounding Areas for Evidence of Surface Faults: City of Kingsville, Tx (1986).

Shafer, G. H., and Baker, E. T., Jr., Ground-water Resources of Kleberg, Kenedy, and Southern Jim Wells Counties, Texas: Texas Water Development Board Report #173, (1973).


The United States Department of Agriculture, Cooperative River Basin Survey. Texas Coastal Basins. In Cooperation with The Texas Water Development Board, The Texas State Soil and Water Conservation Board, Interagency Council on Natural Resources and The Environment, The Texas Water Rights Commission, September 1977.

The United States Department of Agriculture. General Soil Map, Kleberg County, Texas. Soil Conservation Service in Cooperation with Texas Agricultural Experiment Station, 4-R-36365, October 1977.

ATTACHMENT 4

Geology Report
APPENDICES

Finch Energy & Environmental Services, Inc. P.O. Box 73/1204 W. King, Kingsville, TX 78364 Phone: (512) 592-9810 Fax: (512) 592-5552

APPENDIX A SOIL BORING PLAN APPROVAL

APPENDIX B BORING LOGS

APPENDIX C PIEZOMETER CONSTRUCTION LOGS

APPENDIX D WATER LEVEL MEASUREMENT DATA SHEETS

APPENDIX E IN-SITU HYDRAULIC CONDUCTIVITY TEST DATA

APPENDIX F HYDROGRAPHS

APPENDIX G GEOTECHNICAL LABORATORY TEST RESULTS

G.1 Grain Size Distribution Curves

G.2 Compressive Strength Test Results

G.3 Consolidation Test Results

G.4 Hydraulic Conductivity Test Results

G.5 Cation-Exchange Test Results

G.6 Permeability Calculations

APPENDIX H ENGINEERING DESIGN CALCULATIONS AND ANALYSES

H.1 Slope Stability Analysis

H.2 Settlement Analysis

H.3 Pipe Stability Analysis

H.4 HDPE Liner Stress Analysis

H.5 Anchor Trench Pullout Analysis

APPENDIX I MONITOR WELL SCHEMATIC

APPENDIX J WATER WELL SURVEY

APPENDIX K TX WATER WELL DRILLERS ADVISORY COUNCIL WELL REPORTS

APPENDIX L AERIAL PHOTO

APPENDIX M DESIGN GROUNDWATER SYSTEM CERTIFICATION

APPENDIX N LOCAL PONDING STUDY - IMPACT ON GROUND WATER

APPENDIX O SOILS DATA

APPENDIX P GROUND WATER TECHNICAL QUALIFICATIONS

THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY INCLUDING PAGES <u>I</u> THROUGH <u>110</u> AND <u>Appendices</u>.

iv

FOR PERMIT PURPOSES ONLY		Part III
	APPENDIX A	
Oil		

APPENDIX A

SOIL BORING PLAN APPROVAL

Appendix A 2.1 TNRCC Boring Plan Approval Letter	Λ +
Appendix A-2: Letter Requesting Deleting of Phase II Boring Plan	A-1
Appendix A-3: TNRCC Letter of Approval (Deletion of Phase II	A-4
Of Boring Plan)	A-9
Appendix A-4: TNRCC NOD Letter (Addition of Deep Borings to Plan) A	1-11

November 1997

A-0

APPENDIX A-1

TNRCC Boring Plan Approval Letter

A-1

6-05-1997 11 47AM

FROM TNRCC/MSW/PERM

512 239 6000

P

Boring Plant epter Accepter

Barry R. McBee, Chairman R. B. "Ralph" Marquez, Commissioner John M. Baker, Commissioner Dan Pearson, Executive Director

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Protecting Texas by Reducing and Preventing Pollution

June 4, 1997

The Honorable Filemon Esquivel Mayor of Kingsville P.O. Box 1458 Kingsville, TX 78363-1458

Fax Transmittal Memo	# of Pages 2
To: Steve Vaughn	From: Burgus Stenal
Co.: Finch Energy : Envi	Co.: TNRCC
Dept.:	Phone # 512-239-66411
Fax # 512-592-5552	Fax # 11 6000

RCFX14

RE:

City of Kingsville Landfill, Kleberg County Permit No. MSW 235-A

Proposed Lateral Expansion, Soil Boring Plan

Dear Mayor Esquivel:

The Texas Natural Resource Conservation Commission (TNRCC) received a Fax Memo from Mr Homero Castillo, P.E., dated June 2, 1997, which details a proposed soil boring plan for the above-referenced facility. Mr. Ricardo Guzman, City of Kingsville, and Mr. Castillo met with TNRCC staff on May 22 and 29, 1997 to discuss the amendment application and the boring plan. The plan specifies the number, and shows the location, of the proposed soil borings on the landfill expansion acreage. Specifically, seven borings (B-12 through B-18) will be completed initially at the site. All borings will be completed to an elevation of 10 feet above mean sea level (msl). If the geology appears to be consistent across the site, the seven borings will be adequate. However, if after the initial seven borings are completed and logged it is determined that the geology varies across the site, then an additional five borings (B-19 through B-23) will be completed. These five borings will also be completed to 10 feet msl. The necessity of additional borings will be mutually agreed upon by the City of Kingsville and the TNRCC.

Upon review of the proposed soil boring plan, it is determined that the requirements of 30 TAC 330.56(d)(5)(A) will be met, and the plan is therefore approved. It is anticipated that this soil boring plan will accurately characterize the in-situ geologic, and hydrogeologic properties of the surface and subsurface strata at these sites. Please be advised that additional soil borings may be requested by the TNRCC if the site investigation based upon this soil boring plan is inconclusive

If you should find it necessary to modify this approved plan, another plan detailing any proposed modifications must be submitted to the TNRCC for approval before implementation of the

6-05-1997 11:48AM FROM TNRCC/MSW/PERMITS 512 239 6000

Honorable Esquivel MSW 235-A Page 2

modifications. If you should have any questions concerning this matter, please contact Burgess Stengl, at (512) 239-6641. Any written correspondence should include the Municipal Solid Waste Division Mail Code, MC-124.

Sincerely.

W.A. "Lonnie" Robinson, P.E., Leader

Permits Section, Team II Municipal Solid Waste Division

WAR/bhs

Ricardo Guzman, City of Kingsville Public Works Director Homero Guzman, P.E., Alpha Engineering cc:

TNRCC Region 14 - Corpus Christi

Jean Doyle, MSW Permits

Letter Requesting Deleting of Phase II of Boring Plan

1204 W. King

Fax 512-592-5552

Kingsville, TX 78364-0073

FEE FILE

F.E.E., Inc.

512-592-9810

Mailing Address: P.O. Box 73

July 21, 1997

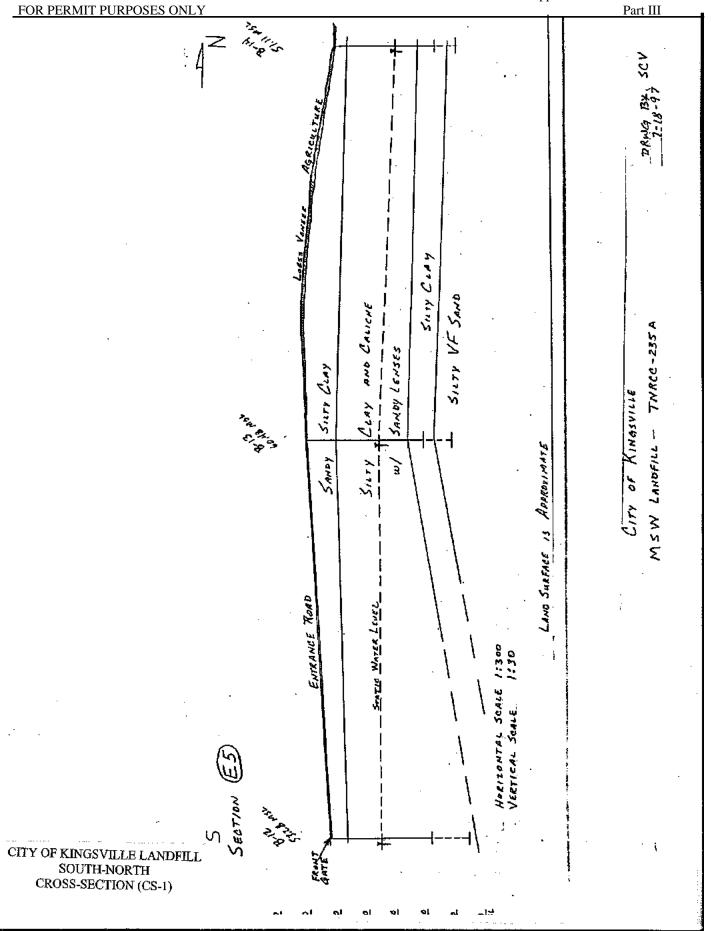
Mr. Burgess Stengl TNRCC MSW Permits Section P.O. Box 13087 Austin, Texas 78753

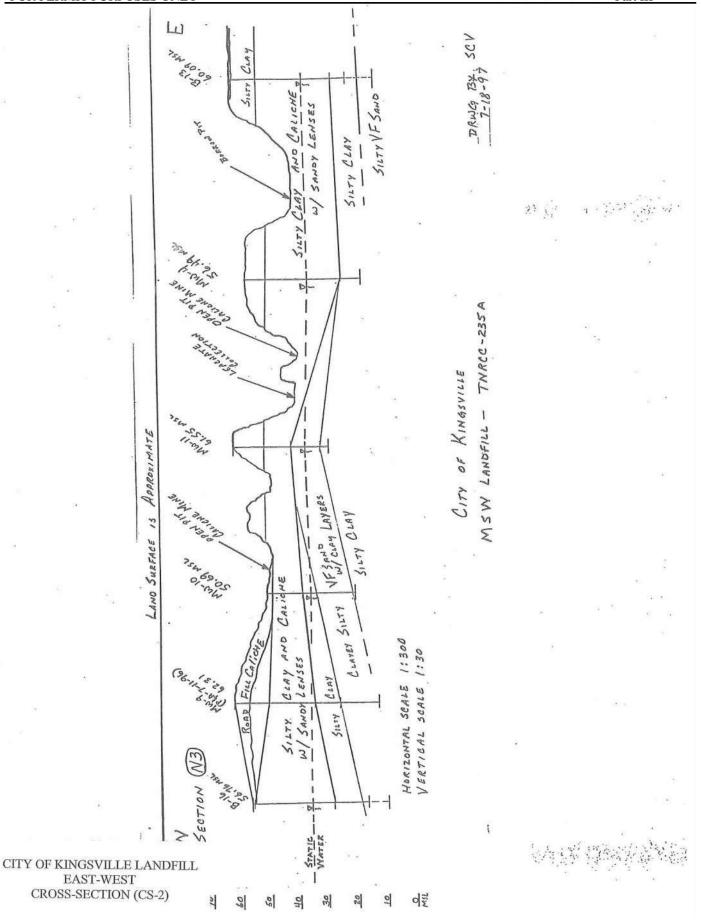
Phase II Bore Hole Drilling RE: city of Kingsville Landfill

Permit TNRCC MSW-235A Dear Mr. Stengl: Finch Energy and Environmental Services, Inc., on behalf of the City of Kingsville, requests that the Phase II bore hole drilling program be omitted. Based on the Phase I bore hole lithology, we submit that the formations are relatively consistent across the site. We have included geology sections constructed from boring logs of the existing monitor wells and the Phase I borings completed to date. Static water levels are included which show that the groundwater levels are consistent. The elevations of the existing monitor wells and the new bore holes, now monitor wells, are to be surveyed in the near future. This information will be compiled and included in the submittal of the Amendment to the Site

Thank you for your assistance. Should you have any questions or comments, please contact our Kingsville office at (512) 592-9810.

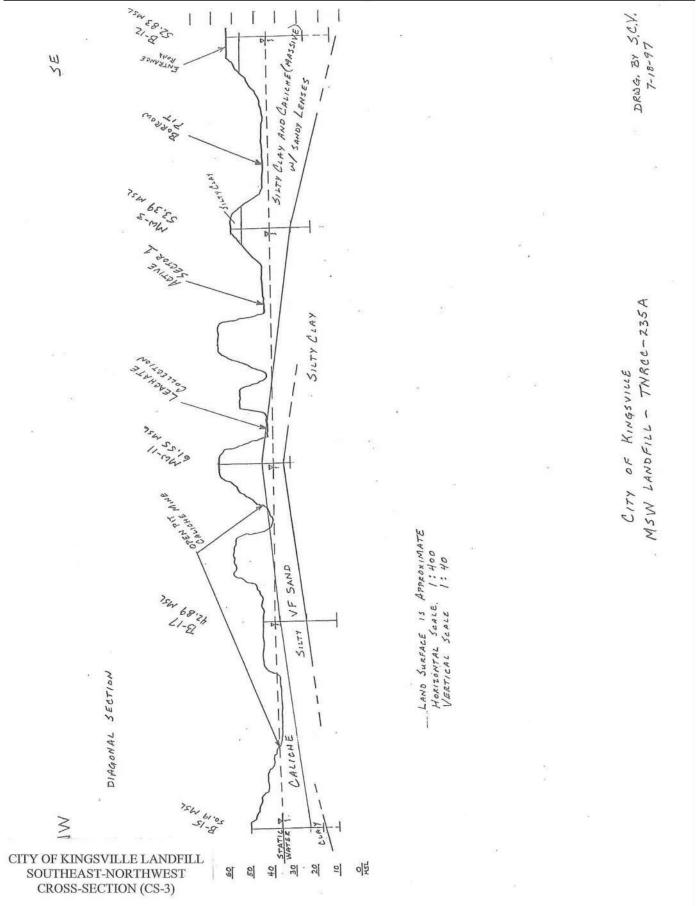
Development Plan (SDP) which is in process. New groundwater contours and characterization will be accomplished as this


Respectfully Submitted,


information becomes available.

Steven C. Vaughn

Environmental Géologist


Ricardo Guzman, Public Works Director Homero Castillo, Alpha Engineering File

Part III, Attachment 4, Appendix 1, p.g. 147

Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

FOR PERMIT PURPOSES ONLY		Part III
	ATTACHMENT A3	

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report **APPENDIX A-3** TNRCC Letter of Approval (Deletion of Phase II of Boring Plan)

RECEIVED AUG 1 5 1997

Barry R. McBee, Chairman R. B. "Ralph" Marquez, Commissioner John M. Baker, Commissioner Dan Pearson, Executive Director

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Protecting Texas by Reducing and Preventing Pollution

August 11, 1997

Ricardo Guzman, City Engineer City of Kingsville P.O. Box 1458 Kingsville, TX 78363-1458

RE:

City of Kingsville Landfill, Kleberg County

MSW Permit No. 235-A

Soil Boring Plan, Phase I Completion

Dear Mr. Guzman:

The Texas Natural Resource Conservation Commission (TNRCC) received a letter, dated July 21, 1997, from Mr. Steven C. Vaughn with Finch Energy and Environmental Services, Inc. The letter was sent on behalf of the City of Kingsville, and requests that Phase II of the soil boring plan be omitted. The TNRCC approval letter for the soil boring plan was dated June 4, 1997, and specified that seven borings would be completed. If after those seven borings were completed, and it was determined that the geology did not vary significantly across the site, then an additional five borings would not be necessary.

The July 21, 1997 letter from Finch Energy and Environmental provides a cross-section showing that the strata below the site are fairly consistent. For this reason, Phase II of the soil boring plan does not appear to be necessary at this time. Please be advised, however, that additional soil borings may be requested by the TNRCC if the site investigation based upon Phase I of the soil boring plan is inconclusive.

If you should find it necessary to modify this approved plan, or conduct additional borings, another plan detailing any proposed modifications must be submitted to the TNRCC for approval before implementation of the modifications. Should you have any questions concerning this matter, please contact Burgess Stengl, at (512) 239-6641. Any written correspondence should include the Municipal Solid Waste Division Mail Code, MC-124.

Sincerely,

W.A. "Lonnie" Robinson, P.E., Leader

Permits Section, Team II

Municipal Solid Waste Division

WAR/bhs

cc:

Homero Castillo, P.E., Alpha Engineering

Ray Finch, FEE ~

TNRCC Region 14 - Corpus Christi

A-10

APPENDIX A-4

TNRCC NOD Letter (Addition of Deep Borings to Plan)

Texas Natural Resource Conservation Commission (512) -239-4643 (A) 3/30/98 INTEROFFICE MEMORANDUM

To:

MSW 235-B

From:

Susie Alden, Geologist

MSW, Permits Team

Thru:

Lonnie Robinson, P.E., Leader

Team, MSW Permits Section

Date:

March 26, 1998

Subject:

City of Kingsville Landfill, Kleberg County

MSW Permit Application No. 235-B

First Technical Review, Notice of Deficiency

The following are technical deficiencies found in the above-mentioned permit application for expansion of the Kingsville Landfill. The application was submitted to the TNRCC MSW Permits Section on January 9, 1998, and was declared administratively complete on January 28, 1998. The items identified in this memo need further clarification, have not been addressed, or must be revised to adequately comply with the regulatory requirements.

AWN 29

Attachments to the Site Development Plan - Attachment 4 - Geology Report, §330.56(d)(5)(A)(i) and (ii)

The following is an excerpt from 30 TAC §330.56(d)(5)(A)(i):

"A sufficient number of borings shall be performed to establish subsurface stratigraphy and to determine geotechnical properties of the soils and rocks beneath the facility... The number of borings necessary can only be determined after the general characteristics of a site are analyzed and will vary depending on the heterogeneity of subsurface materials. Locations with stratigraphic complexities such as non-uniform beds that pinch out, vary significantly in thickness, coalesce, or grade into other units, will require a significantly greater degree of subsurface investigation than areas with simple geologic frameworks." (Emphasis added)

In Section 6.1 of Attachment 4, Stratigraphic Conditions, Page 36, it is stated that all of the sediments encountered appeared to be very homogeneous in the vertical and horizontal direction. However, the stratigraphy at the site is indicative of fluvial deltaic sedimentology which can clearly be described as complex and fits the scenario described in 30 TAC §330.56(d)(5)(A)(i) which is underlined above. This geologic framework is not simple, and it is not homogeneous.

The following is an excerpt from 30 TAC §330.56(d)(5)(A)(ii):

"Borings shall be sufficiently deep to allow identification of the uppermost aquifer and underlying hydraulically interconnected aquifers. Borings shall penetrate the uppermost aquifer and all deeper hydraulically interconnected aquifers and shall be

A-13

City of Kingsville Landfill MSW Permit Application No. 235-B First Technical Review NOD

deep enough to identify the aquiclude at the lower boundary."

Based on a review of the materials submitted with the application, it appears that the uppermost aquifer in the immediate vicinity of the landfill and underlying hydraulically interconnected aquifers have not been identified for the site. Many of the borings which were completed at the site were terminated in an uncemented sand. On application Page 38, Section 6.1.4. of Attachment 4, Sand Unit, it is stated that the deepest sediment is a clay which is sandy grading laterally to a sand. The vertical and horizontal extent of this sand body was not defined through those borings. Since sand bodies can generally act as aquifers, the lack of definition of the extent of this sand body serves to underscore the point being made that the uppermost aquifer and any underlying hydraulically interconnected aquifers have not been identified. Until the uppermost aquifer(s) is defined, the identification of the aquiclude at the lower boundary cannot claim to have been made. In application Section 6.1.5., Confining Clay Layer (Aquiclude), Page 39, it is stated that the confining layer for the Chicot Aquifer is a shale/clay layer more than 200 feet thick at approximately -200 feet MSL. The aquiclude for the uppermost aquifer(s) at the landfill site may or may not be the same as the aquiclude for the Chicot Aquifer, which is the regional aquifer in the area. However, more information must be presented to support the conclusion that this deeper shale/clay layer is indeed the aquiclude for the uppermost aquifer in the vicinity of the facility.

The 1973 report written by Shafer and Baker, Ground-Water Resources of Kleberg, Kenedy, and Southern Jim Wells Counties, Texas, also provides further information on these issues. They write the following about the general stratigraphy found in this portion of the West Gulf Coastal Plain:

"The lithology, dip, and thickness of many of the geologic formations change in the direction of dip; and the lithology and thickness commonly change laterally along the strike. Sand beds may grade laterally into clay or silt within short distances. These sand beds and other beds containing water are interconnected with similar beds on a different level, so that a series of water-bearing beds within a formation, or even within a group of formations, function as a single aquifer."

The boring information included in the application materials confirms the assessment of the geology in the area as is described in Schafer's report. Given the geology at the site, it appears that additional deeper borings will be necessary in order to comply with the requirements of 30 TAC §330.56(d)(5)(A)(i) and (ii). These additional borings must be drilled at the site to better define the subsurface stratigraphy, to identify the uppermost aquifer and any underlying interconnected aquifers, and to identify the aquiclude at the lower boundary of the uppermost aquifer system.

FOR PERMIT PURPOSES ONLY	Part III
APPENDIX B	
	1.0

((

APPENDIX B

BORING LOGS

City of Kingsville

Municipal Solid Waste Disposal Facility

Permit Amendment Application MSW 235-B

November 1997

B-0

APPENDIX B

BORING LOGS

Boring/Well No. 1	. B-1
Boring/Well No. 2	. B-2
Boring/Well No. 3	. B-3
Boring/Well No. 4	. B-4
Boring/Well No. 5	. B-5
Boring/Well No. 6	. B-6
Boring/Well No. 7	
Boring/Well No. 8	. B-8
Boring/Well No. 9	. B-9
Boring/Well No. 9R	B-10
Boring/Well No. 10	B-11
Boring/Well No. 11	B-12
Boring/Well No. 12	
Boring/Well No. 13	B-14
Boring/Well No. 14	B-15
	B-17
	B-18
Boring/Well No. 18	
Well No. 24	
Boringl No. 21	
Boringl No. 23	
Boringl No. 24	D 04
Boringl No. 25	D-2-4

November 1997 Revision 1 - June 1998

B-0

PAGE_1_ OF _1_

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

And the American Control of the Cont	sville Landfill SE of City • 49 10.6" #235-B	Boring/Well No.: Date Drilled: June 19, 1984 Boring Method: Sample Method: SHELBY TUBE & SPLIT SPOON Surface Elevation: Depth to Water: Total Depth: Casing: 2" S-40 PVC - 0-32' BGS Screen: 10'of 2" S-40 PVC - 32' BGS Borehole Dia.: Driller ID: TETCO SOIL CLASSIFICATION
	10 15 20 25	TOP SOIL & DARK BROWN CLAY CALICHE, CLAY & SAND (I)
	- 40 - 45 - 50 - 50 - 50 - 50 - 50 - 50	SILTY CLAY 0.19ft. Ses TOTAL DEPTH = 42 feet

B-1

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

Client: City of	of Kingsville	Boring/Well No.: 2
Project Name:	_Kingsville Landfill	Date Drilled: October 6, 1984 Boring Method: Hollow Stem Auger
Project Location:	5 mi SE of City	
		Sample Method: SHELBY TUBE & SPLIT SPOON Surface Elevation: 52.64' MSL
MSWLF ID:	Permit #235-B	- Cartoo Erotonom
		Depth to Water: 19.9' BGS Total Depth: 27' BGS
	1	21 2 12 PL (2
		Casing: 2" S-40 PVC - 0-22 BGS Screen: 5' of 2" S-40 PVC - 22" BGS Borehole Dia.: 6 inch Driller ID: TETCO - Younger
ction	(feet	Borehole Dia.: 6 inch
Construction	DEPTH (feet) SAMPLE INTERVAL	Driller ID: TETCO - Younger
Ö	SA SA	SOIL CLASSIFICATION
3111 22195	0	SANDY CLAY
	10	CALICHE
	1000	×.
	- 15	
		SILTY CLAY
	_ 20 _	SILIT CLAT
	- » -	
100000		
	- x -	
	40	
	- 4 -	
		1
100	Water depth on Drilling = 25.	49 ft. BGS TOTAL DEPTH = 27 feet

. B-2

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

Client:	City of Kingsville	Boring/Well No.:3		
Project Name:	Kingsville Landfill	Date Drilled: October 3, 1984		
Project Location: _5 mi.SE of City LAT: 27* 26: 50.3" LONG: 97* 49: 03.9"		Boring Method: HOLLOW STEM AUGER		
		Sample Method: SHELBY TUBE & SPLIT SPOON		
MSWLF ID:	Permit #235-B	Surface Elevation:56.10' MSL		
		Depth to Water: 27.7 BGS Total Depth: 37.1 BGS		
	DEPTH (feet) SAMPLE INTERVAL	100.000 TO		
5 5	eet)			
	TH (f	Borehole Dia.: 6 inch		
Monitor Well	DEPTH (feet) SAMPLE INTERVAL	Driller ID: TETCO - Younger		
. 0		SOIL CLASSIFICATION		
	•	SANDY CLAY, TOP SOIL & DARK BROWN CLAY		
	L			
		CALICUE (I)		
	10	CALICHE (I)		
	- 15 -			
	_ 20 _			
	- 25 -			
	- ×			
	35	SILTY CLAY, TAN		
	- 40			
	_ 45 _			
	- 50 -			
6.53	0.6066			

B-3

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

Project Name: Kingsville Landfill Project Location: 6. mi.SE of City LAT: 27: 26: 55.2* LONG: 97: 49' 03.9* MSWLF ID: Permit #235-B Permit #235-B Total Depth: 39' BGS Casing: 2' S40 PVC - 0.34' BGS Screen: 6' of 2' S40 PVC - 0.34' BGS Screen: 6' of 2' S40 PVC - 34' BGS Screen: 6' of 2' S40 PVC - 34' BGS Screen: 5' of 2' S40 PVC	Client:	City of Kingsville	Boring/Well No.:
Project Location:			Date Drilled: October 3, 1984
MSWLF ID: Permit #235-B Sample Method: Surface Elevation: Surface Elevation: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sample Method: Surface Elevation: Sale Surface Elevation: Surface Elevation: Sale Surface Elevation: Surface Elevation: Surface Elevation: Sale Surface Elevation:	And the control of the production of		D : MAN A HOLLOW STEM ALICED
MSWLF ID: Permit #235-B. Surface Elevation: 58.01' MSL Depth to Water: 31.2' BGS Total Depth: 39' BGS Casing: 2" S-40 PVC - 0.34' BGS Screen: 5' of 2" S-40 PVC - 34' BGS Borehole Dia.: 6.inch Driller ID: TETCO - Younger SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)			CHELDY TIBE & SPLIT SPOON
Depth to Water: 31.2° BGS Total Depth: 39° BGS Casing: 2° S-40 PVC - 0-34′ BGS Screen: 5° of 2° S-40 PVC - 34′ BGS Borehole Dia.: 6 inch Driller ID: TETCO - Younger SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)			
Would Not the control of the control	MOVE 10.		Depth to Water: 31.2' BGS
Screen: 5: of 2".S.40 PVC - 34".BGS Borehole Dia.: 6.inch Driller ID: TETCO - Younger SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)			Total Depth:39'_BGS
SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)			E Casing: 2" S-40 PVC - 0-34' BGS
SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)	30.727	Đ	Screen: 5' of 2" S-40 PVC - 34' BGS
SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)	Well	(fee	Borehole Dia.:6.inch
SOIL CLASSIFICATION TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)	nitor L	PTH PTH ERN	Driller ID: TETCO - Younger
TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I)	Wor Cor	S R	SOIL CLASSIFICATION
TOPSOIL & DARK BROWN SANDY CLAY CALICHE (I) 5 55 56 57 58 59 59 50 50 50 50 50 50 50 50			BOIL OLIVEON TO WHOM
CALICHE (I)		0	TOPSOIL & DARK BROWN SANDY CLAY
15 25 25			Tot doile a by that better the
15 25 25			
15 25 25			
15 25 25		10	CALICUE (I)
55 - 55 - 55 - 55 - 55 - 55 - 55 - 55		15	CALIGHE (I)
35 — SANDY CLAY 45 — 55 —			
55 SANDY CLAY		20	**
SANDY CLAY 55 — 55 — 55 — 55 — 55 — 55 — 55 — 55	(340.72)		
SANDY CLAY - 45		25	
33 SANDY CLAY			
SANDY CLAY - 45 50		- 30 -	
SANDY CLAY - 45 50			
- 45 - - 50 -		15	SANDY CLAY
- 45 50			
- 45 50 -		40	
- 50 -			
50 —		- 6 -	18
50 —			
		- 50 -	
			222
Water depth on Drilling = 27.98 ft. BGS TOTAL DEPTH = 39 feet		Water depth on Drilling = 27	98 ft. BGS TOTAL DEPTH = 39 feet

B-4

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

Client: Project Name: Project Location: MSWLF ID:	City of Kingsville Kingsville Landfill 5.mi SE of City Permit #235-B	Date Drilled: Boring Method: Sample Method: Surface Elevation: Depth to Water: Total Depth:	5 October 5, 1984 Hollow Stem Auger SHELBY TUBE & SPLIT-SPOON 60.54' MSL 31.5' BGS 48' BGS
Monitor Well Construction	DEPTH (feet) SAMPLE INTERVAL	Casing: Screen: Borehole Dia.: Driller ID: SOIL CLAS	6.inch
Boring Grouted 10-6-84	0	SANDY CLAY	
	15 15 20 25 25 25 26 27 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	CALICHE	
	35	SILTY CLAY	
	- 40	-	
	- 45 -	-	
	50 -	TDH -	
- 100		-	
		-	
1		_ 1	TOTAL DEDTU = 49 feet

TOTAL DEPTH = 48 feet

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

LAT: 27° 27' 09.2" LONG: 97	DEPTH (feet) SAMPLE INTERVAL	Boring Method:
	15 - 25 - 25 - 30 - 30 - 30	CALICHE (I)
	As — Water depth on Drilling = 27.1	SANDY CLAY SZ ft. BGS TOTAL DEPTH = 38 feet

B-6

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsvillė, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

Monitor Well Construction	DEPTH (feet) SAMPLE INTERVAL		Driller ID: Martin Water Wells SOIL CLASSIFICATION
	15 - 25 - 25 - 25 - 25 - 25	SOIL CLAS	Monitor Well was P&A on 7-23-91 ft. BGS TOTAL DEPTH = 36 feet

B-7

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

Project Na Project Lo LAT: 27° 2 MSWLF II	ame: - cation: 26' 43.9 " L	_5.mi_	lle Landfi SE of Cit 49' 23 3"	SAMPLE		11204119374102	Split.Spoon59.79 ' MSL	BGS 33' BGS
			0 - 5 10 15 20 25 40 45			Caliche Bearing Char (Caliche Clay & Sand	to TD)	
		V	Vater de	oth on Drillin	g = 28.0 ft.	BGS	TOTAL	. DEPTH = 43 ft.

B-8

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

Client:City of Kingsville		Boring/Well No.: 9
The state of the s		Date Drilled:March 24, 1992
1.00 at 0.00 constant (100 con		Boring Method: Hollow-Stem Auger
Project Location:5 mi. SE of City LAT: 27° 27' 54" LONG: 97° 49' 20.1 "		Sample Method: 5 foot core-barrel
700 0700000000		Surface Elevation: 62.51' MSL
MSWLF ID: Permit #235-B		Depth to Water: 26' BGS
		Total Depth: 44' BGS
	Ê	Casing: 4" S-40 PVC - 0-34' BGS
	ıdd)	Screen: 10' of 4" S-40 PVC - 34' BGS
Annitor Well Construction [-] DEPTH (feet)	NTERVAL PID Reading (ppm)	Borehole Dia.:
ionstructic	INTERVAL	Driller: JEDI, Charles L. Jones
Monitor Well Construction DEPTH (fee		SOIL CLASSIFICATION
2.1		Monitor Well was P&A on 07-12-96
		Caliche, Dark Clay
5		Road Fill
10		Caliche, Fine Sand
		Sullists, Find Series
15		
20		Very Fine Silty Sand
25	- w	*
- 30 -	-	Very Fine Sandy Silt
		w/Clay Stringers
- 35 -	-	
		Very Fine Sandy Silt
— 40 —	_	Wet, Soft w/Clay Stringers
		x .
_ 45 _		
	_	
	!	
Water depth on	Drilling = 36.0 ft. l	BGS TOTAL DEPTH: 44 feet

B-9

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

Client: City	of Kingsville	Boring/Well No.:	9R
Project Name: _	Kingsville Landfill	Date Drilled:	July 11, 1996
Project Location:	5 mi. SE of City	Boring Method:	Hollow Stem Auger
LAT: 27° 26' 57.2" LC	1122000 5	Sample Method:	Split-spoon
MSWLF ID:	Permit #235-B	Surface Elevation:	41.41' MSL
MOTTE IE.		Depth to Water:	9.6' BGS
		Total Depth:	17' BGS
		E Casing:	4" S-40 PVC - 0-7' BGS
en 11420	e.	Casing:	0' of 4" S-40 PVC - 7' BGS
Construction	DEPTH (feet) SAMPLE INTERVAL	Borehole Dia.:	_10"
Istra T	DEPTH (fe	Driller:	PSI - Craig Schena
Con	SA E	SOIL CLASSIF	
		SOIL CLASSII	IOATION
	0	Sand Filled Channel (II)	
	- 5 -		
	- 10 -	Sandy Clay	
	2010		
	- 15 -		
		1	
	_ 20 _		*
No. of the			
	_ 25 _		
No.	MASS '		
	30 -		
新华东		1	
25 to 25	Water depth on Drilling = 9'	6 3/4"	TOTAL DEPTH: 17 feet

B-10

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

	City of Kingsville	Boring/Well No.: 10
1-T-0170/310	Kingsville Landfill	Date Drilled: March 20, 1992
Project Name:		Boring Method: Hollow-Stem Auger
Project Location:		Sample Method: Split Spoon
	LONG: 97° 49' 15.3 "	Surface Elevation: 49.78' MSL
MSWLF ID:	Permit #235-B	Depth to Water: 19.5' BGS
		Total Depth: 29' BGS
	Ê	41 S 40 DVC - 0-19' BGS
	——————————————————————————————————————	Screen: 10' of 4" S-40 PVC - 19' BGS
/ell	(feet	Borehole Dia.: 10 inches
Monitor Well	DEPTH (feet) SAMPLE INTERVAL	Driller: JEDI, Charles L Jones
Monitor Well Construction	SAN DEF	SOIL CLASSIFICATION
2 0		
55.3	0	Sandy Clay
		Sand Filled Channel (II)
		2
	• • •	
		*
	× 1 "	Clayey Sand
		Ciayey Care
	15	*
	10	
	70000	
	100 E	
	- n - 10000 -	1
		*
100	- 30 -	
		TOTAL DEPTH = 29 ft.
	Water depth on Drilling = 19	7.5 IL 1555

B-11

Submittal Date: September 2018

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

		City	Boring Method: His Sample Method: Surface Elevation: Depth to Water: Total Depth: 33	11 1, 1996 cllow Stem Auger Split Spoon 60.20' MSL 26.3' BGS
Monitor Well Construction	DEPTH (feet)	SAMPLE INTERVAL PID Reading (ppm)	Casing: 4" S-4 Screen: 10' of 4 Borehole Dia.:	0 PVC - 0-18' BGS "S-40 PVC - 18' BGS 10 inches Craig Schena CATION
	•		DARK BROWN SANDY CLA	AY - TOPSOIL
	10 -	V	CALICHE BEARING CHANN SAND FILLED CHANNEL (I	,
	- 35 · - 45		SANDY CLAY	
	-			
	— Water de	epth on Drilling = 18.0 t	ft. BGS (est'd)	TOTAL DEPTH = 33 ft.

B-12

PAGE_1_OF_1_

SUBSURFACE EXPLORATION RECORD

LAT: 27	Name: Location: '• 26' 41.9" L	5 mi. SE	andfill of City 8' 55.9"		_	Boring/well no. Date Drilled: Boring Method: Sample Method: Surface Elevation: Depth to Water: Total Depth: Casing: Screen:	12 July 7, 1997 Hollow Stem Auger 5 foot core barrel 52 38' MSL 17.3' BGS 48' BGS 4" S-40 PVC - 0-25' BGS
Monitor Well Construction	F	T	DEPTH (feet)	SAMPLE	PID Reading (ppm)	Borehole Dia,: Driller: SOIL CLAS	10 inches PSI - Craig Schena SSIFICATION
	2.388	100	0	0.00 (1.019)		Topsoil	
					_	Clay sandy, silty	
			- 10 - 15 - 20 - 25 - 35 - 40 - 55 - 56 - 66			Clay silty, calcified, caliche stringers and	d nodules, sandy lenses
			-		-	BCS	TOTAL DEPTH = 48 ft.
	Section 1		Water de	pth on drilling	j = 19.5 ft.	BGO	

B-13

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

	th, of Kingsville		Boring/Well No.: 13
Client:C	ity of Kingsvine		Date Drilled:July 28, 1997
Project Name:	Kingsville Landfill		Boring Method: Hollow Stem Auger
Project Location:	_ 5 mi_ SE of City		Sample Method: 5 foot core barrel
	LONG: 97° 48' 56"		Surface Elevation: 59.13' MSL
MSWLF ID:	Permit #235-B		Depth to Water: 24' BGS
		*.	Total Depth: 50' BGS
		F	Casing: 4" S-40 PVC - 0-30' BGS
		(bbi	Screen: 10' of 4" S-40 PVC - 30' BGS
Jell jou	(feet)	ading	Borehole Dia.:10 inches
fruct	DEPTH (feet) SAMPLE INTERVAL	PID Reading (ppm)	Driller: PSI - Craig Schena
Monitor Well Construction	DEP SAN	吕	SOIL CLASSIFICATION
2 0			SOIL OLAGOII TO TITO
Na.d	0		
S 28 8	5		CLAY, SANDY TOPSOIL
			9
	10		
	15		SANDY CLAY
		<u> </u>	Orato i de la
1.0	20		
1, 3	25	-	
	25		
	- 30 -	- 1	55
	- 35 -	- 1	
	100		CLAYEY SAND (III)
	40		(CLAY DUNE)
	- 45 -		
			79
	50		**
		_	
	Water depth on dri	lling = 25.0 ft.	. BGS TOTAL DEPTH = 50 ft.

B-14

SUBSURFACE EXPLORATION RECORD

Client:City of Kingsville_		_	Boring/Well No.:	14	
Project Name: Kingsville Landi	5IL	Date Drilled: July 8, 1997 Boring Method: Hollow Stem Auger			
	City	Boring Method:			
LAT: 27° 27' 09" LONG: 97° 48' 56	5.2"	-	Sample Method:	_5 foot core barrel	
MSWLF ID: Permit #235-B		_	Surface Elevation:	49.94' MSL	
			Depth to Water:		
			Total Depth:	42' BGS	
		(md		S-40 PVC - 0-25' BGS	
	ď	PID Reading (ppm)	ONTO TABLETON NEW TO BE SEEN TO	10' of 4" S-40 PVC - 25' BGS	
Construction	SAMPLE INTERVAL	eadi	Borehole Dia.: -	10 inches	
The state of the s	SAMPLE	⊕ R	11.104.40133.11	PSI - Craig Schena	
8 6	5 0 ≦	۵.	SOIL CLASS	SIFICATION	
		T			
	PAR DE		CLAY, SANDY, TOPS	SOIL	
	5	-	0011,011101		
				580	
- 1	0	-			
1	5				
- 2	0	V			
			SANDY CLAY		
	25			· · ·	
	30	20			
	35	-			
_ /	10	- 6			
	45	-			
10000000000000000000000000000000000000					
	7 1	-			
	1				
	7 [7			
	1				
Wate	r depth on drilling =	20.0 ft. l	BGS	TOTAL DEPTH = 42 ft.	

B-15

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

Client: City of Kingsville	Boring/Well No.: 15
Project Name: Kingsville Landfill	Date Drilled:July 8, 1997
Project Location: 5 mi_SE of City	Boring Method: Hollow Stem Auger
LAT: 27° 27' 08.7" LONG: 97° 49' 23.7"	Sample Method: 5 foot core barrel
MSWLF ID: Permit #235-B	Surface Elevation: 48.39' MSL
	Depth to Water: 12' BGS
	Total Depth: 37' BGS
(m	Casing: 4" S-40 PVC - 0-23' BGS
Monitor Well Construction DEPTH (feet) SAMPLE INTERVAL	Screen: 10' of 4" S-40 PVC - 23' BGS
Monitor Well Construction DEPTH (feet) SAMPLE NTERVAL	Borehole Dia.: 10 inches
Monitor W Constructi DEPTH (fe	Driller: PSI - Craig Schena
M Q B B S N N	SOIL CLASSIFICATION
0	
5	
10 - 10 -	
▼	5
15	SANDY CLAY BRN-LT BRN CLAY WITH SAND TO TOTAL DEPTH
	BRIVEL BRIVEDAY WITH SAND TO TOTAL DEPTH
20 -	
25	
- 30 -	9
35	
- 40 -	
- 40	
- 45 -	
	*
Water depth on drilling = 18.1 ft. BGS	
Topic of similar 10,116, DOO	TOTAL DEPTH = 37 ft

B-16

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

Client:City_of_Kingsville	Boring/Well No.:16
Project Name: Kingsville Landfill	Date Drilled: July 10, 1997
Project Location: 5 mi_SE of City	Boring Method: Hollow Stem Auger
LAT: 27° 26' 55.3" LONG: 97° 49' 23.5"	Sample Method: 5 foot core barrel
MSWLF ID: Permit #235-B	Surface Elevation: _55.96' MSL
	Depth to Water: 19' BGS
	Total Depth: 47' BGS
(îud	Casing: 4" S-40 PVC - 0-30' BGS
d) but do	Screen:10' of 4" S-40 PVC - 30' BGS
Monitor Well Construction DEPTH (feet) AMPLE VTERVAL	Borehole Dia.: 10 inches
Monitor Well Construction DEPTH (feet) SAMPLE INTERVAL	Driller: PSI - Craig Schena
	SOIL CLASSIFICATION
5 - 10 - 15 - 15	SANDY CLAY SAND FILLED CHANNEL (II)
20 25 30 35 40 45 50	CLAYEY SAND (CLAY DUNE) (IV)
Water Depth on Drilling = 24.7 ft. BGS	TOTAL DEPTH = 47 ft.

B-17

PAGE_1_OF_1_

SUBSURFACE EXPLORATION RECORD

	Client:	City of Kingsville	
	Project Name:	Kingsville Landfill	Boring/Well No.: 17
	Project Location:	5 mi. SE of City	Date Drilled: July 9, 1997
	LAT: 27° 27'_ 01.3	" LONG: 97° 49' 16.4 "	Boring Method: Hollow Stem Auger
	MSWLF ID:	Permit #235-B	Sample Method: 5 foot core barrel
	600000000000000000000000000000000000000	5.11 (F. 17255-D	Surface Elevation: 41.35' MSL
			Depth to Water: 7' BGS
			Total Depth: 33' BGS
bas	_	Lindd	Casing: 2" S-40 PVC - 0-13' BGS
We	rctio	feet) Ing (Screen: 20' of 2" S-40 PVC - 13' BGS
Monitor Well	Construction	DEPTH (feet) SAMPLE NTERVAL	Borehole Dia.; 6 inches
M	S	DEPTH (feet) SAMPLE INTERVAL	Driller: PSI - Craig Schena
			SOIL CLASSIFICATION
		0	TO THOM
	2.5()		
		5	SAND FILLED CHANNEL (II)
		10	
		15	
			20
		20	SANDY CLAY
		25	
		25	BRN-LT BRN CLAY WITH SAND
		- 30 -	
		50	
	基层原型	- 35 -	
		<u> </u>	
	he hande		
	B S S S S S		
			*
	信息器型		
		Water depth on Drilling = 7.0 ft. BGS	
		7.0 ft. BGS	TOTAL DEPTH = 33 ft.

B-18

PAGE_1_ OF _1_

SUBSURFACE EXPLORATION RECORD

Client:	City of Kingsville	Boring/Well No.: 18
Project Name:	Kingsville Landfill	Date Drilled: July 9, 1997
Project Location:	_5 mi. SE of City	Boring Method: Hollow Stem Auger
LAT: 27° 27' 01.4	" LONG: 97° 49' 04 "	Sample Method: 5 foot core barrel
MSWLF ID:	Permit #235-B	Surface Elevation:50,04' MSL
		Depth to Water; 15' BGS
		Total Depth: 42' BGS
	(ind	Casing: 2" S-40 PVC - 0-22' BGS
lla co	eet)	Screen: 20' of 2" S-40 PVC - 22' BGS
or W	H (fer the	Borehole Dia.; 6.inches
Monitor Well	DEPTH (feet) SAMPLE INTERVAL	Driller: PSI - Craig Schena
2 0	U 00 = a.	SOIL CLASSIFICATION
	5 - 10 -	DARK BROWN SANDY CLAY TOPSOIL
	- 15 - V	SAND FILLED CHANNEL (II)
	- 20	SANDY CLAY SILTY CLAY
	Water depth on drilling = 19.0 ft B	BGS TOTAL DEPTH = 42 ft.

B-19

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

Client: Cit	ty of Kingsville	Boring/Well No.: 24
Project Name:	Kingsville Landfill	Date Drilled: April 30, 1998
Project Location:	5 mi SE of City	Boring Method: HOLLOW STEM AUGER
LAT: 27° 26' 41.9" L	ONG: 97• 48' 48.9 "	Sample Method: Shelby Tube
MSWLF ID:		Surface Elevation: 47.38' MSL
		Depth to Water: 12.58' BGS
		Total Depth: 33' BGS
	· Ex	Casing: 4" S-40 PVC - 0-18'
≡ 5	DEPTH (feet) SAMPLE INTERVAL	Screen: 15' of 4" S-40 PVC - 18' BGS
Monitor Well	DEPTH (feet) SAMPLE NTERVAL	Borehole Dia.: 10 inches
onstr	DEPTH (fe	Driller ID: PSI - Craig Schena
≥ 0		SOIL CLASSIFICATION
4-1	1 1899	TOP SOIL & DARK BROWN CLAY
		TOP SOIL & DARK BROWN CLAY
	- 5 -	
		CALICHE BEARING CHANNEL (I)
	10	
	15	
	020000000000000000000000000000000000000	
	20	SILTY CLAY TAN
	75	
	- n -	
	_ 35 _	LT OLIVE GREEN CLAY
		LI OLIVE ORLER OLAT
	- 40 -	
	- 45 -	
	- 50 -	×85
	Water depth on Drilling = 12.0 ft RC	

B-20

Part III, Attachment 4, Appendix 1, p.g. 178

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

	Client: City of Kingsville					Boring/Well No.: 21
		Project	Name:	Kingsville Lai	ndfill	D. L. D. W.
			Location:	5 mi SE of C	City	Boring Method:
	LAT: 27° 26' 09" LONG: 97° 48' 47.6"					Sample Method: Shelby Tube
MSWLF ID: Permit #235-B						Surface Elevation: 52.41' MSL
						Design 1 10
						Depth to Water: 17.8' BGS Total Depth: 84' BGS
						2.000
	lle/	ion		et)		Casing: Screen: Borehole Dia.: 6 inch Driller ID: PSI - Craig Schena
	Monitor Well	Construction		DEPTH (feet)	Æ KE	ig Borehole Dia.: 6 inch
	Moni	Cons	T	T 5	SAMPLE	Driller ID: PSI - Craig Schena
					Ø ≧	SOIL CLASSIFICATION
-				0		SOIL CLASSIFICATION
		1000				Dark Brown Sand Clay - Topsoil Caliche Bearing Channel (I)
				10 -	A STATE OF THE PARTY OF THE PAR	California Bearing Channel (I)
v not installed;	borina	only			25:10 (0.00 (0.00)	
	•	- T. C. ST. W.	1	20 -	200 D 300 -	Sand Filled Channel (II) Sandy Clay
				30 -		
		1			12-5 (E-5) (E-5)	Clayey Sand (Clay Dune)
			j	- 40 -		
		1	1		Market	LT OLIVE GREEN CLAY
		i		"	17.15[金斯德	- SEIVE GREEN CLAY
			1	- 60 -	153 Tel. 20	
		1			THE SUC	
				70 —	NO. COLUMN	
						· ·
				- 80 -		1
		1			TDH	
			1 1	90 —	-	
			1 1			
				100	i i	
		Ì	1 1	L	1	
				1		
				<u> </u>	1_	
				1	i	
					_ 1	
				Water depth or	Drilling = 25.0 ft. B	GGS TOTAL DEPTH = 84 feet

B-21

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

	Client:	City of Kingsville	Boring/Well No.: 23
	Project Name:	Kingsville Landfill	Date Drilled: April 24, 1998
	Project Location	n: 5 mi SE of City	Boring Method: HOLLOW STEM AUGER
	LAT: 27° 27' 01	1.4" LONG: 97° 48' 28.2"	Sample Method: Shelby Tube
	MSWLF ID:	Permit #235-B	Surface Elevation: 49.50' MSL
		-	Depth to Water: 8.8' BGS
			Total Depth: 86' BGS
		(iii	Casing:
	≣ u	et)	Screen:
	or W	H (fe	Borehole Dia.: 6 inch
	Monitor Well	DEPTH (feet) SAMPLE INTERVAL	Driller ID: PSI - Craig Schena
	2 0		SOIL CLASSIFICATION
		0	
			CALICHE BEARING CHANNEL (I)
		— to —	
✓ not installed;	boring only		SAND FILLED CHANNEL (II)
		20	CLAYEY SAND (CLAY DUNE)
			The Carlo (SEA)
		30	
		40	LT OLIVE GREEN CLAY
			LI OLIVE SILEN CEAT
		- 50	
		60 -	
		70 -	
	1 1		
	i	80 —	
		TDH	
	i 1		
		_ 100	
	1 1		*
	1		
	1		
		Water depth on Drilling = 25.0 ft. BGS	
		2 400 12 500	TOTAL DEPTH = 86 feet

B-22

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

SUBSURFACE EXPLORATION RECORD

	Cli	ent:	City of Kir	ngsville			Boring/Well No.:	24
	Pro	ject Name:	King	sville Land	dfill		Date Drilled:	April 30, 1998
	Pro	ject Location:	5 r	ni SE of Ci	ty		Boring Method:	HOLLOW STEM AUGER
				6: 97° 48'	48.9"		Sample Method:	Shelby Tube
				it #235-B			Surface Elevation:	47.38' MSL
							Depth to Water:	10.0' BGS
							Total Depth:	72' BGS
				9.7		Ê	Casing:	
	lle Co			et)		d) B	Screen:	
	or W	_		H (F	¥ FE	adin	Borehole Dia.:	6 inch
	Monitor Well Construction	T	T	DEPTH (feet)	SAMPLE	PID Reading (ppm)	Driller ID:	PSI - Craig Schena
			1	П	ω ≥	Δ,	SOIL CLAS	SSIFICATION
				0	Charles To Ca		TOP SOIL & DARK BR	
			B		State of the		CALICHE BEARING C	
				10		_	1	
√ not installed;	boring onl	y			Anni tra			
				20			SILTY CLAY TAN	
							SILT CLAT TAN	
		1 1	1 [- 50 -	MARDIN			
				40	2.00		LT OLIVE GREEN CLA	Y
			1 1					
			1 1	- 50 -		L		
				I		i		
			1 -	- 00 -		L		
				í	DECEMBER 1			4
			1 -	70 —				
				Ī		TDH		
			1 +			-		19/2
					l			
				7	Ī	-		
				-	1			*
				1	1			
			L	- 1	1			
				1	Ī			
			_	-	1			
			į	i				
		1	1_		1_	- 1		
			Wa	ter depth o	n Drilling =	12.0 ft. BG	SS	TOTAL DEPTH = 72 feet

B-23

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

PAGE_1_OF_1_

SUBSURFACE EXPLORATION RECORD

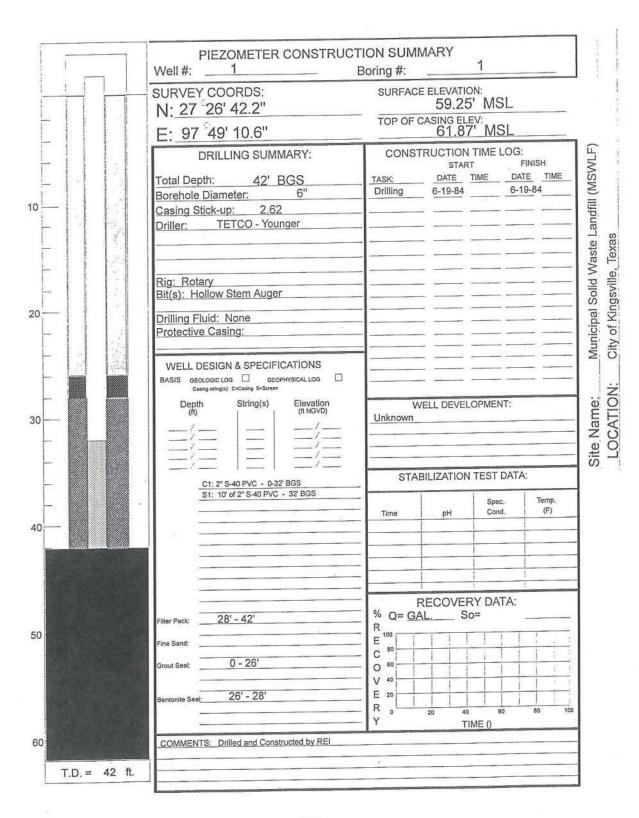
	Client:	Ci	ty of Kingsville			
	Project	t Name:	Kingsville Land	Boring/Well No.:	25	
	Project	Location:	5 mi SE of Ci	Date Drilled: Boring Method:	April 29, 1998	
		7° 26' 55.2"	LONG: 97: 48'	Sample Method:	HOLLOW STEM AUGER	
	MSWL		Permit #235-B	41.0	Surface Elevation:	SPLIT SPOON
					Depth to Water:	61.12' MSL
					Total Depth:	21.1' BGS
						88' BGS
	₩ 5		G:		Casing: Screen: Borehole Dia.: Driller ID:	
	or W		(fee	A A	Borehole Dia.:	6 inch
	Monitor Well Construction	Τ :	DEPTH (feet)	SAMPLE	Driller ID:	
	2 0		ď	8 2	SOIL OLAS	PSI - Craig Schena
7			0			SSIFICATION
					TOP SOIL & DARK BR	OWN CLAY
			10 —	101/917/201	CALICHE BEARING CH	IANNEL (I)
v not installed;	boring only				SAND FILLED CHANNE	EL (II)
			20			
			- 30 -			
				ANDVISOR	CALUMNA	
			- 40 -		SANDY CLAY	2
			i			
			- 50 -			
		1 1			LT OLIVE GREEN CLAY	
			~ 1	1000000		81
			70			
						24
			- 00 -	0.0000		
	1		- 90 -	TDH		
	+		100	F		
	1					
	-	1 1		Ė		
	į		<u> </u>			
	1					
)	1					
17/			Water depth on	Drilling = 31.0 ft. I	3GS	TOTAL DEPTH = 88 feet

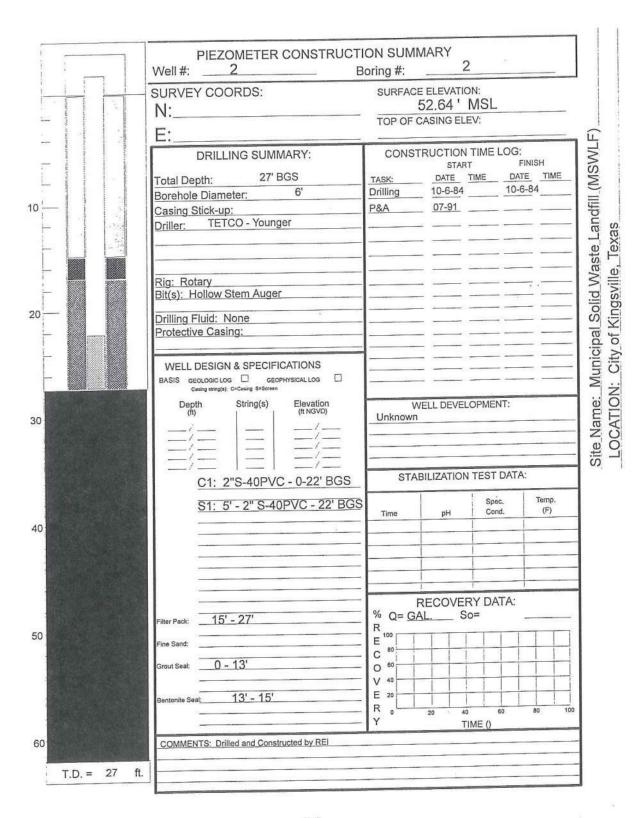
B-24

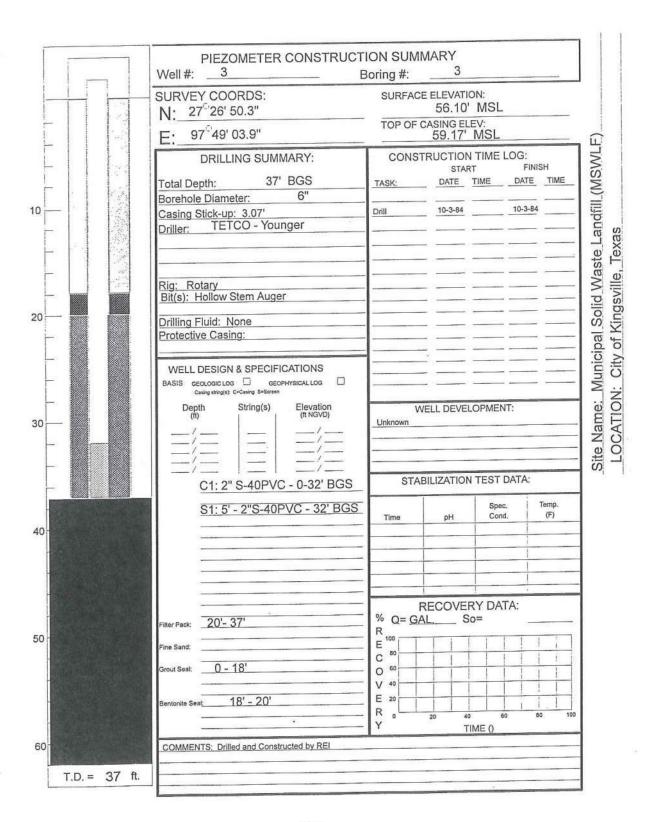
Part III, Attachment 4, Appendix 1, p.g. 182

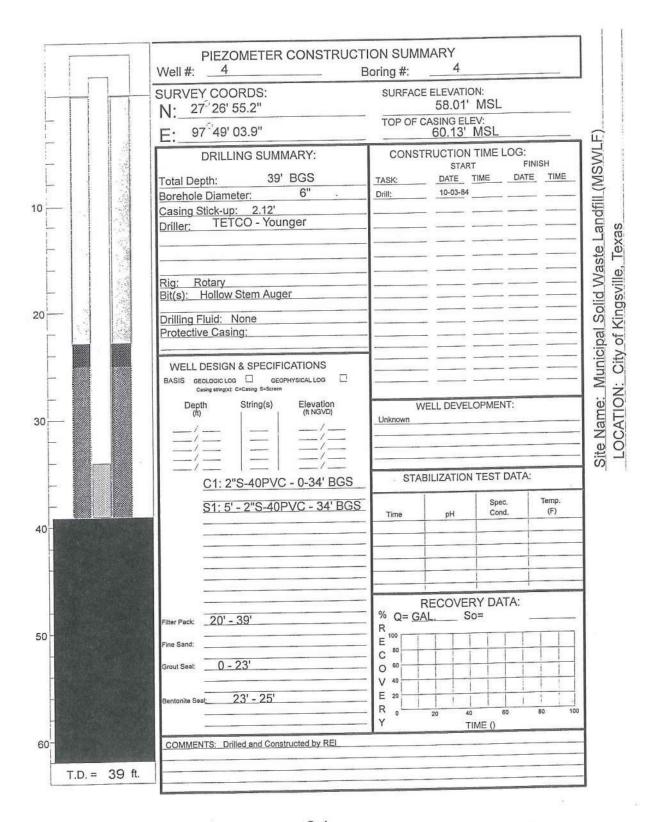
FOR PERMIT PURPOSES ONLY	Part III
APPENDIX C	

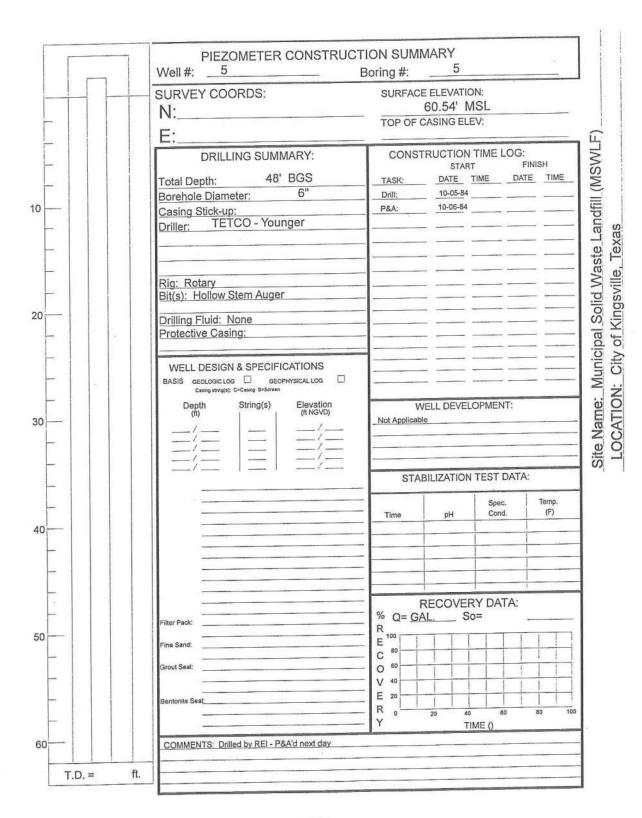
City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

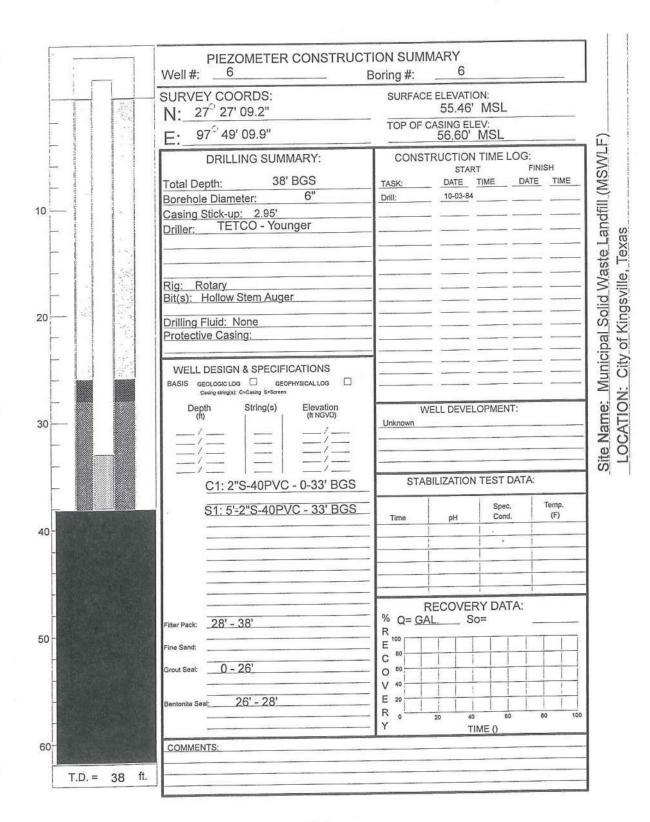

APPENDIX C

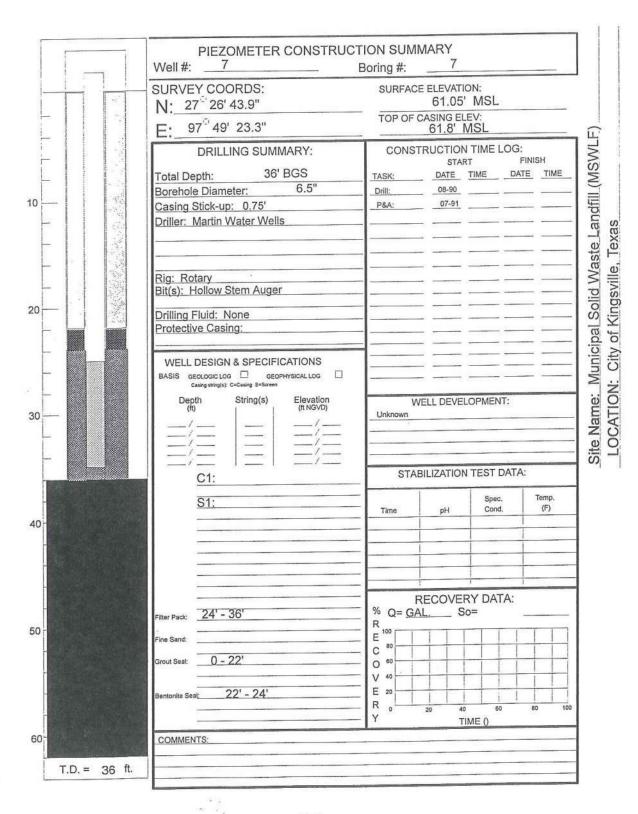

PIEZOMETER CONSTRUCTION and DEVELOPMENT SUMMARIES

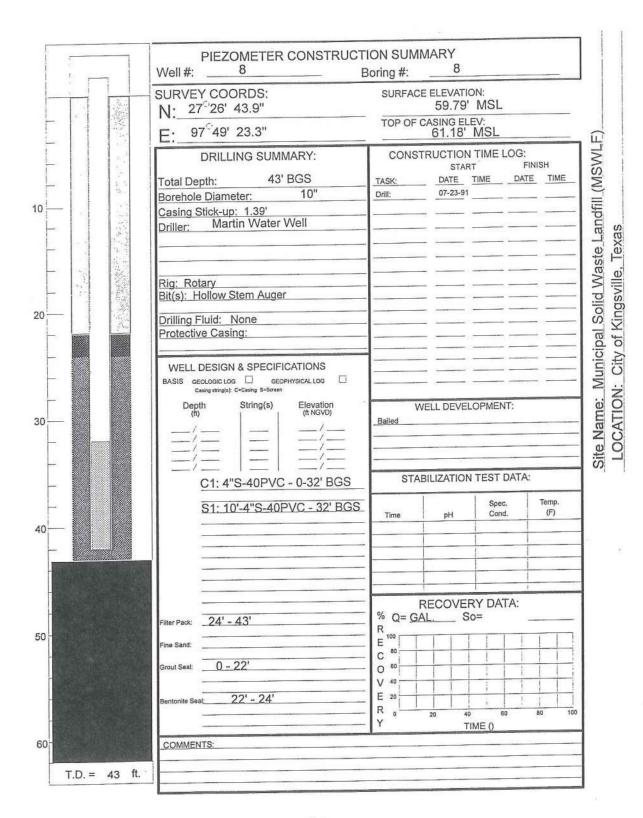

Well #1 Boring #1 U	1
Well #2 Boring #2 C-	2
Well #3 Boring #3 C-	3
Well #4 Boring #4 C-	4
Well #5 Boring #5 C-	5
Well #6 Boring #6 C-	6
Well #7 Boring #7 C-	7
Well #8 Boring #8	8
Well #9 Boring #9 C-	9
Well #9R Boring #9R	0
Well #10Boring #10	1
Well #11Boring #11	2
Well #12Boring #12	3
Well #13Boring #13	4
Well #14Boring #14	5
Well #15Boring #15	6
Well #16Boring #16	7
Well #17Boring #17	
Well #17Boring #17	9
Well #24Boring #24	7
vveii #24Boring #24	

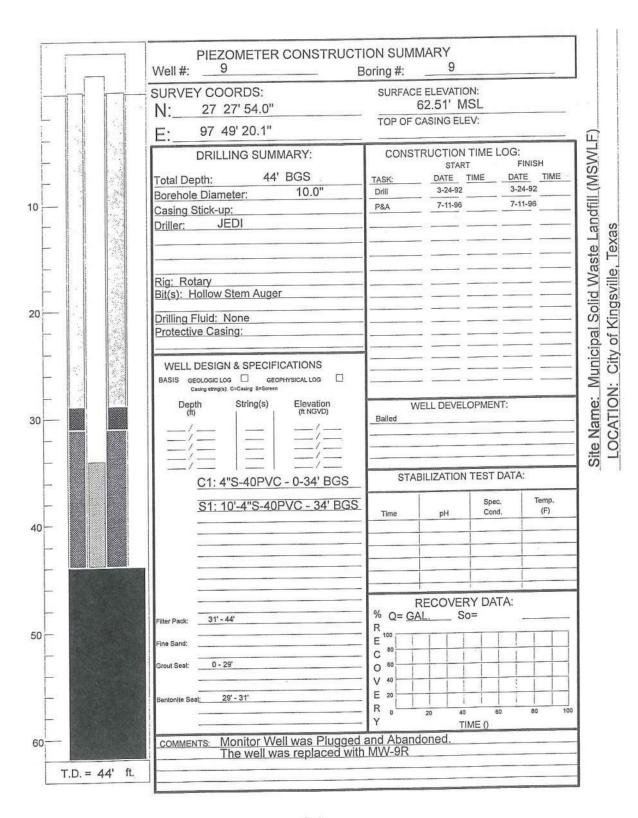

November 1997 Revision 1 - June 1998

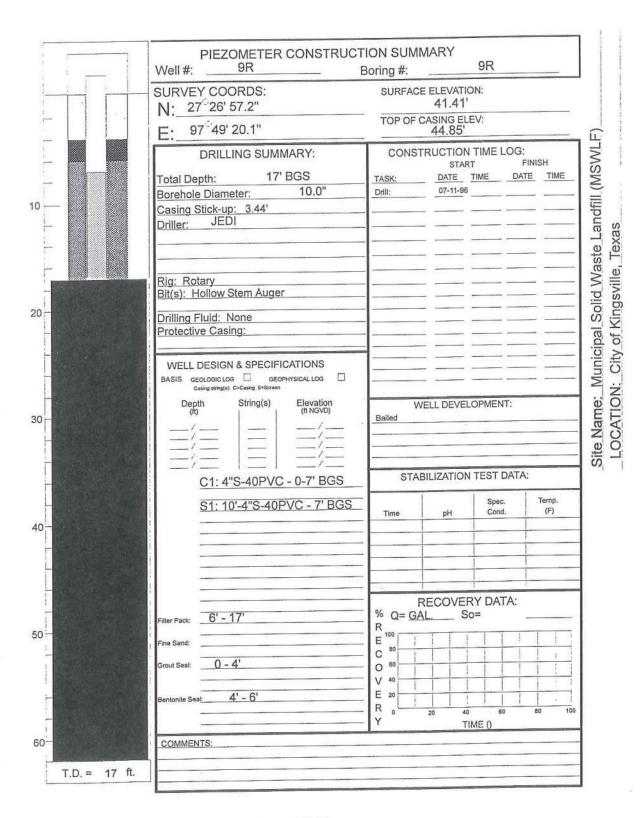

C-0

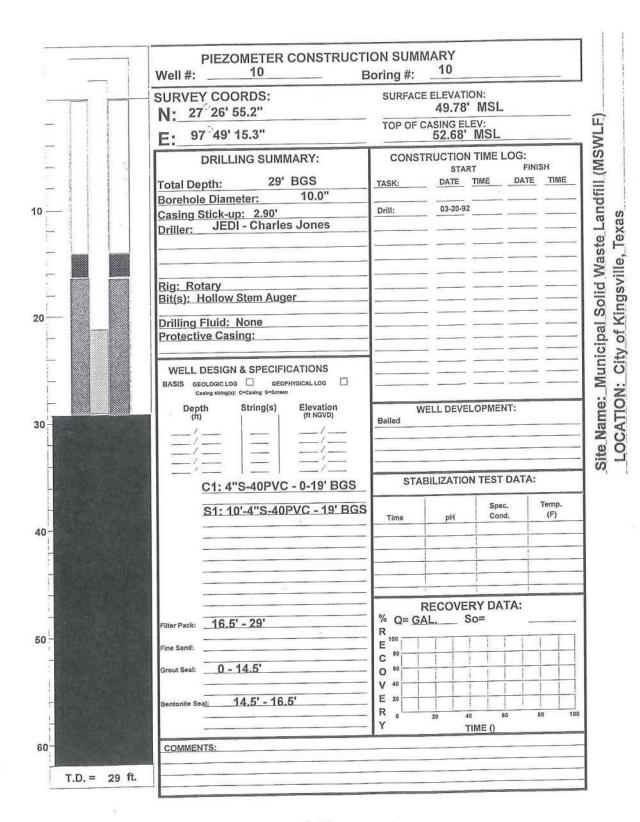


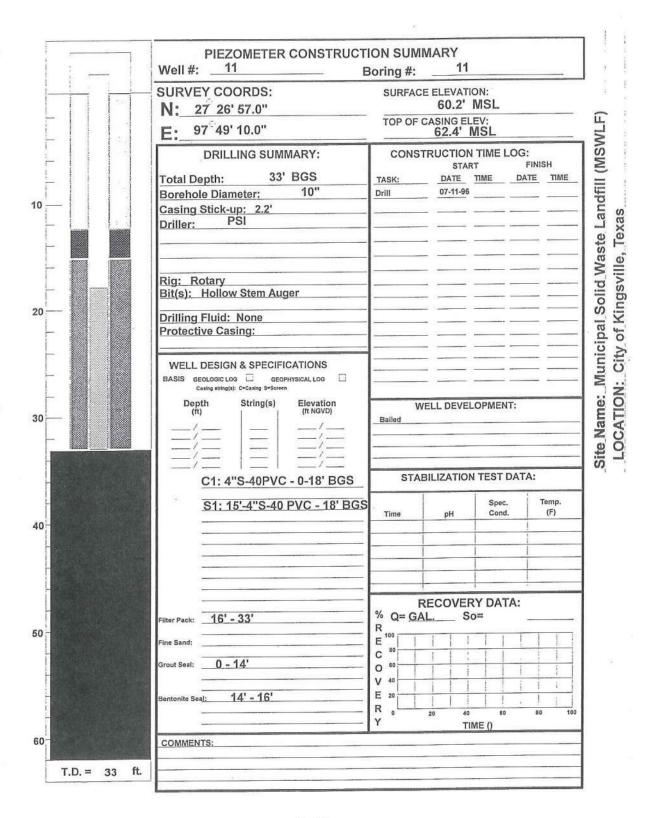


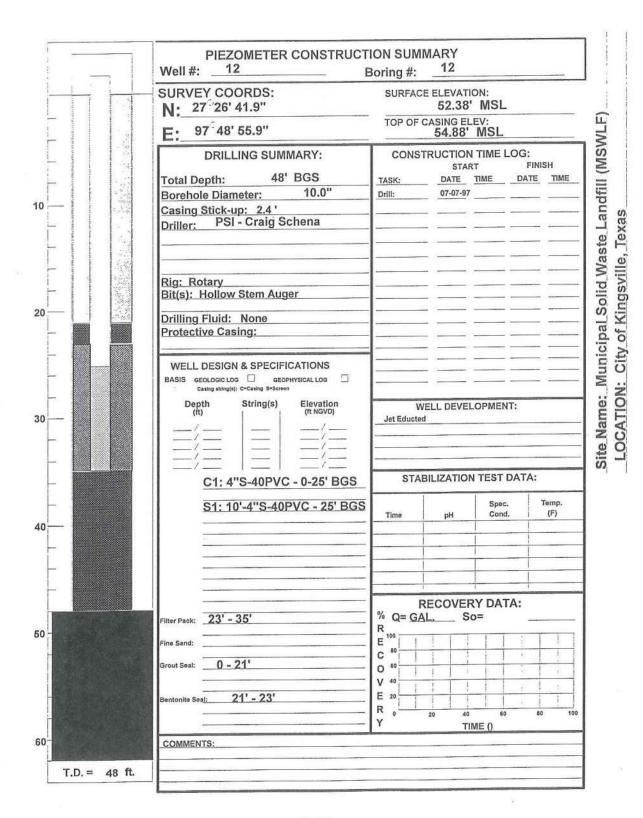


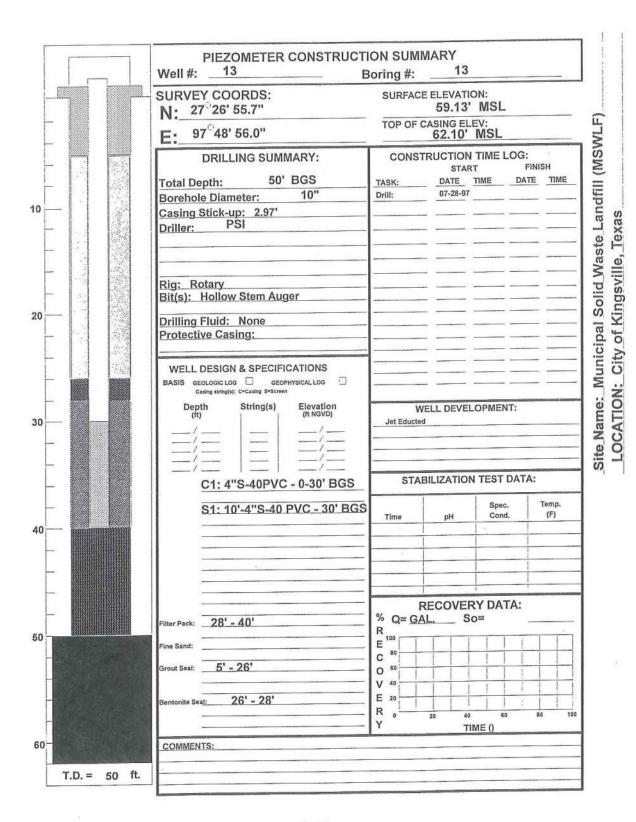




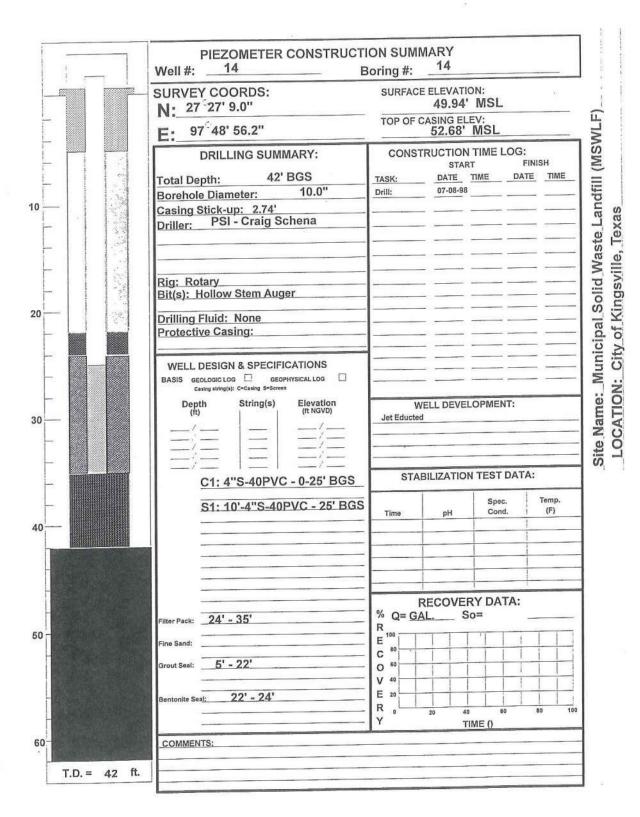


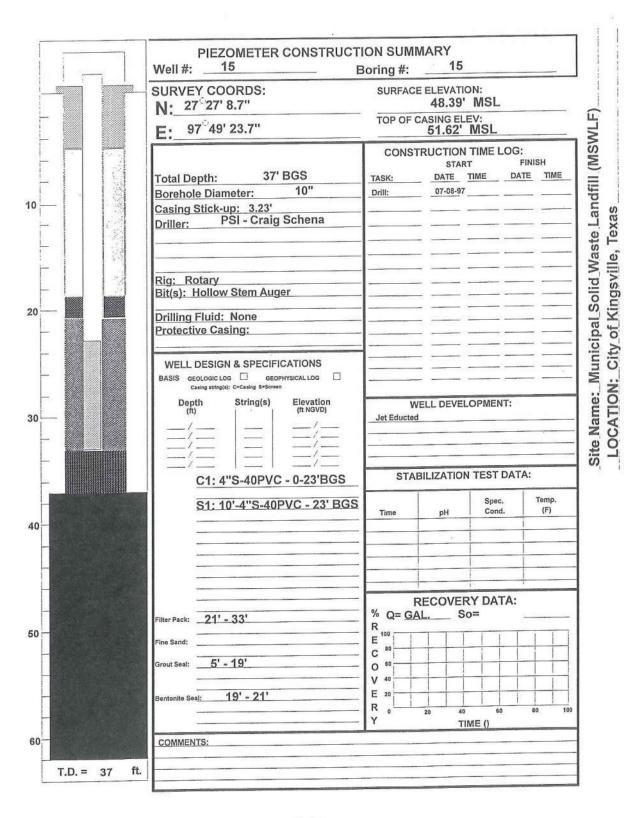

C-8

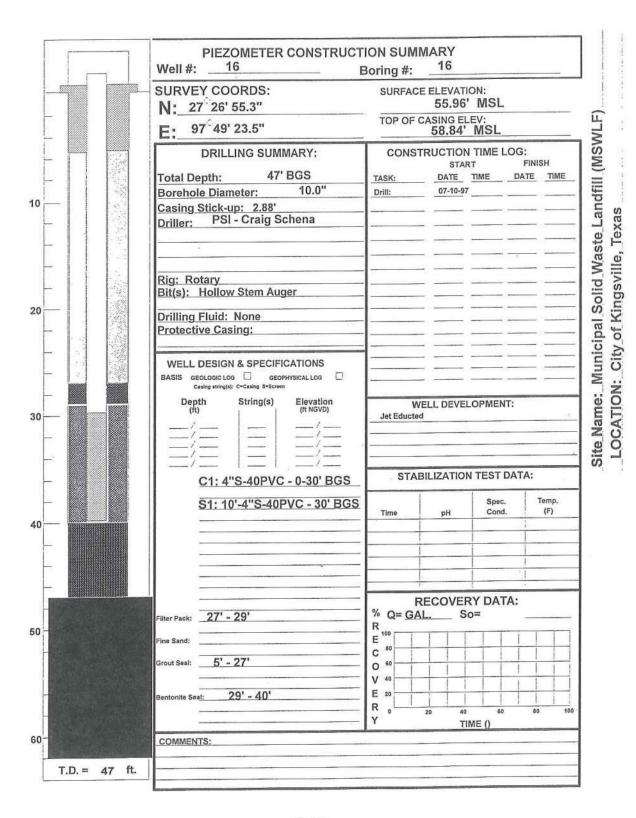


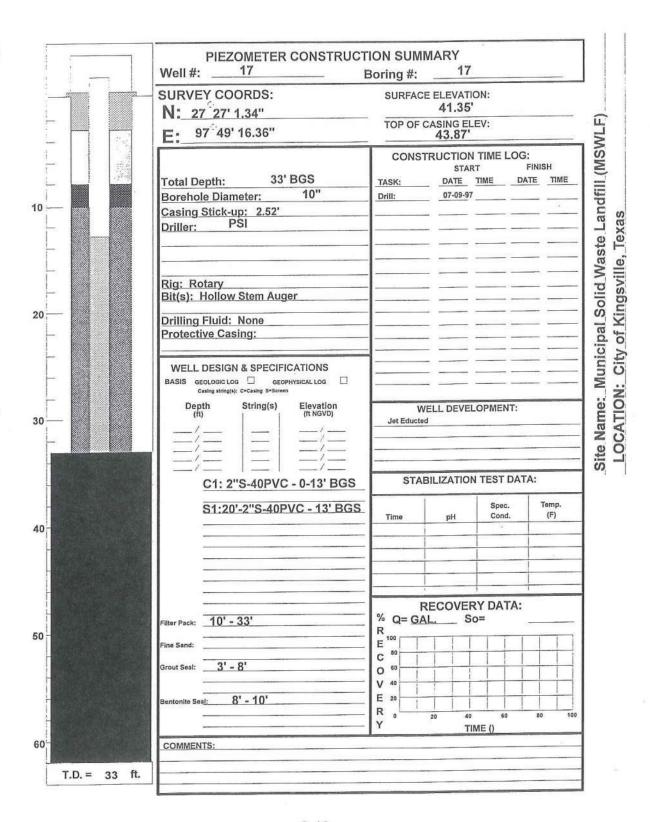


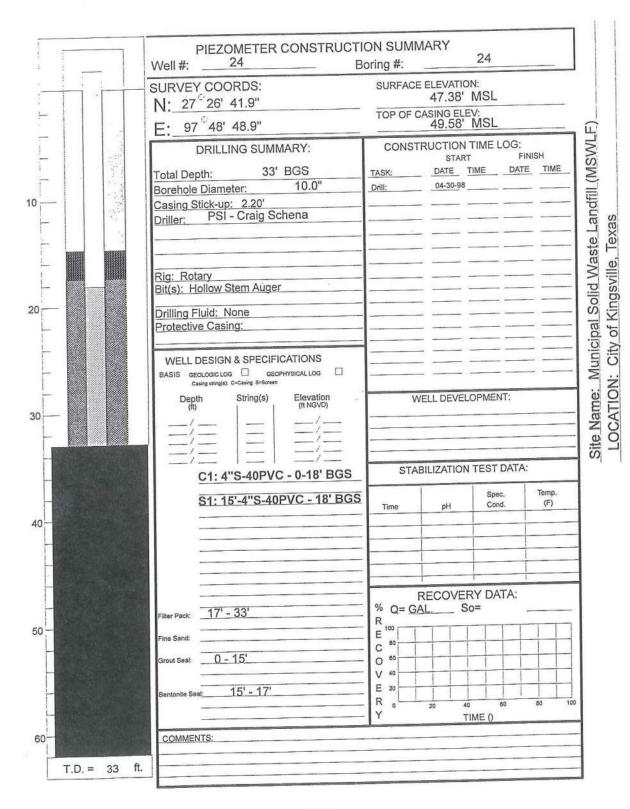
C-11






C-13


C-14



C-17

C-18

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

APPENDIX D

WATER LEVEL MEASUREMENT DATA SHEETS

Water Level Data - June 16, 1998	D-2
Water Level Data - May 18, 1998	
Water Level Data - February 18, 1998	D-4
Water Level Data - February 2, 1998	
Water Level Data - January 20, 1998	D-6
Water Level Data - January 5, 1998	D-7
Water Level Data - December 22, 1997	D-8
	D-9
Water Level Data - November 24, 1997	D-10
Water Level Data - November 10, 1997	D-11
Water Level Data - October 28, 1997	D-12
Water Level Data - October 16, 1997	D-13
Water Level Data - September 29, 1997	D-14
Water Level Data - September 15, 1997	D-15
Water Level Data - Deptermoer 10, 1007	D-16
Water Level Data - September 2, 1997	D-17
Water Level Data - August 10, 1997	D-18
Water Level Data - August 4, 1007 111111111111111111111111111111111	
Water Level Data - Julie 25, 1887	D-19
VValer Level Data - March 20, 1887	D-20
Water Level Data - December 25, 1886	D-21
Water Level Data - July 11, 1996	D-22
Water Level Data - May 10, 1995	D-23
Water Level Data - March 14, 1994	D-24
Water Level Data - April 5, 1993	D-25
Water Level Data - April 0, 1000	D-26
vvaler Level Dala - September 26, 1992	

APPENDIX D (CONTINUED)

000 0 000 0 000 000 000 000 000 000 00	7-27
Water Level Data - August 11, 1992	D-28
Meter Loyal Data - August 8 1992	D-30
Mater Level Date - 101/230 1991	D-31
	D-33
Cround Mater Manifor Well #8	D-30
	D-38
O	D-39
O	
Od Woter Menitor Well #13	D-41
Carried Water Monitor Well #14	D-42
Ground Water Monitor Well #15	D-43
Ground Water Monitor Well #16	D-44
Ground Water Monitor Well #17	
Ground Water Monitor Well #17	D-46
Summary of Site Survey Data	D-47
Summary of Site Survey Data	

November 1997 Revision 1 - June, 1998

D-1

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: June 16, 1998

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	25.54	36.32	
MW3	59.17	21.58	37.59	4
MW4	60.12	22.69	37.43	
MW6	56.60	20.38	36.22	
MW8	61.17	25.89	35.28	
MW9R	44.84	8.65	36.19	
MW10	52.68	15.58	37.10	
MW11	62.40	24.90	37.50	
MW12	54.87	18.82	36.05	9
MW13	62.09	27.10	34.99	
MW14	52.67	22.67	30.00	
MW15	51.62	13.16	38.46	
MW16	58.83	22.27	36.56	
MW17	43.86	7.40	36.46	
MW18	52.43	15.92	36.51	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: May 18, 1998

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	25.21	36.65	*
MW3	59.17	21.04	38.13	
MW4	60.12	21.96	38.16	
MW6	56.60	19.30	37.30	
MW8	61.17	25.19	35.98	
MW9R	44.84	7.93	36.91	
MW10	52.68	15.18	37.50	
MW11	62.40	24.02	38.38	
MW12	54.87	18.09	36.78	
MW13	62.09	26.62	35.47	
MW14	52.67	22.52	30.15	
MW15	51.62	11.98	39.64	
MW16	58.83	21.62	37.21	
MW17	43.86	6.40	37.46	
MW18	52.43	15.09	37.34	

.

WATER LEVEL DATA

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: February 18, 1998

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	25.67	36.19	
MW3	59.17	20.43	38.74	
MW4	60.12	20.72	39.40	
MW6	56.60	18.64	37.96	
MW8	61.17	23.14	38.03	
MW9R	44.84	6.23	38.61	
MW10	52.68	14.70	37.98	
MW11	62.40	22.22	40.18	
MW12	54.87	17.81	37.06	[9
MW13	62.09	26.62	35.47	1
MW14	52.67	23.10	29.57	
MW15	51.62	8.91	42.71	
MW16	58.83	21.28	37.55	₩
MW17	43.86	4.37	39.49	
MW18	52.43	14.23	38.20	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: February 2, 1998

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	25.92	35.94	1
MW3	59.17	21.00	38.17	
MW4	60.12	21.52	38.60	
MW6	56.60	19.11	37.49	
MW8	61.17	24.72	36.45	
MW9R	44.84	6.24	38.60	
MW10	52.68	15.23	37.45	
MW11	62.40	23.02	39.38	
MW12	54.87	18.42	36.45	
MW13	62.09	27.17	34.92	
MW14	52.67	23.51	29.16	
MW15	51.62	9.54	42.08	(5)
MW16	58.83	21.74	37.09	
MW17	43.86	3.82	40.04	
MW18	52.43	15.16	37.27	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: January 20, 1998

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	25.88	35.98	
MW3	59.17	20.73	38.44	
MW4	60.12	21.24	38.88	
MW6	56.60	19.55	37.05	*
MW8	61.17	24.91	36.26	
MW9R	44.84	7.35	37.49	
MW10	52.68	15.25	37.43	
MW11	62.40	23.22	39.18	
MW12	54.87	18.49	36.38	
MW13	62.09	26.81	35.28	
MW14	52.67	23.37	29.30	
MW15	51.62	10.54	41.08	
MW16	58.83	21.67	37.16	
MW17	43.86	6.13	37.73	
MW18	52.43	14.88	37.55	

*

WATER LEVEL DATA

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: January 5, 1998

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	26.05	35.81	
мwз	59.17	20.65	38.52	
MW4	60.12	20.99	39.13	
MW6	56.60	19.42	37.18	
MW8	61.17	24.72	36.45	
MW9R	44.84	6.93	37.91	
MW10	52.68	15.24	37.44	
MW11	62.40	22.99	39.41	
MW12	54.87	18.51	36.36	
MW13	62.09	26.71	35.38	
MW14	52.67	23.63	29.04	
MW15	51.62	9.89	41.73	
MW16	58.83	21.66	37.17	
MW17	43.86	5.58	38.28	
MW18	52.43	14.67	37.76	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE:December 22, 1997

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	26.19	35.67	
мwз	59.17	20.48	38.69	
MW4	60.12	20.73	39.39	
MW6	56.60	19.11	37.49	
MW8	61.17	24.38	36.79	
MW9R	44.84	6.60	38.24	
MW10	52.68	15.19	37.49	
MW11	62.40	22.69	39.71	
MW12	54.87	18.54	36.33	
MW13	62.09	26.61	35.48	
MW14	52.67	23.64	29.03	
MW15	51.62	9.05	42.57	
MW16	58.83	21.71	37.12	
MW17	43.86	4.91	38.95	
MW18	52.43	14.48	37.95	7

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: December 8, 1997

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet,MSL)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	26.36	35.50	
MW3	59.17	20.36	38.81	
MW4	60.12	20.52	39.60	
MW6	56.60	18.35	38.25	16
MW8	61.17	23.83	37.34	
MW9R	44.84	6.35	38.49	
MW10	52.68	15.06	37.62	
MW11	62.40	22.23	40.17	
MW12	54.87	18.51	36.36	
MW13	62.09	26.49	35.60	
MW14	52.67	23.89	28.78	
MW15	51.62	7.62	44.00	
MW16	58.83	21.70	37.13	
MW17	43.86	4.45	39.41	
MW18	52.43	14.25	38.18	

CLIENT: City of Kingsville

F.E.E. Job #:K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE:November 24, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	26.69	35.17	
мwз	59.17	20.60	38.57	
MW4	60.12	20.65	39.47	
MW6	56.60	18.23	38.37	
MW8	61.17	23.06	38.11	
MW9R	44.84	6.10	38.74	
MW10	52.68	15.01	37.67	
MW11	62.40	21.72	40.68	
MW12	54.87	18.65	36.22	
MW13	62.09	26.68	35.41	9
MW14	52.67	24.25	28.42	
MW15	51.62	8.19	43.43	
MW16	58.83	21.94	36.89	
MW17	43.86	4.01	39.85	
MW18	52.43	14.62	37.81	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE November 10, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	27.10	34.76	
MW3	59.17	21.20	37.97	
MW4	60.12	22.19	37.93	
MW6	56.60	18.30	38.30	
MW8	61.17	22.73	38.44	
MW9R	44.84	6.24	38.60	
MW10	52.68	15.35	37.33	
MW11	62.40	21.92	40.48	
MW12	54.87	19.34	35.53	
MW13	62.09	27.12	34.97	
MW14	52.67	24.66	28.01	
MW15	51.62	8.14	43.48	
MW16	58.83	22.46	36.37	
MW17	43.86	3.64	40.22	
MW18	52.43	15.14	37.29	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: October 28, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	27.50	34.36	
MW3	59.17	21.89	37.28	
MW4	60.12	21.81	38.31	
MW6	56.60	17.59	39.01	
MW8	61.17	22.07	39.10	
MW9R	44.84	6.71	38.13	
MW10	52.68	15.58	37.10	0
MW11	62.40	22.25	40.15	
MW12	54.87	19.61	35.26	
MW13	62.09	27.55	34.54	
MW14	52.67	25.08	27.59	
MW15	51.62	10.16	41.46	
MW16	58.83	22.75	36.08	1
MW17	43.86	4.44	39.42	
MW18	52.43	15.80	36.63	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: October 16, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	28.57	33.29	
MW3	59.17	22.31	36.86	
MW4	60.12	23.16	36.96	
MW6	56.60	17.74	38.86	
MW8	61.17	22.74	38.43	
MW9R	44.84	6.42	38.42	
MW10	52.68	16.56	36.12	
MW11	62.40	23.76	38.64	
MW12	54.87	19.58	35.29	
MW13	62.09	28.53	33.56	
MW14	52.67	25.46	27.21	
MW15	51.62	10.19	41.43	
MW16	58.83	23.32	35.51	
MW17	43.86	4.28	39.58	
MW18	52.43	16.65	35.78	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: September 29, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	28.39	33.47	
MW3	59.17	23.90	35.27	
MW4	60.12	24.60	35.53	
MW6	56.60	24.48	32.12	
MW8	61.17	28.14	33.03	
MW9R	44.84	9.85	34.99	
MW10	52.68	18.26	34.42	
MW11	62.40	27.00	35.40	
MW12	54.87	22.09	32.78	
MW13	62.09	29.26	32.83	
MW14	52.67	25.77	26.90	
MW15	51.62	18.65	32.97	
MW16	58.83	24.81	34.02	
MW17	43.86	8.99	34.87	
MW18	52.43	18.71	33.72	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: September 15, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	28.28	33.59	
MW3	59.17	23.79	35.38	
MW4	60.12	23.84	35.29	
MW6	56.60	24.69	31.91	100
MW8	61.17	28.42	32.76	
MW9R	44.84	10.43	34.42	
MW10	52.68	18.32	34.36	
MW11	62.40	27.35	35.05	
MW12	54.87	22.01	32.87	
MW13	62.09	29.33	32.77	
MW14	52.67	25.95	26.73	
MW15	51.62	18.68	32.94	
MW16	58.83	24.95	33.89	
MW17	43.86	9.68	34.19	
MW18	52.43	18.78	33.66	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: September 2, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	35.64	26.22	4
MW3	59.17	23.63	35.54	
MW4	60.12	25.04	35.09	
MW6	56.60	24.53	32.07	
MW8	61.17	35.76	25.41	
MW9R	44.84	10.45	34.39	
MW10	52.68	18.31	34.37	
MW11	62.40	27.45	34.95	
MW12	54.87	21.82	33.05	
MW13	62.09	29.16	32.93	
MW14	52.67	26.05	26.62	
MW15	51.62	18.47	33.15	*
MW16	58.83	24.94	33.89	
MW17	43.86	9.92	33.94	
MW18	52.43	18.92	33.51	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: August 18, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	22.94	38.92	
MW3	59.17	23.26	35.91	
MW4	60.12	24.76	35.37	
MW6	56.60	24.01	32.59	
MW8	61.17	35.36	25.81	
MW9R	44.84	10.56	34.28	
MW10	52.68	18.16	34.52	
MW11	62.40	27.31	35.09	
MW12	54.87	21.42	33.45	
MW13	62.09	29.15	32.94	
MW14	52.67	25.88	26.79	
MW15	51.62	18.17	33.45	
MW16	58.83	24.63	34.20	
MW17	43.86	9.69	34.17	
MW18	52.43	18.47	33.96	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: August 4, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	27.67	34.19	
мwз	59.17	22.83	36.34	
MW4	60.12	24.24	35.89	
MW6	56.60	23.31	33.29	
MW8	61.17	27.37	33.80	
MW9R	44.84	10.49	34.35	
MW10	52.68	18.16	34.52	
MW11	62.40	27.10	35.30	
MW12	54.87	20.97	33.90	
MW13	62.09	28.86	33.23	
MW14	52.67	25.65	27.02	
MW15	51.62	17.47	34.15	
MW16	58.83	24.21	34.62	(6)
MW17	43.86	9.33	34.53	
MW18	52.43	18.61	33.82	

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: June 25, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	27.79	34.08	3
MW3	59.17	22.11	37.06	
MW4	60.12	22.28	36.85	
MW6	56.60	N/M	N/M	
MW8	61.17	N/M	N/M	
MW9R	44.84	N/M	N/M	
MW10	52.68	17.35	35.33	
MW11	62.40	26.03	36.37	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/M = Not Measured N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: March 20, 1997

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	30.53	31.34	
MW3	59.17	27.08	32.09	
MW4	60.12	27.33	31.80	
MW6	56.60	28.06	28.54	
MW8	61.17	30.22	30.96	
MW9R	44.84	13.76	31.09	
MW10	52.68	21.33	31.35	
MW11	62.40	30.69	31.71	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

Revision 1

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: December 23, 1996

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	29.85	32.02	
MW3	59.17	26.03	33.14	
MW4	60.12	26.32	32.81	
MW6	56.60	28.19	28.41	
MW8	61.17	30.38	30.80	
MW9R	44.84	14.02	30.83	
MW10	52.68	20.91	31.77	
MW11	62.40	30.20	32.20	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: July 11, 1996

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	29.00	32.87	(e)
MW3	59.17	22.00	37.17	
MW4	60.12	26.13	33.00	
MW6	56.60	26.29	30.31	
MW8	61.17	29.40	31.78	
MW9R	44.84	12.57	32.28	
MW10	52.68	19.36	33.32	
MW11	62.40	28.77	33.63	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	8 6
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011_

LOCATION: MSWLF - Kingsville, Tx

DATE: May 10, 1995 (K/P)

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	29.02	32.85	
MW3	59.17	22.98	36.19	
MW4	60.12	25.02	34.11	
MW6	56.60	N/M	N/M	
MW8	61.17	28.46	32.72	
MW9R	44.84	N/D	N/D	
MW10	52.68	N/D	N/D	
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	9
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	0
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

K/P = Measured by City of Kingsville using a "Plopper".

N/M = Not Measured N/D = Not Yet Drilled

Revision 1

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: March 14, 1994 (K/P)

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	31.40	30.47	
MW3	59.17	26.00	33.17	
MW4	60.12	28.00	31.13	
MW6	56.60	25.25	31.35	
MW8	61.17	28.10	33.08	
MW9R	44.84	N/D	N/D	
MW10	52.68	N/D	N/D	
MW11	62.40	N/D	N/D	4
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	2
MW17	43.86	N/D	N/D	8
MW18	52.43	N/D	N/D	

K/P = Measured by City of Kingsville using a "Plopper".

N/D = Not Yet Drilled

Revision 1

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: April 5, 1993

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	28.61	33.25	
MW3	59.17	27.02	32.15	
MW4	60.12	30.11	30.01	
MW6	56.6	27.11	29.49	Contract of the Contract of th
MW8	61.17	29.17	32.00	ė.
MW9R	44.84	N/D	N/D	
MW10	52.68	17.76	34.92	
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	N = -
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: September 28, 1992

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	30.6	31.26	
MW3	59.17	25.7	33.47	
MW4	60.12	30.4	29.72	
MW6	56.60	27.0	29.60	
MW8	61.17	28.3	32.87	
MW9R	44.84	N/D	N/D	
MW10	52.68	18.9	33.78	
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	(6)
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: August 11, 1992

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	30.02	31.84	<u></u>
мwз	59.17	25.54	33.63	
MW4	60.12	26.79	33.33	
MW6	56.60	25.25	31.35	50
MW8	61.17	27.52	33.65	
MW9R	44.84	N/D	N/D	
MW10	52.68	16.59	36.09	
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D .	
MW13	62.09	N/D	N/D	9
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #:K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: April 14, 1992

Well Number	(A) Casing Elevation (feet,MSL)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	36.88	24.98	
MW3	59.17	26.75	32.42	
MW4	60.12	27.39	32.73	
MW6	56.60	21.92	34.68	
MW8	61.17	26.77	34.40	
MW9R	44.84	N/D	N/D	
MW10	52.68	18.49	34.19	
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

Revision 1

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: August 8, 1991

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet,MSL)	(A) - (B) Water Surface Elevation (feet,MSL)	Comments:
MW1	61.86	34.69	27.17	
MW3	59.17	26.86	32.31	
MW4	60.12	24.56	35.56	
MW6	56.60	21.44	35.16	
MW8	61.17	27.5	33.67	
MW9R	44.84	N/D	N/D	
MW10	52.68	N/D	N/D	4
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	N.
MW18	52.43	N/D	N/D	*

N/D = Not Yet Drilled

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: July 30, 1991

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	34.5	27.36	
MW3	59.17	26.69	32.48	2
MW4	60.12	23.77	36.35	
MW6	56.60	22.02	34.58	
MW8	61.17	27.67	33.50	
MW9R	44.84	N/D	N/D	
MW10	52.68	N/D	N/D	
MW11	62.40	N/D	N/D	
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

N/D = Not Yet Drilled

Revision 1

CLIENT: City of Kingsville

F.E.E. Job #: K01-01-R011

LOCATION: MSWLF - Kingsville, Tx

DATE: March 29, 1991

Well Number	(A) Casing Elevation (feet)	(B) Depth to Water (feet)	(A) - (B) Water Surface Elevation (feet)	Comments:
MW1	61.86	35.6	26.26	
МWЗ	59.17	25.59	33.58	
MW4	60.12	23.98	36.14	
MW6	56.60	21.35	35.25	
MW8	61.17	N/D	N/D	
MW9R	44.84	N/D	N/D	
MW10	52.68	N/D	N/D	
MW11	62.40	N/D	N/D	6
MW12	54.87	N/D	N/D	
MW13	62.09	N/D	N/D	
MW14	52.67	N/D	N/D	
MW15	51.62	N/D	N/D	
MW16	58.83	N/D	N/D	i (
MW17	43.86	N/D	N/D	
MW18	52.43	N/D	N/D	

Ground Water Monitor Well #1 Measured Total Depth is 41.67 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 61.867 Feet, MSL

			89
<u>Date</u>	Depth to Water feet	Elevation of water feet,MSL	Comments
03-29-91	35.6	26.27	
07-30-91	34.5	27.37	
08-08-91	34.69	27.18	
04-14-92	36.88	24.99	
08-11-92	30.02	31.85	
09-28-92	30.6	31.27	
04-05-93	28.61	33.26	
03-14-94	31.4	30.47	
05-10-95	29.02	32.85	
07-11-96	29	32.87	
12-23-96	29.85	32.02	1247
03-20-97	30.53	31.34	
06-25-97	27.79	34.08	
08-04-97	27.67	34.2	
08-18-97	22.94	38.93	
09-02-97	35.64	26.23	
09-15-97	28.28	33.59	
09-29-97	28.39	33.48	
10-16-97	28.57	33.3	
10-28-97	27.5	34.37	
11-10-97	27.1	34.77	
11-24-97	26.69	35.17	
12-08-97	26.36	35.5	
12-22-97	26.19	35.67	
01-05-98	26.05	35.81	
01-20-98	25.88	35.98	
02-02-98	25.92	35.94 36.19	
02-18-98	25.67 25.21	36.19	2
05=18=98 	25.54 25.54	36.32	
DESCRIPTION OF THE OWN OF THE OWN	CONTRACTOR OF THE PARTY OF THE	The second secon	

^{*} City of Kingsville was responsible for the measurements during this period. (used plopper)

^{**} All top of PVC casing elevation have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #3 Measured Total Depth is 37.75 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 59.173 Feet, MSL

<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
03-29-91	25.59	33.58	
07-30-91	26.69	32.48	
08-08-91	26.86	32.31	
04-14-92	26.75	32.42	
08-11-92	25.54	33.63	
09-28-92	25.7	33.47	
04-05-93	27.02	32.15	
03-14-94	26	33.17	
05-10-95	22.98	36.19	
07-11-96	22	37.17	
12-23-96	26.03	33.14	
03-20-97	27.08	32.09	
06-25-97	22.11	37.06	
08-25-97	22.83	36.34	
08-18-97	23.26	35.91	
09-02-97	23.63	35.54	
09-15-97	23.79	35.38	
09-29-97	23.9	35.27	
10-16-97	22.31	36.86	
10-28-97	21.89	37.28	
11-10-97	21.2	37.97	
11-24-97	20.6	38.57	
12-08-97	20.36	38.81	
12-22-97	20.48	38.69	
01-05-98	20.65	38.52	
01-20-98	20.73	. 38.44	
02-02-98	21	38.17	
02-22-98	20.43	38.74	•
(0)5-4(\$±9)8 (0)5-4(\$±9)8	20(14) 34 58	06 1 3 377 (50	

^{*}The City of Kingsville (COK) was responsible for depth measurements during this period. (used plopper)

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #4 Measured Total Depth is 40.32 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 60.125 Feet, MSL

				**
	<u>Date</u>	<u>Depth</u> to Water feet	Elevation of water feet***	Comments
	03-29-91	23.98	35.15	
	07-30-91	23.77	35.36	
	08-08-91	24.56	34.57	
	04-14-92	27.39	31.74	
	08-11-92	26.79	32.34	
	09-28-92	30.4	28.73	
	04-05-93	30.11	29.02	
	03-14-94	28	31.13	
	05-10-95	25.02	34.11	
	07-11-96	26.13	33	
	12-23-96	26.32	32.81	
	03-20-97	27.33	31.8	
	06-25-97	22.28	36.85	
	08-04-97	24.24	35.89	
	08-18-97	24.76	35.37	
	09-02-97	25.04	35.09	
	09-15-97	23.84	36.29	
	09-29-97	24.6	35.53	
	10-16-97	23.16	36.97	
	10-28-97	21.81	38.32	
	11-10-97	22.19	37.94	
	11-24-97	20.65	39.47	
	12-08-97	20.52	39.60	
	12-22-97	20.73	39.39	
	01-05-98	20.99 -	39.13	
	01-20-98	21.24	38.88	
	02-02-98	21.52	38.60	
33	02-18-98	20.72	39.40	
	05-11-1213	27 F (B)G	38 16	
8	(6)6-4(6),912	/ଥିଲି (ଗଣ)	3/1/2/3	

^{*}The City of Kingsville (COK) was responsible for depth measurements during this period. (used plopper)

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

^{***} One foot has been subtracted from the calculated water depth for MW #4, due to the addition of a 12.00" extension to the top of the well casing between the time of measurement of depth to water and the time of the McCumber elevation survey.

Ground Water Monitor Well #6 Measured Total Depth is 39.15 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 56.604 Feet, MSL

				*
	<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
	03-29-91	21.35	35.25	
	07-30-91	22.02	34.58	
	08-08-91	21.44	35.16	
	04-14-92	21.92	34.68	
	08-11-92	25.25	31.35	
	09-28-92	27	29.6	
	04-05-93	27.11	29.49	
sk	03-14-94	25.25	31.35	
*	05-14-94	- Not	measured	
	07-11-96	26.29	30.31	
	12-23-96	28.19	28.41	
	03-20-97	28.06	28.54	
			measured	
	06-25-97	Not 23.31	33.29	
	08-04-97	24.01	32.59	
	08-18-97 09-02-97	24.53	32.07	
	09-02-97	24.69	31.91	
	09-13-37	24.48	32.12	
	10-16-97	17.74	38.86	
	10-28-97	17.59	39.01	
	11-10-97	18.3	38.3	
	11-24-97	18.23	38.37	
	12-08-97	18.35	38.25	
	12-22-97	19.11	37.49	
	01-05-98	19.42	37.18	
	01-20-98	19.55	37.05	
	02-02-98	19.11	37.49	
	02-18-98	18.64	37.96	я
	1015 115 4915	12,318	27.370	
- 1	018-116-98	20121	(3)22	2

^{*}The City of Kingsville (COK) was responsible for depth measurements during this period. (used plopper)

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #8 Measured Total Depth is 43.65 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 61.178 Feet, MSL

	<u>Date</u>	<u>Depth</u> to Water	<u>Elevation</u> <u>of water</u>	Comments
		<u>feet</u>	<u>feet</u>	
	03-29-91	Not	Drill'd	
	07-30-91	27.67	33.51	
	08-08-91	27.5	33.68	
	04-14-92	26.77	34.41	
	08-11-92	27.52	33.66	
	09-28-92	28.3	32.88	
	04-05-93	29.17	32.01	
		28.1	33.08	
	03-14-94	28.46	32.72	
	05-10-95	3. Sec. 2015 (2)	31.78	
	07-11-96	29.4	30.8	
	12-23-96	30.38	**	(41.11
	03-20-97	30.22	30.96	
	06-25-97	Not	Measured	
	08-04-97	27.37	33.81	
	08-18-97	35.36	25.82	
	09-02-97	35.76	25.42	
	09-15-97	28.42	32.76	
	09-29-97	28.14	33.04	
	10-16-97	22.07	39.11	
	10-28-97	22.74	38.44	
	11-10-97	22.73	38.45	
	11-24-97	23.06	38.11	
	12-08-97	23.83	37.34	
	12-22-97	24.38	36.79	
	01-05-98	24.72	36.45	
	01-20-98	24.91	36.26	
	02-02-98	24.72	36.45	3
	02-18-98	23.14	38.03	м
SHOW STATE	୍ଞାଳ (ଅଞ୍ଚଳ ଜାଳ ଜାଞ୍ଚଳ	2516 25 30	রেন এট কেন্দ্র হি	
E	*The City of Vi	neguillo (COK)	vac reconneible	for depth

^{*}The City of Kingsville (COK) was responsible for depth measurements during this period. (used plopper)

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #9R Measured Total Depth is 18.29 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 44.849 Feet, MSL

				0.7
	<u>Date</u> .	Depth to Water feet	Elevation of water feet	Comments
	03-29-91	Not	Drill'd	
	07-30-91	Not	Drill'd	
	08-08-91	Not	Drill'd	
	04-14-92	Not	Drill'd	
	08-11-92	Not	Drill'd	
	09-28-92	Not	Drill'd	
	04-05-93	Not	Drill'd	
	03-14-94	Not	Drill'd	
	05-10-95	Not	Drill'd	
	07-11-96	12.57	32.28	
	12-23-96	14.02	30.83	
		13.76	31.09	
	03-20-97	Not	Measured	
	06-25-97	10.49	34.36	
	08-04-97	10.49	34.29	
	08-18-97	10.45	34.4	
	09-02-97	10.43	34.42	
	09-15-97	9.85	35	
	09-29-97	9.85	35	
	10-16-97 10-28-97	9.85	35	
	11-10-97	9.85	35	
	11-10-97	6.10	38.74	
	12-08-97	6.35	38.49	
	12-00-97	6.60	38.24	
	01-05-98	6.93	. 37.91	
	01-03-98	7.35	37.49	
	02-02-98	6.24	38.60	
	02-02-98	6.23	38.61	
5	8,052 8-98 s	7.08	35.91	
EC No.	the state of the s	MINING THE CASE OF THE PARTY OF	THE CONTRACT OF SHIP WAS ARRESTED TO SHIP TO SHIP THE SHI	M.

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #10 Measured Total Depth is 31.48 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation*** Top PVC 52.684 Feet, MSL

	<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
	03-29-91	Not	Drill'd	
	07-30-91	Not	Drill'd	
	08-08-91	Not	Drill'd	35
	04-14-92	18.49	34.19	9
	08-11-92	16.59	36.09	
	09-28-92	18.9	33.78	
	04-05-93	17.76	34.92	
*	03-14-94	17.5	35.18	
*	05-10-95	19.02	33.66	
*	07-11-96	19.36	33.32	
	12-23-96	20.91	- 31.77	
	03-20-97	21.33	31.35	
	06-25-97	17.35	35.33	
	08-04-97	18.16	34.52	
	08-18-97	18.16	34.52	
	09-02-97	18.31	34.37	
	09-15-97	18.32	34.36	
	09-29-97	18.26	34.42	
	10-16-97	16.56	36.12	
	10-28-97	15.58	37.1	
	11-10-97	15.35	37.33	
	11-24-97	15.01	37.67	
	12-08-97	15.06	37.62	
	12-22-97	15.19	37.49	
	01-05-98	15.24	37.44	
*	01-20-98	15.25	37.43 37.45	
	02-02-98 02-18-98	15.23 14.70	37.43	
	02-16-98	45 48	375 (5) (1)	įξ)
	1006-416493	2851(572)	\$77.5(0)	39

^{*}The City of Kingsville (COK) was responsible for depth measurements during this period. (used plopper)

D-38

^{**} Due to surface water infiltration, a riser was installed and a taller casing protector was added. Three (3) foot was added to the "Top of PVC" datum point.

^{***} All top of PVC casings have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #11 Measured Total Depth is 35.21 ft from top of PVC All Measures from Top of PVC Well Pipe Elevation** Top PVC 62.401 Feet, MSL

	<u>Date</u>	Depth	Elevation	Comments
		to Water	of water	
		feet	feet	
	03-29-91	Not	Drill'd	
	07-30-91	Not	Drill'd	
	08-08-91	Not	Drill'd	
	04-14-92	Not	Drill'd	
	08-11-92	Not	Drill'd	
	09-28-92	Not	Drill'd	
	04-05-93	Not	Drill'd	
	03-14-94	Not	Drill'd	
	05-14-94	Not	Drill'd	
	07-11-96	28.77	33.63	
		30.2	32.2	
	12-23-96	4 -		
	03-20-97	30.69	31.71	
	06-25-97	26.03	36.37	
	08-04-97	27.1	35.3	
	08-18-97	27.31	35.09	
	09-02-97	27.45	34.95	
	09-15-97	27.35	35.05	
	09-29-97	27	35.4	
	10-16-97	23.76	38.64	
	10-18-97	22.25	40.15	
	11-10-97	21.92	40.48	
	11-24-97	21.72	40.68	
	12-08-97	22.23	40.17	
	12-22-97	22.69	39.71	
	01-05-98	22.99	. 39.41	*
	01-20-98	23.22	39.18	
	02-02-98	23.02	39.38	
	02-18-98	22.22	40.18	100
1	୍ରୌଲି ୬୬୯-୬୭୮%	214-074	312 3137	
1	্যনীয়া-প্রাক্তি	2/4 (31)	នៃកែត្រប់	
4	* A !! ! F !!!	10		arranted to Mac

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #12 Elevation** Top PVC 54.879 Feet, MSL

<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
03-14-94	Not	Drill'd	
05-10-95	Not	Drill'd	
07-11-96	Not	Drill'd	
12-23-96	Not	Drill'd	
03-20-97	Not	Drill'd	
06-25-97	Not	Drill'd	
08-04-97	20.97	33.91	
08-18-97	21.42	33.46	
09-02-97	21.82	33.06	
09-15-97	22.01	32.87	
09-29-97	22.09	32.79	
10-16-97	19.58	35.3	
10-28-97	19.61	35.27	
11-10-97	19.34	35.54	
11-24-97	18.65	36.22	
12-08-97	18.51	36.36	
12-22-97	18.54	36.33	
01-05-98	18.51	36.36	
01-20-98	18.49	36.38	
02-02-98	18.42	36.45	
02-18-98	17.81	37.06	
(9)5 118 (9)3	18 (019:	=(6.7% 56.50€	
(16) (15) (9)	18.52	36 75	

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #13 Elevation** Top PVC 62.096 Feet, MSL

<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
03-14-94	Not	Drill'd	
05-10-95	Not	Drill'd	
07-11-96	Not	Drill'd	
12-23-96	Not	Drill'd	
03-20-97	Not	Drill'd	
06-25-97	Not	Drill'd	
08-04-97	28.86	33.24	
08-18-97	29.15	32.95	
09-02-97	29.16	32.94	
09-15-97	29.33	32.77	
09-29-97	29.26	32.84	
10-16-97	28.53	33.57	
10-28-98	27.55	34.55	
11-10-97	27.12	34.98	
11-24-97	26.68	35.41	
12-08-97	26.49	35.60	
12-22-97	26.61	35.48	
01-05-98	26.71	35.38	
01-20-98	26.81	35.28	
02-02-98	27.17	34.92	
02-18-98	26.62	35.47	
1015-(1869)	27 (2828)2 ·	প্রার বয়ন	

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #14 Elevation** Top PVC 52.677 Feet, MSL

<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
03-14-94	Not	Drill'd	
05-10-95	Not	Drill'd	
07-11-96	Not	Drill'd	
12-23-96	Not	Drill'd	
F-440	Not	Drill'd	
03-20-97	Not	Drill'd	
06-25-97	25.65	27.03	
08-04-97 08-18-97	25.88	26.8	
09-02-97	26.05	26.63	
09-02-97	25.95	26.73	
09-29-97	25.77	26.91	
10-16-97	25.46	27.22	
10-28-97	25.08	27.6	
11-10-97	24.66	28.02	
11-24-97	24.25	28.42	
12-08-97	23.89	28.78	
12-22-97	23.64	29.03	
01-05-98	23.63	29.04	
01-20-98	23.37	29.30	
02-02-98	23.51	29.16	
02-18-98	23.10	29.57	
្ត (ប្រតិការនៃមុខ)។ ការការការការការ	212.57 27.627	4(0.1) a	

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #15 Elevation** Top PVC 51.624 Feet, MSL

<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
	Not	Drill'd	
03-14-94			
05-10-95	Not	Drill'd	
07-11-96	Not	Drill'd	
12-23-96	Not	Drill'd	
03-20-97	Not	Drill'd	
06-25-97	Not	Drill'd	
08-04-97	17.47	34.15	
08-18-97	18.17	33.45	
09-02-97	18.47	33.15	
09-15-97	18.68	32.94	
09-29-97	18.65	32.97	
10-16-97	10.19	41.43	
10-28-97	10.16	41.46	
11-10-97	8.14	43.48	
11-24-97	8.19	43.43	
12-08-97	7.62	44.00	
12-22-97	9.05	42.57	
01-05-98	9.89	41.73	
01-20-98	10.54	41.08	
02-02-98	9.54	42.08	
02-18-98	8.91	42.91	
05-18-98	117.98	39.64	
06-16-98	13:16	38.46	

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #16
Elevation** Top PVC 58.839 Feet, MSL

<u>Date</u>	Depth to Water feet	Elevation of water feet	Comments
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
03-14-94	Not	Drill'd	
05-14-94	Not	Drill'd	
	Not	Drill'd	
07-11-96	Not	Drill'd	
12-23-96		3700 ft 6 1 1 0 0 0 0	
03-20-97	Not	Drill'd	
06-25-97	Not	Drill'd	
08-04-97	24.21	34.63	
08-18-97	24.63	34.21	
09-02-97	24.94	33.9	
09-15-97	24.95	33.89	
09-29-97	24.81	34.03	
10-16-97	23.32	35.52	
10-28-97	22.75	36.09	
11-10-97	22.46	36.38	
11-24-97	21.94	36.89	
12-08-97	21.70	37.13	
12-22-97	21.71	37.12	
01-05-98	21.66	37.17	
01-20-98	21.67	37.16	
02-02-98	21.74	37.09	
02-18-98	21.28	37.55	er :
(3/5 ± 14% ± 3%)	2162	37420	

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #17 Elevation** Top PVC 43.868 Feet, MSL

<u>Date</u>	<u>Depth</u> to Water	Elevation of water	Comments
	feet	feet	
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
03-14-94	Not	Drill'd	
	Not	Drill'd	
05-10-95	Not	Drill'd	
07-11-96	27.55		
12-23-96	Not	Drill'd	
03-20-97	Not	Drill'd	
06-25-97	Not	Drill'd	
08-04-97	9.33	34.54	
08-18-97	9.69	34.18	
09-02-97	9.92	33.95	
09-15-97	9.68	34.19	
09-29-97	8.99	34.88	297
10-16-97	4.28	39.59	
10-28-97	4.44	39.43	
11-10-97	3.64	40.23	
11-24-97	4.01	39.85	
12-08-97	4.45	39.41	
12-22-97	4.91	38.95	
01-05-98	5.58	38.28	
01-20-98	6.13	37.73	
02-02-98	3.82	40.04	
02-18-98	4.37	39.49	
gio Educación	(6) 4(0)	37.4(6	
(06=ft6±9)8		tions have been	corrected to Mc

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Ground Water Monitor Well #18
Elevation** Top PVC 52.438 Feet, MSL

<u>Date</u>	<u>Depth</u> to Water feet	Elevation of water feet	Comments
03-29-91	Not	Drill'd	
07-30-91	Not	Drill'd	
08-08-91	Not	Drill'd	
04-14-92	Not	Drill'd	
08-11-92	Not	Drill'd	
09-28-92	Not	Drill'd	
04-05-93	Not	Drill'd	
03-14-94	Not	Drill'd	
05-10-95	Not	Drill'd	
07-11-96	Not	Drill'd	
12-23-96	Not	Drill'd	
03-20-97	Not	Drill'd	
06-25-97	Not	Drill'd	
08-04-97	18.61	33.83	
08-18-97	18.47	33.97	
09-02-97	18.92	33.52	
09-15-97	18.78	33.66	
09-29-97	18.71	33.73	
10-16-97	16.65	35.79	
10-28-97	15.8	36.64	
11-10-97	15.14	37.3	
11-24-97	14.62	37.81	
12-08-97	14.25	38.18	
12-22-97	14.48	37.95	
01-05-98	14.67	37.76	
01-20-98	14.88	37.55	
02-02-98	15.16	37.27	
02-18-98	14.23	38.20	
05-18-58	155 (019)	37.34	
06-16-98	15 92	36 51	

^{**} All top of PVC casing elevations have been corrected to McCumber elevation survey of 07-29-97.

Summary of Site Survey Data City of Kingsville, Texas Municipal Solid Waste Landfill, 235-B

Location	Designation	Designation Top of PVC Elevation ft, MSL	Ground Surface ft, MSL	Total Depth of Boring ft, BGS	Bottom Elevation ft, MSL	Current	Stabilized GW Level ft, MSL	X-Distance UTM meters	Y-Distance UTM meters	X-Distance Coord. ft	Y-Distance Coord.
Benchmark	MW-12	6.						2221994.103	646980,6224	0 104	1.5808
MW-1	MM	61.867	59.249	43	16.249	A	33.47	2220665.243	646999,5297	-1328.7561	20.4879
MW-2	MW		5:			P&A					
MW-3	MW	59.173	56.096	37.5	18.596	K	35.27	2221265.118	647820.8196	-728.8815	841 7778
MW-4	MW	60.125	58.008	40	18.008	A	35.53	2221259.953	-	-734.046	1338 7433
MW-5	MM			(8)		P&A					
MW-6	MM	56.604	55.456	40	15.456	A	32.12	2220718.485	649721.5091	-1275.5146	2742 4673
MW-7	MW				0	P&A					
MW-8	MM	61.178	59.787	43	16.787	A	33.03	2219519.731	647166.5781	-2474.2682	187.5363
6-MM	MW				0	P&A					
-	MW	44.849	41.411	17	24.411	A	34.99	2219802.581	648511.0793	-2191.4181	1532.0375
MW-10	MW	52.684	49.78	29	20.78	А	34.42	2220240.82	648308.7984	-1753.1797	1329.7566
MW-11	MM	62.401	60.197	33	27.197	А	35.4	2220718.664	648494.0559	-1275.3351	1515.0141
MW-12	B/MW	54.879	52.375	48	4.375	A	32.78	2221993.999	646979.0418	0	0
MW-13	B/MW	62.096	59.131	90	9.131	А	32.83	2221973.889	648365.0778	-20.1103	1386.036
MW-14	B/MW	52.677	49.938	42	7.938	A	26.9	2221949.041	649712.8948	-44.9587	2733.853
MW-15	B/MW	51.624	48.386	37	11.386	A	32.97	2219474.512	649668.9772	-2519.487	2689.9354
MW-16	B/MW	58.839	55.958	47	8.958	A	34.02	2219497.15	648312.4767	-2496.8494	1333,4349
BP-17	В	43.868	41.345	33	8.345	A	34.87	2220139.183	648928.7974	-1854.8164	1949.7556
BP-18	В	52.438	50.039	42	8.039	A	33.72	2221252.488	648943.6517	-741.5117	1964.6099
BP-21	В		52.41	84	-31.59	A		2221237.99	649701.98		2722.9382
BP-23	В		49.5	98	-36.5	A		2219486.9	648937.78		1958.7382
BP-24	B/MW		47.38	72	-24.62	A		2221358.12	646971.06		-7.9818
BP-25	В		61.12	88	-26.88	A		2220722.02	648314.56		1335.5182
S/W Corner	0,0			3				2219514.47	646930.27	-2479.5292	-48.7718

Footnotes:

Soil Borings 1, 2, 3, 4, 5, & 6 completed by REI: 6-19-84 to 10-3-84 Soil Borings 7 & 8 completed by Martin Water Well: 7-31-91

Soil Borings 9 & 10 completed by JEDI: 3-20-92 to 3-24-92 Soil Borings 9R & 11 completed by PSI: 7-11-96

P&A=Plugged & Abandoned

MW=Monitor Well

A=Active B=Boring

Soil Borings 12 through 18 completed by PSI: 7-7-97 to 7-28-97

The deepest excavation elevation is +8.37 feet NGVD

Coordinates for deep soil borings (B-21 - B-25) are currently being verified.

D-48

City of Kingsville, Texas

Municipal Solid Waste Landfill Permit 235-B

Summary of Site Survey Data South West Corner = 0,0

MW#	X" Coordinate (feet)	Y" Coordinate (feet)
Benchmark	2480.13	9.578676
MW-1	1151.76	50.33381
MW-2		
MW-3	1765.06	861.649
MW-4	1768.07	1358.632
MW-5		
MW-6	1249.75	2771.07
MW-7		
MW-8	9.14996	236.1952
MW-9		
MW-9R	314.069	1575.864
MW-10	748.922	1366.404
MW-11	1229.75	1543.78
MW-12	2480	8
MW-13	2482.68	1394.179
MW-14	2480	2742.223
MW-15	5.08411	2739
MW-16	5.41377	1382.31
BP-17	657.494	1987.991
BP-18	1770.89	1984.537
BP-21	2524.77	2730,57
BP-23	2512.21	1966.473
BP-24	2479.87	0.019279
BP-25	2501.96	1343.338
S/W Corner	0.00407	0.005581

FOR PERMIT PURPOSES ONLY	Part III
	7, 3
APPENDIX E	

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

APPENDIX E

IN-SITU HYDRAULIC CONDUCTIVITY TEST DATA

Ξ-1
E-2
E-3
E-4
Ξ-5
E-6
E-7
E-8
E-9
-10
-11
-12
-13

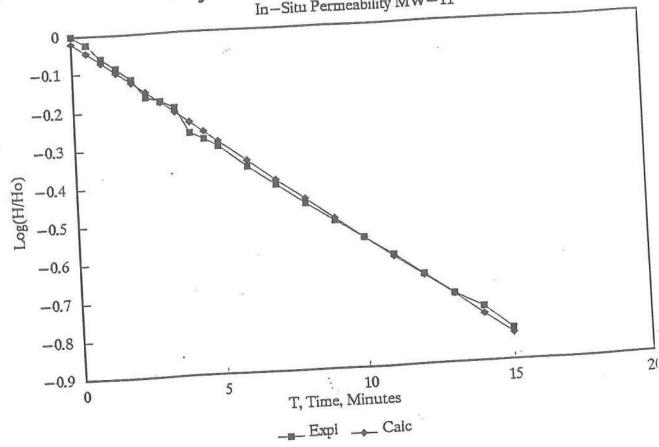
November 1997

THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY. INCLUDES PAGES $\underline{\mathcal{E}}$ -\text{THROUGH} $\underline{\mathcal{E}}$ -\text{!}^3

E-0

SUMMARY OF IN-SITU HYDRAULIC CONDUCTIVITY TEST RESULTS Municipal Solid Waste Landfill Kingsville, Texas

Piezometer	Estimated Horizontal Hydraulic Conductivity(K)							
Number	ft/sec	ft/min	ft/day	cm/sec				
MVV-11	6.6x10 ⁻⁶	3.96x10 ⁻⁴	0.57	2.01x10 ⁻⁴				
MW-12	2.4x10 ⁻⁵	1.43x10 ⁻³	2.05	7.24x10 ⁻⁴ 2.71x10 ⁻⁴				
MW-13	8.9x10 ⁻⁶	5.33x10 ⁻⁴	0.77					
MW-14	4.2x10 ⁻⁶	2.49x10 ⁻⁴	0.36	1.27x10 ⁻⁴				
MW-15	1.7x10 ⁻⁵	1.05×10 ⁻³	1.51	5.31x10 ⁻⁴				
MW-16	2.0x10 ⁻⁵	1.22x10 ⁻³	1.75	6.18x10 ⁻⁴				
1111110								
Averages	1.35x10 ⁻⁵	8.13x10 ⁻⁴	1.17	4.12x10 ⁻⁴				

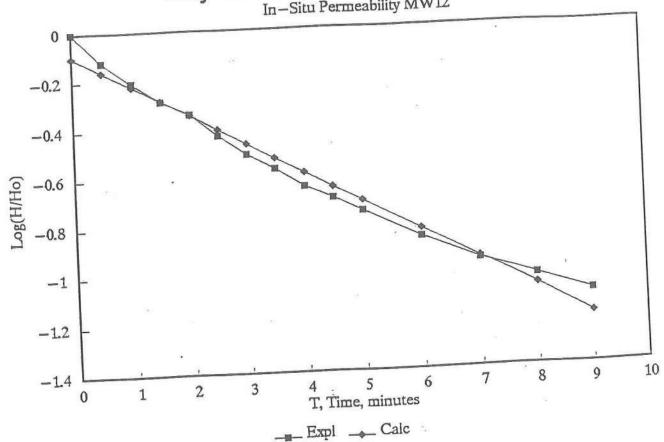

City of Kingsville MSWLF - Permeability Well Number 11

				VVCII	1 Tolling				
					Υ	X^2	X*Y_	calc'd	calc'd
	X	Depth	del h	del(h/ho)	log			del(h/ho)	log _
	Time	ft	ft					dei(iiiio)	
	min	11					*3		
		27.34	0	0	16	0	0	0.957611	-0.01881
	EQUIL 0	30.42	3.08	1	0	0.25	-0.01233		-0.04579
	0.5	30.25	2.91	0.944805	-0.02466		-0.06204	0.845739	-0.07276
	1	30.01	2.67	0.866883	-0.06204	2.25	-0.13332		-0.09974
	1.5	29.85	2.51	0.814935	-0.08888	2.25	-0.23867		-0.12672
	2	29.68	2.34	0.75974	-0.11933	6.25	-0.41583		-0.15369
	2.5	29.44	2.1	0.681818	-0.16633	9	-0.53676		-0.18067
	3	29.38	2.04	0.662338	-0.17892	12.25	-0.68703		-0.20765
	3.5	29.3	1.96	0.636364	-0.19629	16	-1.05297		-0.23462
	4	29.02		0.545455	-0.26324	20.25	-1.26776		-0.2616
	4.5	28.95	1.61		-0.28172	25	-1.50515		-0.28857
	5	28.88	1.54	0.5	-0.30103	36	-2.1493	0.454436	-0.34253
	6	28.69		0.438312	-0.35822	49	-2.86559		-0.39648
	7	28.54	1.2		-0.40937	64	-3.70596	0.35446	-0.45043
	8	28.4	1.08	0.344156	-0.46324	81	-4 59744	0.313051	-0.50439
	9	28.29	0.95	0.308442	-0.51083	100	-5.5913	2 0.276479	-0.55834
	10	28.19	0.8	5 0.275974	-0.55913	121	-6.6851	0.24418	-0.61229
	11			0.246753	-0.60774	144	-7.9497	1 0.215654	-0.66624
	12		0.6	7 0.217532		169		8 0.19046	-0.7202
	13		0.5	9 0.191558	-0.7177 -0.75616	196		2 0.16821	-0.77415
-3	14		0.5	4 0.175325		225	2012/10/2012		-0.8281
	15		0.4	7 0.152597	-7.54376	1281.25			
	132.5				-7.54510	120112			
			005						
		delta=	935		A=	-0.01881	k.		
		alpha=	-175.88	33	B=	-0.0539	5 '		
		beta=	-504.45	80	D	U.S. Tarketti U.S. Sagaran			
		K	//-A0#l=/	(L/R))/(2*L*T	(0)				
		K=	0.16666	(UR))/(2 L 1	0))				
		r=	0.10000	17 ft					
		L=							
		R=	0.4166	65 min	7.654617	,			
		To=			7.00				
		K=	0.0003						
			0.0002				* 1		
			6.6E-						
			0.5703	41 Iuuay					

City of Kingsville MSWLF - Permit 235 B Attachment 5 - Groundwater Characterization Report

FIGURE 6

City of Kingsville, TX MSWLF In-Situ Permeability MW-11

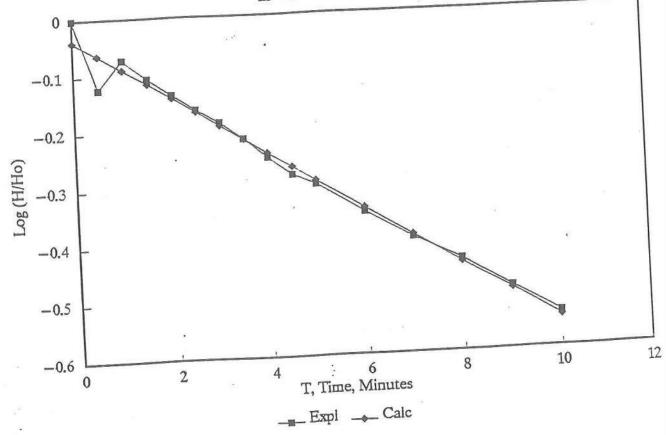

City of Kingsville MSWLF - Permeability Well Number 12

				Υ	X^2	X*Y	- a lold	calc'd	
X	Depth	del h	del(h/ho)	log			calc'd del(h/ho)	log	
Time min	ft	ft					del(II/IIO)	log	
111111						12			
EQUIL	21.99	0	0	•	0	0	0.796294	-0.09893	
0	24.9	2.91	1	0	0.25	-0.05975	0.692088	-0.15984	
0.5	24.2	2.21	0.75945	-0.1195	1	-0.20621	0.601519	-0.22075	
1	23.8	1.81	0.621993	-0.20621	2.25	-0.42737		-0.28166	
1.5	23.5	1.51	0.5189	-0.28492 -0.34004	4	-0.68008	0.454386	-0.34258	•
2	23.32	1.33	0.457045	-0.42647	6.25	-1.06617	0.394923	-0.40349	
2.5	23.08	1.09	0.37457	-0.42647	9	-1.51455		-0.4644	
3	22.9	0.91	0.312715	-0.56627	12.25	-1.98193		-0.52531	
3.5	22.78	0.79		-0.56627	16	-2.5774	0.259284	-0.58622	
4	22.65		0.226804	-0.69304	20.25	-3.11868	0.225353	-0.64714	
4.5	22.58	0.59		-0.74789	25	-3.73945	0.195862	-0.70805	
5	22.51	0.52		-0.86183	36	-5.171	0.147954	-0.82987	
6	22.39	0.4		-0.95874	49	-6.7112	0.111764	-0.9517	
7	22.31	0.32		-1.03253	64	-8.26023	0.084426	-1.07352	
8	22.26	0.27		-1.10217	81	-9.91949		-1.19535	
9	22.22	0.23	0.079036	-8.48881	326.25	-45.4335	i		
57.5	15			-0.40001					
	delta=	1587.5							
	alpha=	-157.046		A=	-0.09893				
	beta=	-193.396		B=	-0.12182				
	Deta								
	K=	((r^2*ln(L	/R))/(2*L*T	0))					
	r=	0.166667	7 ft						
	L=		2 ft						
	R=	0.41666	7 ft						
	To=		3 min						
	K=	0.00142							
	15.75	0.00072							
		2.4E-0							
		2.05151	1						

City of Kingsville MSWLF - Permit 235 B Attachment 5 - Groundwater Characterization Report

FIGURE 7

City of Kingsville, TX MSWLF In-Situ Permeability MW12

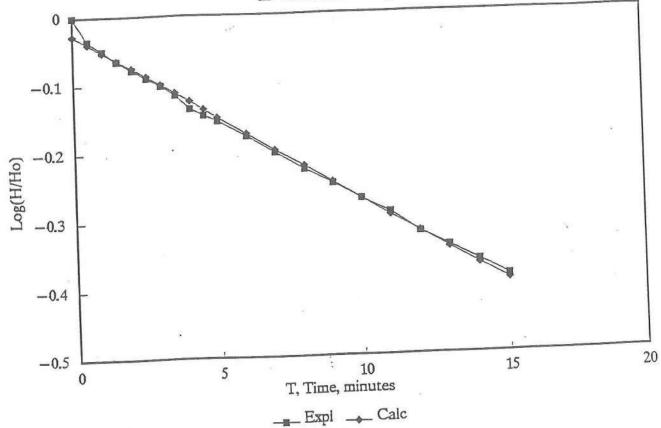

City of Kingsville MSWLF - Permeability Well Number 13

v				Y	X^2	X*Y		
X Time	Depth	del h	del(h/ho)	log			calc'd	calc'd
min	ft	ft	2.53 (1.56)	150 A			del(h/ho)	log
EQUIL	29.28	0	0	12			0.91348	-0.0393
0	32.6	3.32	1	0	0	0 0016	0.861725	-0.06463
0.5	31.78	2.5	0.753012	-0.1232	0.25	-0.0616	0.812902	-0.08996
1	32.09	2.81	0.846386	-0.07243	1	-0.07243	0.766845	-0.11529
1.5	31.88	2.6	0.783133	-0.10616	2.25	-0.15925 -0.27106	0.700043	-0.14062
2	31.71	2.43	0.731928	-0.13553	4	-0.40801	0.682411	-0.16595
2.5	31.56	2.28	0.686747	-0.1632	6.25	-0.56005	0.643748	-0.19128
3	31.44	2.16	0.650602	-0.18668		-0.75525	0.607274	-0.21662
3.5	31.3	2.02	0.608434	-0.21579	12.25 16	-0.75525	0.572868	-0.24195
4	31.15		0.563253	-0.2493	20.25	-1.26265	0.54041	-0.26728
4.5	31.02	1.74	0.524096	-0.28059	20.25	-1.49211	0.509792	-0.29261
5	30.95	1.67	0.503012	-0.29842	36	-2.10526	0.453662	-0.34327
6	30.76	1.48	0.445783	-0.35088	49	-2.78101	0.403711	-0.39393
7	30.61	1.33	0.400602	-0.39729	64	-3.50682		-0.44459
8	30.49	1.21	0.364458	-0.43835	81	-4.42579		-0.49525
9	30.35	1.07		-0.49175	100	-5.38867		-0.54591
10	30.24	0.96	0.289157	-0.53887	426.25	-24.2471	0.20 (000	
67.5	16			-4.04844	420.23	-24.2711		
17								
	delta=	2263.75		A=	-0.0393			
	alpha=	-88.9673		B=	-0.05066			
	beta=	-114.684		D-	-0.00000			
	16	//-A0*ln/l	(R))/(2*L*To	1))				
	K=	0.166667	#	,,,				
	r=		ft					
	L=	0.416667				(a)		
	R=		min					
	To=	0.000533			200			2
	K=	0.000333						
		8.9E-06						
		0.767944						
		0.707944	luday					

City of Kingsville MSWLF - Permit 235 B Attachment 5 - Groundwater Characterization Report

FIGURE 8

City of Kingsville, TX – MSWLF In-Situ Permeability MW-13

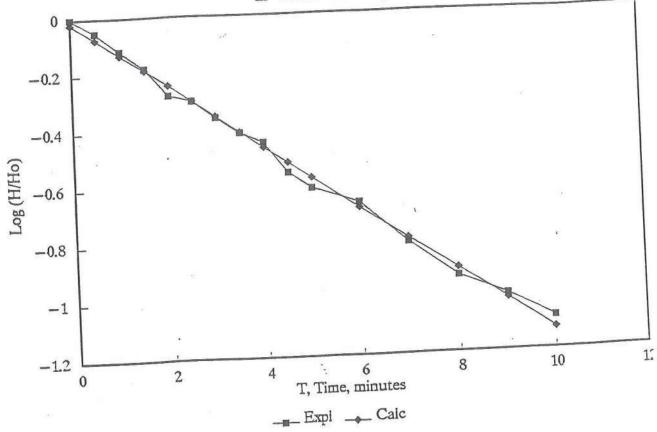

City of Kingsville MSWLF - Permeability Well Number 14

V				Y	X^2	X*Y		NAME OF THE PARTY OF
X Time	Depth	del h	del(h/ho)	log			calc'd	calc'd
min	ft	ft		1000			del(h/ho)	log
-								
EQUIL	25.9	0	0	200.0			0.939426	-0.02714
0	29.48	3.58	1	0	0			-0.03934
0.5	29.2	3.3	0.921788	-0.03537	0.25	-0.01768	0.913406	-0.05954
1	29.09	3.19	0.891061	-0.05009	1		0.888108	-0.06373
1.5	28.98	3.08	0.860335	-0.06533	2.25	-0.098		-0.00373
2	28.89	2.99	0.835196	-0.07821	4	-0.15642	0.839593	-0.08813
2.5	28.81	2.91	0.812849	-0.08999	6.25	-0.22490	0.816339	-0.10033
3	28.73	2.83	0.790503	-0.1021	9	-0.30629	0.793729 0.771745	-0.11253
3.5	28.64	2.74		-0.11613	12.25		0.75037	-0.11233
4	28.52	2.62	0.731844	-0.13558	16	-0.54233	0.73037	-0.13692
4.5	28.46	2.56		-0.14564	20.25		0.70938	-0.13032
5	28.41	2.51		-0.15421	25	-0.77105		-0.17352
6	28.28		0.664804	-0.17731	36	-1.06384		-0.17332
7	28.15		0.628492	-0.2017	49	-1.4119	0.633994	-0.22231
8	28.02	2.12	0.592179	-0.22755	64		0.599361	-0.22231
9	27.92	2.02		-0.24853	81	-2.23678	0.535667	-0.2711
10	27.82	1.92		-0.27058	100			-0.2955
11	27.73	1.83		-0.29143	121	-3.20575		-0.3199
- 12	27.61	1.71	0.477654	-0.32089	144	-3.85064		-0.3443
13	27.53	1.63		-0.3417	169	-4.44204		-0.36869
14	27.45	1.55		-0.36355	196	-5.08972		-0.39309
15	27.37	1.47	0.410615	-0.38657	225	-5.79849	0.404433	-0.00000
132.5	21			-3.80246	1281.25	-34.8541		
								9
	delta=	9350		44	0.00744			
	alpha=	-253.736		A=	-0.02714			
	beta=	-228.11		B=	-0.0244			
	7)							
	K=		/R))/(2*L*To	0))				
	Γ=	0.166667						
	L=		ft ·					
	R=	0.416667						
	To=		min					
	K=	0.000249						
		0.000127						
		4.2E-06						
		0.358744	ft/day					

City of Kingsville MSWLF - Permit 235 B Attachment 5 - Groundwater Characterization Report

FIGURE 9

City of Kingsville, Tx-MSWLF In-Situ Permeability MW-14

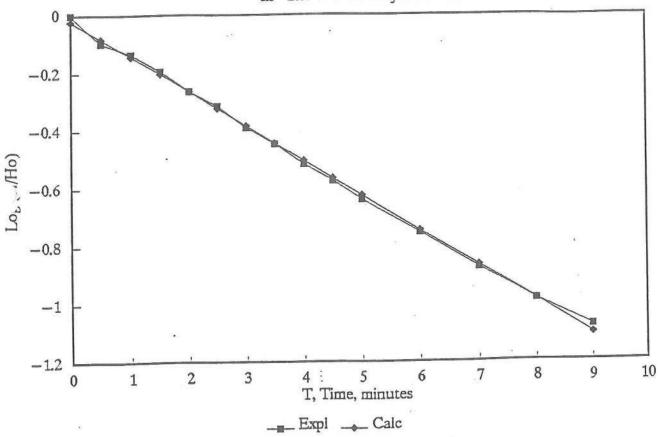

City of Kingsville MSWLF - Permeability Well Number 15

X	9			Υ	X^2	X*Y	III	
Time	Depth	del h	del(h/ho)	log	20		calc'd	calc'd log
min	ft	ft					del(h/ho)	log
EQUIL	18.57	0	0	•	0	0	0.95653	-0.0193
0	22	3.43	1	0	0 0.25	-0.0255	0.841835	-0.07477
0.5	21.62		0.889213	-0.05099	0.25	-0.11534	0.740892	-0.13025
1	21.2	2.63	0.766764	-0.11534	2.25	-0.11334	0.652053	-0.18572
1.5	20.84	2.27	0.661808	-0.17927		-0.55045	0.573867	-0.24119
2	20.39	1.82	0.530612	-0.27522	6.25	-0.74312		-0.29666
2.5	20.3	1.73	0.504373	-0.29725	6.25	-1.06895		-0.35213
3	20.08	1.51	0.440233	-0.35632		-1.44005	0.391197	-0.4076
3.5	19.9	1.33	0.387755	-0.41144	12.25	-1.78156		-0.46308
4	19.8		0.358601	-0.44539	16	-2.4886	0.303006	-0.51855
4.5	19.53	0.96		-0.55302	20.25	-3.05507		-0.57402
5	19.41		0.244898	-0.61101	25	-3.99637		-0.68496
6	19.31		0.215743	-0.66606	36	-5.67713	0.15999	-0.79591
7	19.1		0.154519	-0.81102	49			-0.90685
8	18.97		0.116618	-0.93323	64	-7.46587		-1.01779
9	18.91	0.34		-1.00382		-9.03434		-1.12874
10	18.85	0.28	0.081633	-1.08814	100	-10.8814		-1.12074
67.5	16			-7.79752	426.25	-48.5926		
100								
	delta=	2263.75		^-	-0.0193			
	alpha=	-43.6935		A=	-0.11094			
*	beta=	-251.149		B=	-0.11094			
	K=	(/r\2*In/L/	R))/(2*L*To	2))				
		0.166667		-//				88
	r= ! -		ft					
	L=	0.416667						
	R=		min					
	To=							
	K=	0.001046						
		0.000531						
		1.7E-05						
		1.505544	ft/day					

City of Kingsville MSWLF - Permit 235 B Attachment 5 - Groundwater Characterization Report

FIGURE 10

City of Kingsville, TX MSWLF In-Situ Permeability MW-15


Revision: 0

City of Kingsville MSWLF - Permeability Well Number 16

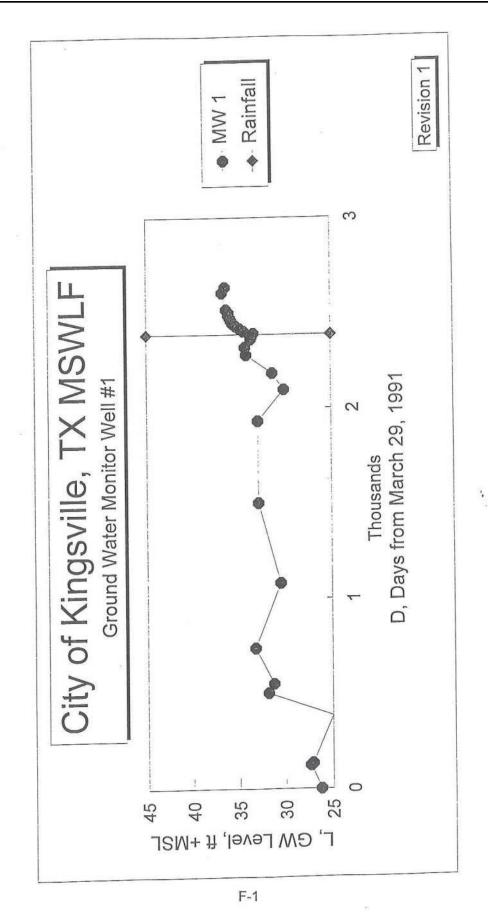
X				Υ	X^2	X*Y			
Time	Depth	del h	del(h/ho)	log			calc'd	calc'd	
min	ft	ft	201				del(h/ho)	log	
					28				
EQUIL	24.91	0	0		120		0.05017	-0.0222	
0	27.9	2.99	1	0	0	0	0.95017 0.827222	-0.08238	
0.5	27.3	2.39	0.799331	-0.09727	0.25	-0.04864		-0.14256	
1	27.1	2.19	0.732441	-0.13523	1	-0.13523	0.720182 0.626994	-0.20274	
1.5	26.82	1.91	0.638796	-0.19464	2.25	-0.29196	0.545863	-0.26292	
2	26.54	1.63	0.545151	-0.26348	4	-0.52697	0.475231	-0.3231	
2.5	26.36	1.45	0.48495	-0.3143	6.25	-0.78576	0.413738	-0.38327	
3	26.13	1.22	0.408027	-0.38931	9	-1.16793	0.360202	-0.44345	
3.5	25.98	1.07	0.35786	-0.44629	12.25	-1.56201	0.313593	-0.50363	
4	25.82	0.91		-0.51663	16	-2.06652	0.273016	-0.56381	
4.5	25.71	8.0		-0.57258	20.25	-2.57662	0.237688	-0.62399	
5	25.6	0.69		-0.63682	25	-3.18411		-0.74435	
6	25.44	0.53		-0.7514	36	-4.50837	0.13655	-0.86471	
7	25.31	0.4		-0.87361	49	-6.11528 -7.87448		-0.98507	
8	25.22	0.31		-0.98431	64	-9.69958		-1.10543	
9	25.16	0.25	0.083612	-1.07773	81	-40.5434		11.100 10	
57.5	15			-7.2536	326.25	-40.5454			
50	delta=	1587.5			0.0000				
	alpha=	-35.2406		A=	-0.0222				
	beta=	-191.069		B=	-0.12036				
		N MANON CONTRACTOR		**					
	K=		/R))/(2*L*To	9))					
	r=	0.166667						70	
	L=		ft						
	R=	0.416667							
	To=		min						
	K=	0.001216							
		0.000618							
		2E-05							
		1.750462	2 ft/day						

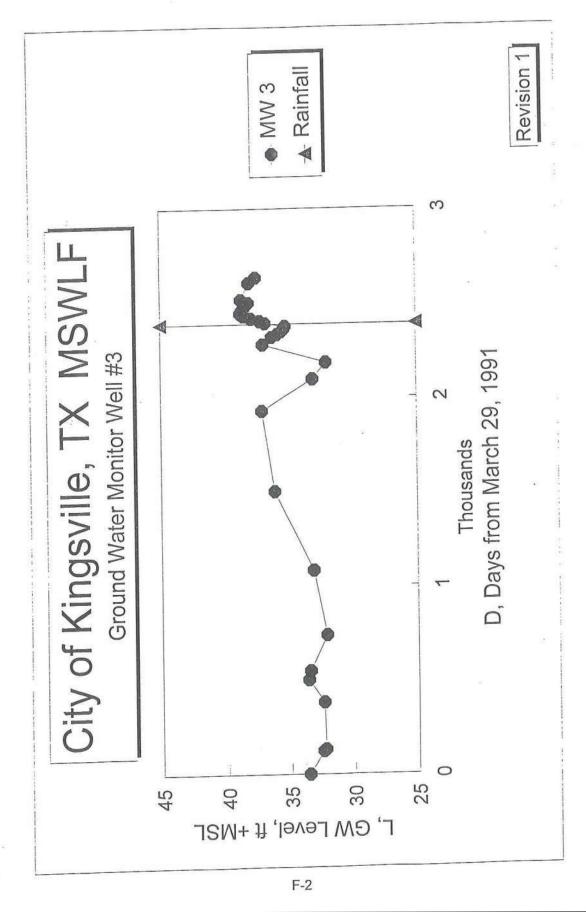
FIGURE 11

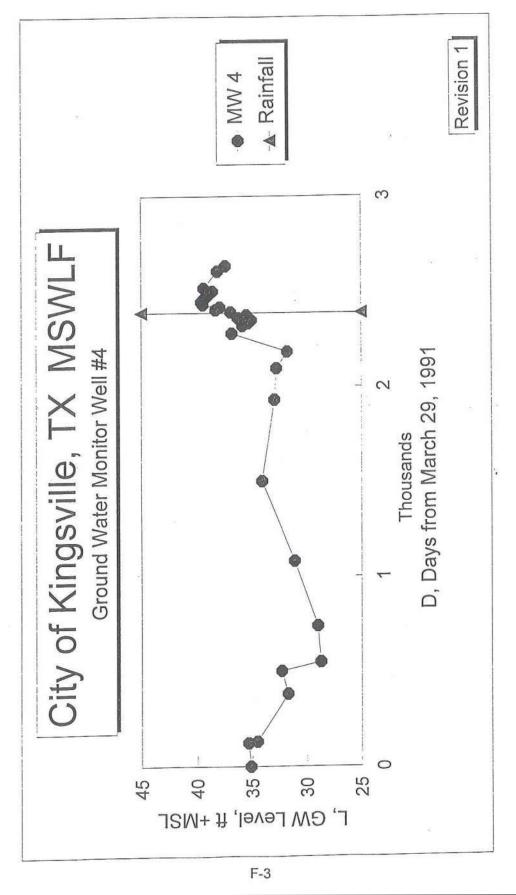
City of Kingsville, TX MSWLF In-Situ Permeability MW-16

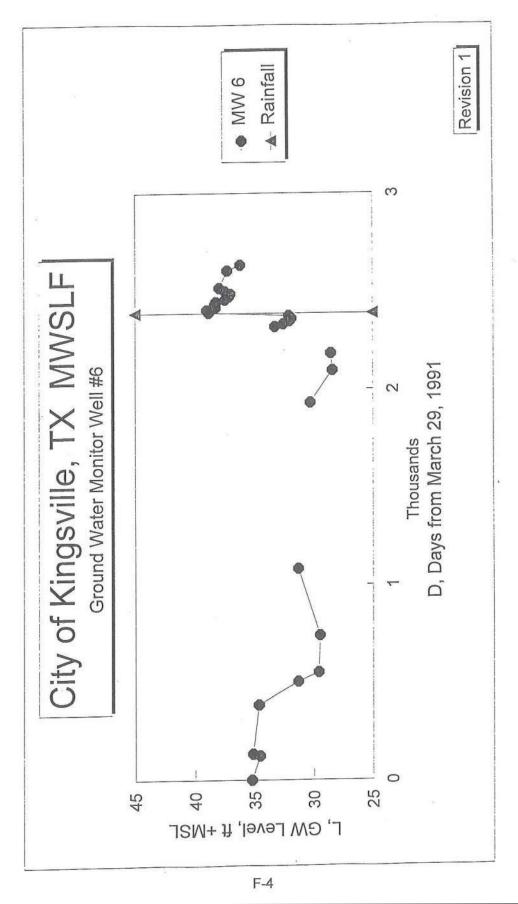
Revision: 0

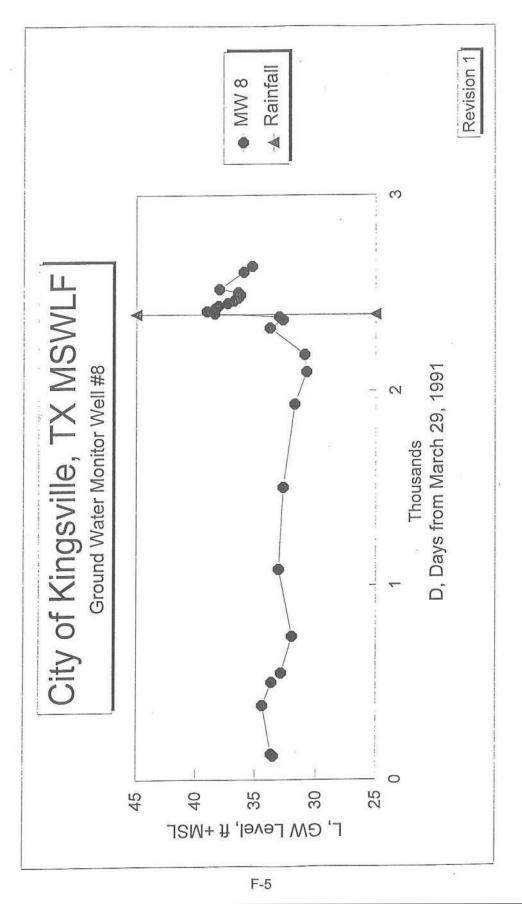
FOR PERMIT PURPOSES ONLY		Part III
AT	TACHMENT F	

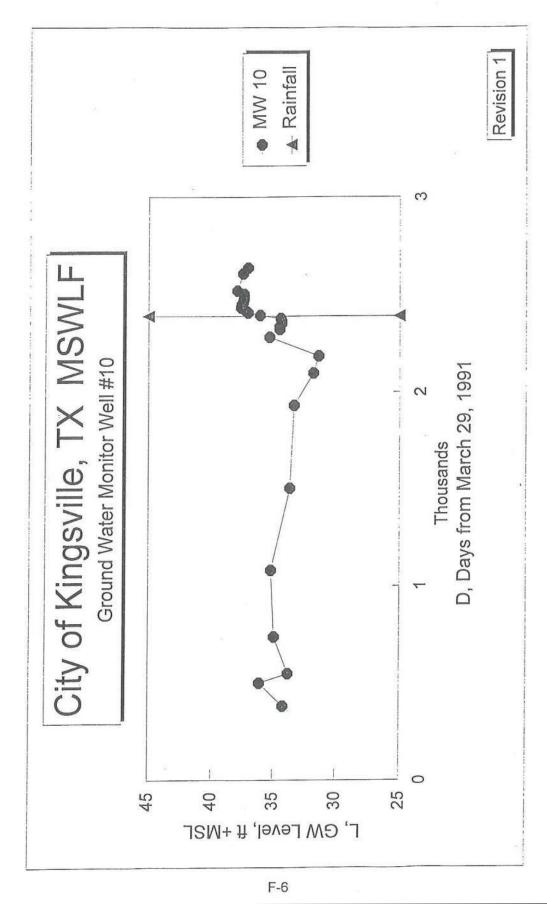

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

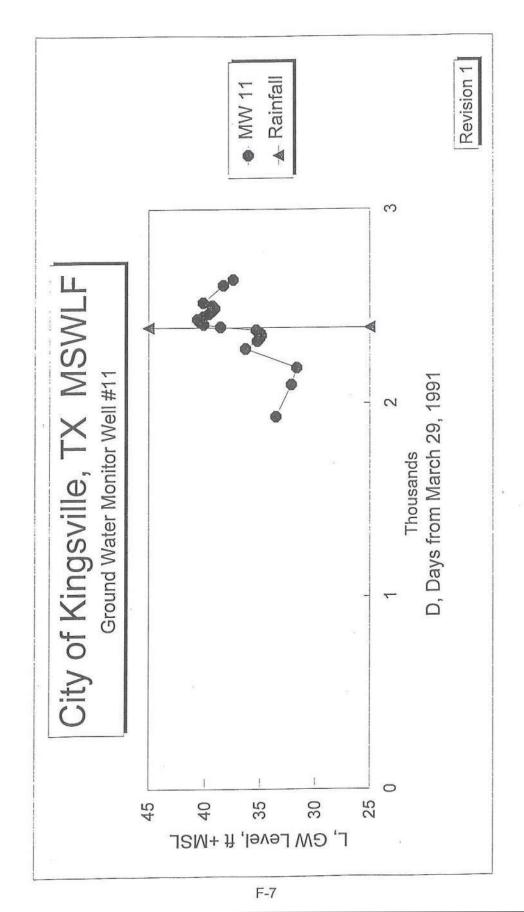

APPENDIX F

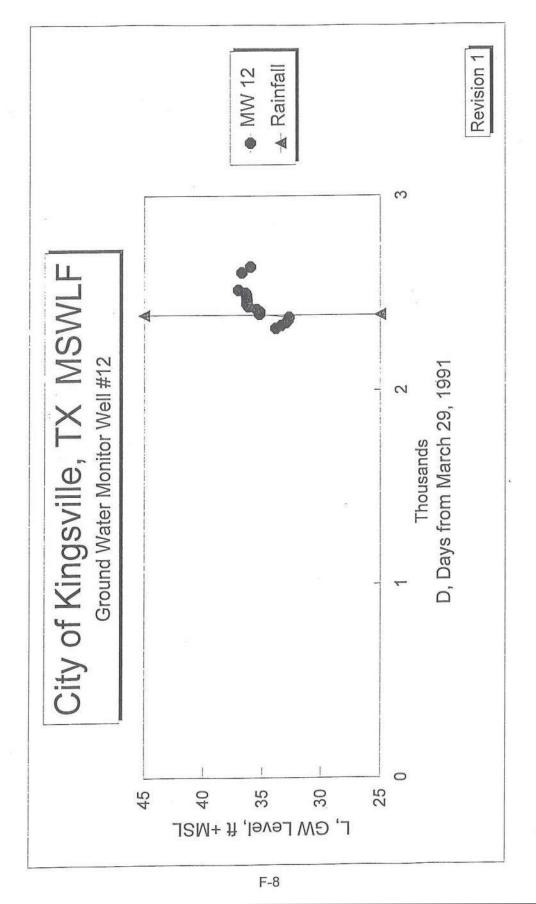

HYDROGRAPHS


Ground Water Monitor Well #1	F-1
Ground Water Monitor Well #3	F-2
Ground Water Monitor Well #3	E 3
Ground Water Monitor Well #4	F-3
Ground Water Monitor Well #6	F-4
Ground Water Monitor Well #8	F-0
Ground Water Monitor Well #10	1-0
Ground Water Monitor Well #11	1-1
Ground Water Monitor Well #12	F-0
Ground Water Monitor Well #13	L-2
Ground Water Monitor Well #14	-10
Ground Water Monitor Well #15	-11
Ground Water Monitor Well #16	-12
Ground Water Monitor Well #17	-10
Ground Water Monitor Well #18	-14

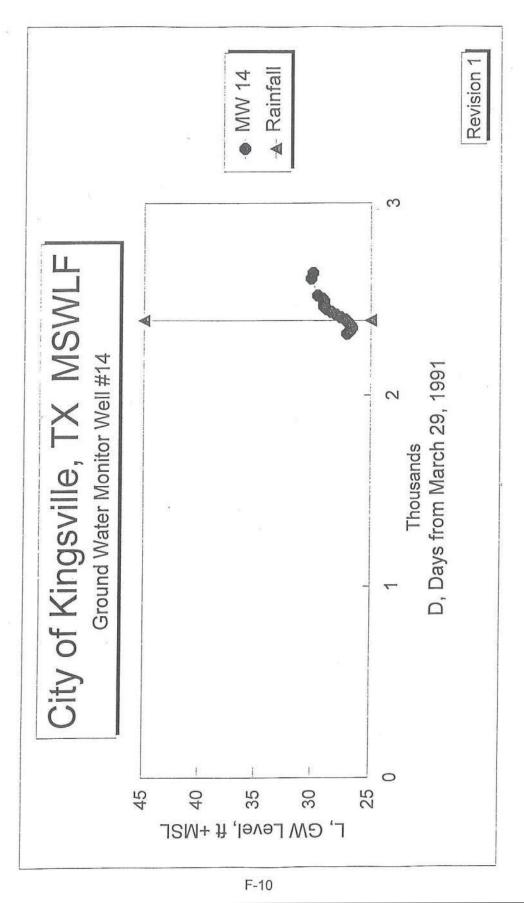

November 1997 Revision 1 - June, 1998

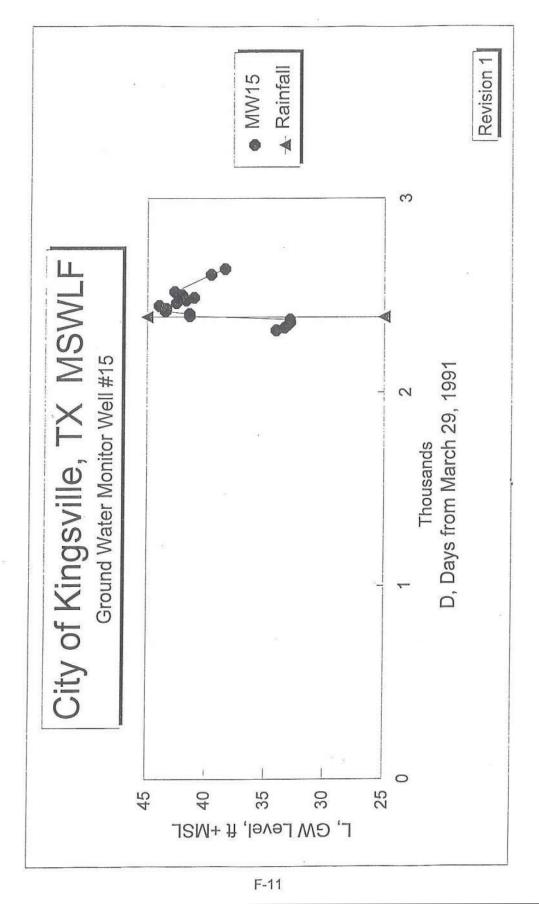


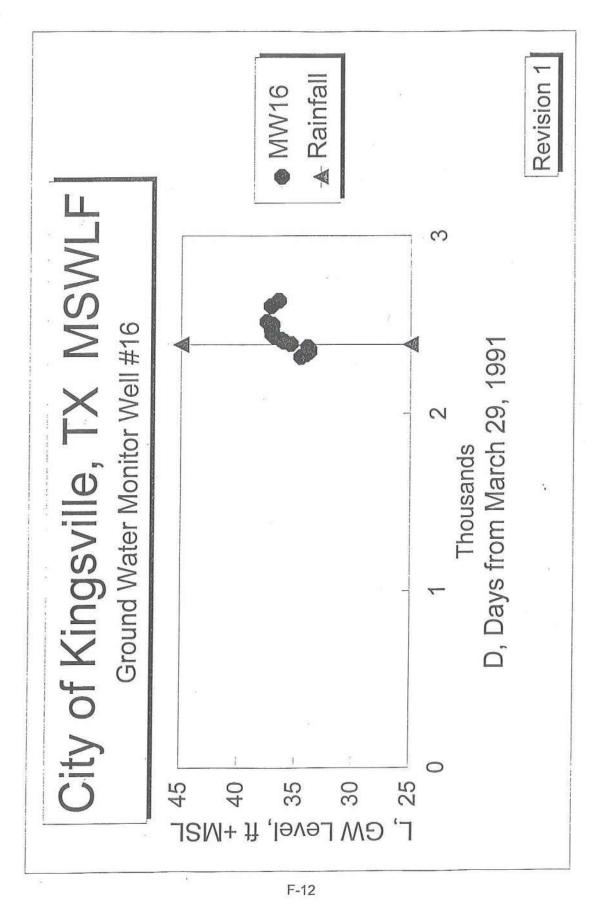


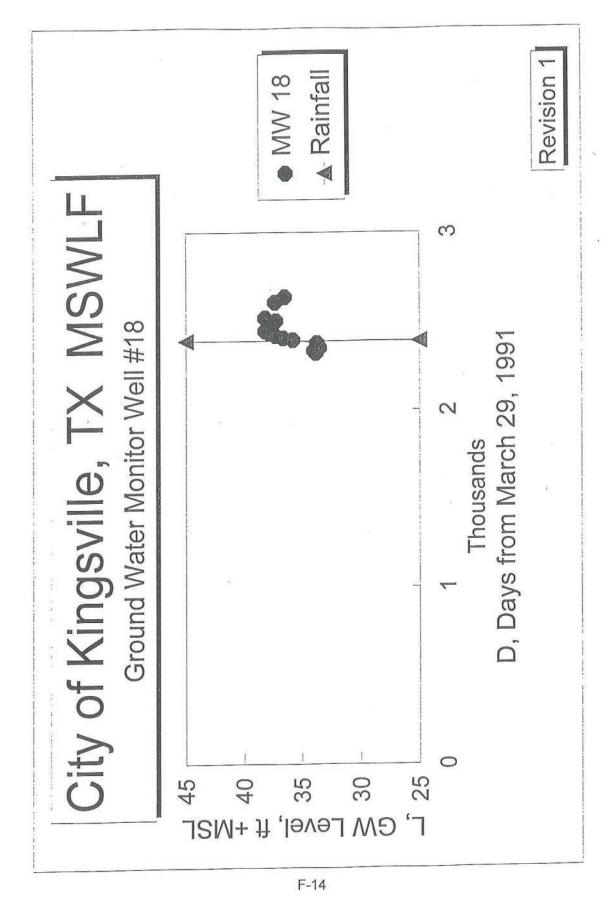












FOR PERMIT PURPOSES ONLY	Part III
APPENDIX G	
기타기, 그리는 보다 이렇게, 그게 된 아내라 그들이 그 전에 가하고 있었습니다. 이번 게임하다	

APPENDIX G

GEOTECHNICAL LABORATORY TEST REPORT

PSI Subsurface Exploration and Laboratory Analysis	3-1
Boring B-12	5-1
Boring B-13	5-9
Boring B-14 G-	11
	13
	15
BOURG D-10	17
BOIIIU D-1/	18
BOIIII D-10	20
BOTING B-Z1	
Boring B-23	-23
Boring B-24	-26
Boring B-25	-29
General Notes G-	-32
Organic Matter Content (ASTM D-2974-87) G-	-33
PH (ASTM D-4972-89)	-33
PH (ASTM D-4972-09)	-34
vvet and Dry Density	-36
G-1 Grain Size Distribution Guives	-37
Report of Soil Alialysis	-61
Summary of Test Results	
	-68
C 3 Hydraulic Conductivity Test Results	-80
C 4 Cation-Eychange Test Results	-00
C 5 Permeability Calculations	-00
G-6 Effective Cohesion/Angle of Internal Friction	109

November 1997 Revision 1 - June, 1998

G-1

September 2, 1997

Finch Energy & Environmental Services 1204 W. King P.O. Box 73 Kingsville, Texas 78364

Attn: Mr. Allen D. Walzel, M.S., P.E.

Re: Subsurface Exploration and

Laboratory Analysis

Proposed Landfill Expansion

Kingsville, Texas

PSI File Number: 326-72026

Gentlemen:

In compliance with your instructions, we have conducted a subsurface exploration and laboratory analysis for the above referenced project. The results of this investigation, are to be found in the accompanying report, two (2) copies of which are being transmitted herewith.

Often, because of design and construction details which occur on a project, questions arise concerning soil conditions, and PSI would be pleased to continue its role as Geotechnical Engineer during the project implementation.

PSI also has great interest in providing materials testing and inspection services during the construction of this project. If you will advise us of the appropriate time to discuss these engineering services, we will be pleased to meet with you at your convenience.

Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, INC.

Amy R. Rein, E.I.T.

Staff Engineer

Mark J. O Connor, P.E.

Geotechnical Department Manager

Information To Build Ga

Dhone 512/954_4801 • Fax 512/854-6049

1		psi)————————————————————————————————————	
4			G-2
]		TABLE OF CONTENTS	*
1		Page	
١		INTRODUCTION	
]		Authorization	
7		OD 1770N	*
J			
1	۵	Drilling and Sampling Procedures	
J		LABORATORY TESTING PROGRAM	
]		SUBSURFACE CONDITIONS	
1			
J		GENERAL COMMENTS 3	
1		APPENDIX Boring Logs SB-12 thru SB-18 (13 pages)	
		General Notes	
9		Organic Matter Content (plate 1) pH (plate 1)	
1		Wet and Dry Density (plate 2) Coefficient of Permeability (plate 3)	
1		Deviations (plates 4 & 5)	
1		Stress vs. Strain Curves (plates 6-16) Hydrometer Curves (plates 17-40)	
- 40			
]			
-1			
7			
1			
7			
1			
-			
1			
-m			

]	F	[psi]		G-3	
]					
ì			Table		
7					
J			SUBSURFACE EXPLORATION AND		
]			LABORATORY ANALYSIS		1
1	٤		FOR THE PROPOSED		
7		*	LANDFILL EXPANSION	*	
_		3	KINGSVILLE, TEXAS		
j				*	
7					
_					
			PREPARED FOR		
]			FINCH ENERGY & ENVIRONMENTAL SERVICES		
٦			1204 W. KING P.O. BOX 73		
7		81	KINGSVILLE, TEXAS 78364		
٦			*u		
]			•		
٦					
٦					
			BY CERTIFIES INC		
			PROFESSIONAL SERVICE INDUSTRIES, INC.		
1			PSI PROJECT NUMBER: 326-72026		
1					=

G-4

2

G-5

The samples obtained by this procedure were extruded by a hydraulic ram in the field. Samples were identified by Finch Energy & Environmental Services, according to boring number and depth, encased in moisture sealed plastic bags to protect against moisture loss, and transported to the laboratory in special containers.

LABORATORY TESTING PROGRAM

In addition to the field investigation, a supplemental laboratory testing program was conducted to determine additional pertinent engineering characteristics of the subsurface materials. All laboratory tests performed were assigned by Finch Energy & Environmental Services.

The laboratory testing program included supplementary visual classification (ASTM D-2487) on all samples. In addition, selected samples were subjected to water content tests (ASTM D-2216), wet and dry unit weight determinations (ASTM D-2937), unconfined compressive strength tests (ASTM D-2166), Atterberg Limit tests (ASTM D-4318), percent material finer than the #200 sieve (ASTM D-1140), sieve and hydrometer analysis (ASTM D-422), horizontal and vertical permeability tests (ASTM D-5084), organic carbon content tests (ASTM D-2974-87), and unconsolidated undrained triaxial tests (ASTM D-2850).

All phases of the laboratory testing program were conducted in general accordance with applicable ASTM Specifications. The results of these tests are to be found in the data tables and on the boring logs provided in the Appendix.

SUBSURFACE CONDITIONS

Boring Logs

The types of subsurface materials encountered in the test borings have been visually classified. They are described on the boring logs. The results of the field and other laboratory tests are presented on the boring logs and in the data tables provided in the Appendix. Representative samples of the soils were placed in moisture sealed plastic bags and are now stored in the laboratory for further analysis, if desired.

The stratification of the soil as shown on the boring logs represents the soil conditions at the actual boring locations. Variations in the noted soil conditions may exist in areas outside of the boring locations. Lines of demarcation as shown in the description column of the boring logs represent approximate changes in soil conditions. Such soil conditions include the soil type, color, moisture, consistency, relative density and other minor conditions. Dashed lines indicate slight changes in soil conditions whereas solid lines represent distinct

psi

G-6

changes. Both dashed and solid demarcation lines represent transitions of varying degrees, but the actual transitions may be more or less gradual, or not clearly defined.

It is to be noted that, whereas the test borings are drilled and sampled by experienced drillers, it is sometimes difficult to record changes in stratification within narrow limits. In the absence of foreign substances, it is also difficult to distinguish between discolored soils and clean soil fill.

GENERAL

The appendix attached contains the results of the tests as requested by the client. The boring logs are numbered SB-12 thru SB-18. The remaining tests are identified by plate number. Because some samples were outside ASTM tolerances for size, some slight deviations were noted (see plate 4). In addition, due to the fragile nature of some samples resulting in poor sample condition, some tests were not able to be performed (see plate 5).

In April 1998 deeper borings were tested. The borings are numbered MW-21, MW-23, MW-24, and MW-25. The results of the tests on these borings are attached as well.

PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-7 Boring: _ Date of Boring: July 7, 1997 City of Kingsville Landfill 326-72026 Project No.: _ Kingsville, Texas REMARKS Qu DEPTH SAMPLE DESCRIPTION - SURFACE -7.2 5-1 - SILTY CLAY, some sand, dark brown. s-2 SANDY CLAY, brown. 14.1 -#200=60% 5-3 SANDY CLAY, light brown. LL=41% 13.6 5-4 SANDY CLAY, light brown, (CL). PI=28 10 S-5 SANDY CLAY, light brown. 15 -#200=48% LL=51% 19.1 1.7 5-6 CLAYEY SAND, light brown, (SC). P1=28 20 -#200=33% LL=48% 23.6 2.4 5-7 CLAYEY SAND, light brown, (SC). P1=26 25 5-8 SANDY CLAY, light brown. 30 24.7 LL=53% s-9 CLAY, with sand, light brown, (CH). P1=29

PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-8 B-12 Page 2 Boring: Date of Boring: July 7, 1997 City of Kingsville Landfill roject Name: _ 326-72026 Project No.: Kingsville, Texas REMARKS Qp SAMPLE Qu DEPTH DESCRIPTION - SURFACE -CLAY, with sand, light brown, (CH). LL=51% 23.2 35 5-10 P1=24 -#200=51% 25.2 CLAY, with sand, light brown and light gray. 5-11 40 S-12 CLAY, with sand, light gray. 45 29.0 5-13 CLAY, some sand, light gray. LL=59% 30.2 5-14 CLAY, some sand, light grav, (CH). PI=25 Total Depth of Soring = 48 Feet.

Permit Amendment Application MSW-235C FOR PERMIT PURPOSES ONLY PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-9 B-13 City of Kingsville Landfill Date of Boring: July 7, 1997 326-72026 Kingsville, Texas Project No .: _ ite: __ REMARKS DEPTH SAMPLE Qu Qp Mc DESCRIPTION - SURFACE -5-1 - SILTY CLAY, dark brown. LL=30% SANDY CLAY, brown, (CL). P1=12 - SANDY CLAY, with sand, light brown. -#200=62% 5-3 8.0 -#200=66% 5-4 9.4. LL=43% - SANDY CLAY, light brown, (CL). P1=26 10 5-5 SANDY CLAY, light brown. LL=59% CLAY, with sand, light brown, (CH). 5-6 PI=36 20 21.3 LL=59% s-7 CLAY, some sand, light gray, (CH). P1=29 21.3 5-8 CLAY, with sand, light brown. LL=63% 5-9 2.3 21.6 CLAY, with sand, light brown, (CH). PI=29 -#200=48% 18.6 S-10 CLAYEY SAND, light brown. 30

PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-10 B-13 Page 2 Boring: __ oject Name: City of Kingsville Landfill Date of Boring: July 7, 1997 326-72026 Project No.: Kingsville, Texas REMARKS Mc SAMPLE DESCRIPTION - SURFACE --#200=46% 23.9 LL=59% 3.2 S-11 CLAYEY SAND, light brown, (SC) PI=28 20.3 S-12 CLAYEY SAND, light brown. 5-13 CLAYEY SAND, light brown. 26.9 LL=56% 0.38 5-14 CLAYEY SAND, light brown, (SC). P1=24 -#200=30% 24.7 S-15 FINE SAND, with clay, light brown. Non Plastic 26.7 S-16 FINE SAND, some clay, brown. Total Depth of Boring = 49.0 Feet.

PROFESSIONAL SERVICE INDUSTRIES, INC. G-11 RECORD OF SUBSURFACE EXPLORATION Boring: _ Date of Boring: __ July 7, 1997 City of Kingsville Landfill roject Name: __ 326-72026 Project No.: _ Kingsville, Texas Mc REMARKS SAMPLE Qp DEPTH DESCRIPTION - SURFACE -5-1 SANDY CLAY, dark brown. -#200=56% 11.5 LL=44% 5-2 SANDY CLAY, brown, (CL). P1=26 10 14.4 -#200=53% 5-3 SANDY CLAY, light brown. 19.0 LL=63% 5-4 · CLAY, with sand, light gray, (CH). P1=37 22.2 S-5 - CLAY, with sand, light gray. 20 LL=58% 24.8 5-6 CLAY, light gray, (CH). PI=33 28.5 -#200=46% S-7 CLAYEY SAND, light brown. 30

PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-12 Boring: B-14 Page 2 Date of Boring: ___July 7, 1997 Project Name: ____City of Kingsville Landfill 326-72026 Project No.: _ Kingsville, Texas REMARKS Mc DEPTH DESCRIPTION - SURFACE --#200=66% LL=50% 29.3 SANDY CLAY, light brown, (CL). P1=27 25.7 LL=61% 5-9 CLAY, trace sand, brown, (CH). P1=33 S-10 CLAY, trace sand, brown, (CH). 35 -#200=85% LL=64% 26.0 S-11 - CLAY, some sand, light brown, (CH). PI=37 29.5 LL=41% S-12 SILTY CLAY, some sand, light brown, (CL). P1=15 40 Total Depth of Boring = 40.0 Feet.

Boring:		B-15	Dat	e of Bo	ring: _	July	7, 1997
te: Kingsville, Texas			Project No.: _				
DESCRIPTION	DEPTH	SAMPLE	N	Qu	Ωр	Мс	REMARKS
SURFACE -							
SILTY CLAY, with sand, dark brown.	-	s-1					
	_						
9	7						
	5 1						
	-						
9.0						12.3	-#200=47% LL=30%
CLAYEY SAND, light brown, (SC).	_	s-2				12.3	PI=19
-	-						
	10						549
- SANDY CLAY, light brown.	-	S-3				11.6	-#200=51%
CLAY, some sand, light brown.	-	S-4				12.9	-#200=55%
CLAY, with sand, light brown, (CH).		S-5				15.3	LL=68% PI=46
-	15	S-6	-			15.3	LL=79%
CLAY, some sand, light brown, (CH).							PI=56
						15.3	-#200=65% LL=79%
CLAY, with sand, light gray, (CH).		s-7) ATSAUTS	PI=56
_			1				
CLAY, with sand, light brown and light gray, (CH).	20	S-8				21.2	LL=83% PI=60
- CLAT, WICH SUITA, 113		Ī.					10.1
CLAY, with sand, light brown and light gray.		S-9					
CLAY, with sand, light brown and light gray.		s-10		1.56		20.1	-#200=53% LL=50%
CLAY, with sand, light brown and light gray, (CH)	25	S-11	-			21.3	PI=32
		S-12					
CLAY, with sand, light brown.		- 3-12			-		
City ish and light brown (CH).		S-13				26.5	-#200=58% LL=52%
CLAY, with sand, light brown, (CH).	90425					29.0	P1=35 -#200=66
CLAY, with sand, brown.	30	S-14				27.0	1250-00/
		1					

Boring: oject Name: <u>City of Kingsville</u>	Landfill	3-15 Pa	ge 2	n of Bo	oring:	Jul	v 7, 1997	
te: Kingsville, Texas	Langilli		Date of Boring:			326-72026		
					Qp	Мс	REMARKS	
DESCRIPTION	DEPTH	SAMPLE	N	Qu	Ф	nc .	KEIIAKKS	
SURFACE								
	_							
CLAYEY SAND, light brown, (SC).	_	s-15					LL'=29%	
CLATET SAME, 1.3.12	35						P1=8	
	_							
						27		
Total Depth of Boring = 37.0 Feet.	-							
	N -							
	M							
	-	1						
	-							
	_							
	-							
	-							
•	-	-						
l .	1	1				10	1	
	-	-						
	-	1						
-	-							
		1						
	1	4						
¥								
-								
e r								

PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-15 B-16 Boring: _ Project Name: City of Kingsville Landfill Date of Boring: July 7, 1997 326-72026 Project No.: _ Kingsville, Texas REMARKS DEPTH SAMPLE DESCRIPTION - SURFACE -5-1 SANDY CLAY, dark gray. 9.3 5-2 SANDY CLAY, dark gray. 5 -#200=31% LL=45% 11.6 5-3 CLAYEY SAND, light brown, (SC). P1=23 10 5-4 FINE SAND, some clay, light brown. S-5 FINE SAND, some clay, light brown. 5-6 - FINE SAND, with clay, light brown. 15 5-7 # FINE SAND, with clay, light brown. 27.3 -#200=22% 5-8 - FINE SAND, with clay, light brown. Non Plastic -#200=24% LL=43% 22.3 5-9 - FINE SAND, with clay, light brown. PI=13 20 S-10 CLAYEY SAND, light brown. s-11 CLAYEY SAND, light brown. S-12 CLAYEY SAND, light brown. 25 s-13 CLAYEY SAND, light brown. -#200=30% 24.5 LL=50% 5-14 CLAYEY SAND, light brown, (SC). PI=29 s-15 30 III CLAYEY SAND, light brown. 5-16 - CLAYEY SAND, light brown.

Boring coject Name:City of Kingsvill	r:B- e_Landfill	16 Pac	Dat	a of B	oring: .	July	G-16
te: Kingsville, Texas			Pro	ject N	lo.: _	326	-72025
DESCRIPTION	DEPTH	SAMPLE	N	Qu	Qp	Мс	REMARKS
SURFACE —				-			
	-		*				
	_						
	-						-#200=46%
CLAYEY SAND, light brown, (SC).	-	s-17				19.4	LL=41%
	35						P1=24
CLAYEY SAND, light brown.	-	s-18				21.0	
ONDERTAIN OF OTHER MEDICAL STATE OF THE STAT						96	
SANDY CLAY, light brown.	_	s-19					2.0
	_						
SANDY CLAY, light brown.	40 🖫	s-20					
Jane 1 4277 , 11377							
CLAY, with sand, light gray.	_	s-21					
CLAI, WICH Sand, 11300 31-71							
· CLAY, some sand, light gray.	_	s-22					
- CLAY, some sand, tight gray.	45 🔣	18.59.05000					
l - CLAY, some sand, light brown, (CH).		s-23				30.6	-#200=83% LL=79%
- CLAY, same sand, tight brown, (chr.							*PI=51
Total Depth of Boring = 47.0 Feet.							
. GP.							
•							
-							
-							
_	-						
I							
•				e45			
							30
-9							
-3							
ı	1						
-9	_	1					
-	-	1					

PROFESSIONA RECORD OF	L SERV	VICE I	NDU	STRIE:	s, inc		G-17	
Boring: Loject Name: City of Kingsville	 Landfill	B-17	Dat	e of Bo	ring: _	July	7, 1997	
site:Kingsville, Texas				ject No	· · · _	326-72026		
DESCRIPTION	DEPTH	SAMPLE	N	Qu	Ωр	Мс	REMARKS	
SURFACE —								
- CLAYEY SAND, light brown.	-	s-1		* *				
FINE SAND, with clay, light brown.	_	s-2				21.6	Non Plastic	
H	5					35.0	-#200=25%	
FINE SAND, with clay, light brown.	-	S-3				J. CC	-#200-23%	
FINE SAND, with clay, light brown.		S-4				31.4	Non Plastic	
SANDY CLAY, light brown, (CL).	10	s-5				32.0	-#200=66% LL=41% P1=19	
CLAY, with sand, light brown.		s-6			3			
lm:	15							
- CLAY, with sand, light brown.	-	s-7						
CLAY, with sand, light brown, (CH).	-	s-8				31.5	LL=66% PI=46	
W	20							
CLAY, with sand, light brown.		S-9						
CLAY, with sand, brown.	-	s-10 s-11						
	25							
CLAY, some sand, light gray, (CH).		s-12				38.0	-#200=83% LL=74% PI=52	
F	-							
CLAY, with sand, light gray.	30	S-13						
CLAY, trace sand, light gray.		S-14		2.27		23.0	LL=62%	
CLAY, trace sand, light gray, (CH).		s-15		2.27			PI=41	

oject Name: City of Kingsville Lar	ndfill		Dat	o of Bo			7, 1997 72026
te: Kingsville, Texas		and the state of t				Mc	REMARKS
DESCRIPTION	DEPTH	SAMPLE	N	Qu	Qp	MC	REPIARES
SURFACE —			1.5				
SILTY CLAY, with sand, dark brown.	-	s-1					
CLAY, with sand, light brown.	-	s-2					(a)
CLAY, With Sand, tight Dismi-	5						
	-						-#200=60%
CLAY, with sand, light brown, (CH).	-	s-3				15.2	LL=59% PI=44
*	-						
CLAY, some sand, brown.	10	S-4				14.8	
	-						
CLAYEY SAND, light gray.		s-5				18.3	-#200=45%
	-						
	15	1					
CLAYEY SAND, light gray.		_ S-6					-#200=57%
CLAY, with sand, light gray, slightly slickensided (CH).		s-7		4.91		23.8	LL=58% PI=33
			1				-
CLAY, with sand, light gray.	20	S-8					
- CLAY, some clay, light gray.		· s-9					
and the same and t		-					
	25						
-		S-10				26.5	-#200=78% LL=66%
CLAY, with sand, light gray, (CH).	2	- 2-10					PI=47
						31.9	
CLAY, some sand, brown.	30	S-11				31.9	
CLAY, with sand, light brown.		-	\dashv				

City of Kingsville Landfill Permit Amendment Application MSW-235C Part III FOR PERMIT PURPOSES ONLY JFESSIONAL SERVICE HYDUSIA---RECORD OF SUBSURFACE EXPLORATION B-18 Page 2 Boring: __ Date of Boring: _ City of Kingsville Landfill ect Name: 326-72026 Project No.: Kingsville, Texas REMARKS Qp Mc Qu DEPTH SAMPLE DESCRIPTION - SURFACE 35 -#200=81% LL=73% 34.9 5-14 CLAY, some sand, light brown, (CH). PI=48 40 31.1 5-15 CLAY, some sand, light brown. Total Depth of Boring = 42.0 Feet.

Part III, Attachment 4, Appendix 1, p.g. 307

Hanson Professional Services Inc. Submittal Date: September 2018

Revision: 0

OR PERMIT PURPOSES ONLY		/1/ 1/ -					Part III	
PROFESSION RECORD	OF SUBSU					·		
THE CALL	ı:	B	20(4)				C 20	
ct Name: Kingsville Landfi	11	TIMEZ	Dat	e of Bo	ring: .	Apri	G-20 27, 1998	
e: Kingsville, Texas						326-82019		
DESCRIPTION	DEPTH	SAMPLE	N	Qu .	ар	Мс	REMARKS	
SURFACE —								
SANDY CLAY, dark brown, hard.	_	ss-1	-	t qu			-	
	n-						-	
	-	ss-2			4.5			
	- W	CF. 7			4.5			
becoming silty, turning brown.	5 🗵	SS-3			4.5			
		SS-4			4.5			
SILTY, turning tan.								
	_	ss-5			4.5		(<u>-</u>	
	10 🗵						1	
		SS-6			4.5			
= :	-							
'LTY CLAY, with sand, tan, hard.	-	ss-7			4.5			
	-				4.5			
	15 📱	8-22						
	-			180	4.5			
•		SS-9			4.2			
- More sand, very stiff.		ss-10			2.3			
- More sand, Very Still.	20							
	-	ss-11			2.3			
= -	-						96	
-	-	ss-12			3.5			
-	-							
hard.	25]	ST-13			4.5			
-	-		1					
- less sandy.		ST-14			4.5			
-		SS-15			4.5			
	30]							
V	,	SS-16			4.5			
	. —	-	+					
Continued on Next Page		-						
	1	_						

ect Name: Kingsville Landfill							27, 1998
e:Kingsville, Texas			Pro	ject N	·		
DESCRIPTION	DEPTH	SAMPLE	N	Qu	Qp	Mc	REMARKS
SURFACE -							
Continued	_						_
SAND, with clay, tan.	_	ss-17					-
	35	ss-18					В
	-	ss-19					_
	-	ss-20			4.3		-
SILTY CLAY, with sand, tan and brown, hard.	- 40]						2
SANDY SILTY CLAY, tan.		ss-21					-
SAND, some clay, tan.		ss-22					-
	45	ss-23					1
the sea bond	_	ss-24			4.5		
SILTY CLAY, with sand, tan, hard.		-					
*	50	_ ss-25			4.0		was 25%
trace sand, brown.	. 30	ss-26			4.5	37.8	-#200=95% LL=75% PI=40
		- ss-27			4.5		
- slickensided. -			-				
	55	SS-28			4.5		
		_ ss-29			4.5		FG
— very sandy, very stiff.		- ss-30			3.8		
yery sandy, very strice	6	0 11	-		4.5		
less sandy, hard.		- ss-31 -	-		-	3	
Continued on Next Page		-					

RECORD OF SUBSURFACE EXPLORATION

G-22 B +H-21 (Page 3) Boring: Date of Boring: __ April 27, 1998 Kingsville Landfill Project Name: ___ Project No.: 326-82019 : Kingsville, Texas

DESCRIPTION	DEPTH	SAMPLE	N	Qu	Ωр	Mc	REMARKS
SURFACE —							
	_						-
Continued	_						-
		77			4.5	27.7	-#200=86% LL=51% —
ILTY CLAY, some sand, grayish tan, hard.	_	ST-32			4.5		P1=25
	-						
	65	sr-33			4.5		B
an.	1 _			1		+3	-
		sT-34			4.5		-
		01.51					
	-						
	-	sr-35		1	4.5		
	70 }	1	1				
dalag wary stiff		ST-36			2.5		
trace calcareous nodules, very stiff.	1 .		-				
		ss-37		1	3.5		
*		55-57					1
	75	ss-38			2.8		
		-	-				
		_ ss-39			3.0		100
			_	1			
			+		4.0	24.6	-#200=78% LL=62%
turning hard.		- ST-40			4.0	2	PI=33
	80	N			1		
		_ sr-41		1	4.5		
		_	-				
		- sT-42			4.5		
		7 31 46					
. 9/ Foot		1					
Total Depth of Boring = 84 Feet.	85	I					
No groundwater readings.		-					
·		-					
-							
<u>-</u> x					1		
-		7					
4		III.			1.		-
•		-	2				
1		_					
		_					
-							
<u>L</u>		7			1	1	

PROFESSIONAL SERVICE INDUSTRIES, INC. RECORD OF SUBSURFACE EXPLORATION G-23 Boring: ___ Date of Boring: ___April 24, 1998 Project Name: Kingsville Landfill 326-82019 Project No.: __ Kingsville, Texas REMARKS Qp N Qu DEPTH SAMPLE DESCRIPTION __ SURFACE -SS-1 - CLAYEY SAND, dark brown, very dense. 4.5 turning brown, trace calcareous nodules. SS-2 4.5 5 H SS-3 2.0 - SANDY CLAY, dark brown, trace calcareous nodules, 55-4 very stiff. 0.8 SS-5 - CLAYEY SAND, dark gray. 10 0.5 55-6 - light brown. **SS-7** - becoming silty. 15 SS-8 IM SILTY SAND, with clay, tan. 55-9 SS-10 20 SS-11 - SILTY CLAYEY SAND, tan. 2.0 ss-12 - SILTY SANDY CLAY, tan, very stiff. 2.3 25 SS-13 CLAY, with sand, tan, very stiff. SS-14 - SILTY SANDY CLAY, tan. \$\$-15 4.5 SS-16 · SILTY CLAY, with sand, light brown, hard. Continued on Next Page

RECORD OF SUBSURFACE EXPLORATION G-24 B MW-23 (Page 2) Boring: Date of Boring: __April 24, 1998 rject Name: Kingsville Landfill 326-82019 Project No.: __ Kingsville, Texas REMARKS SAMPLE DEPTH DESCRIPTION - SURFACE -Continued ss-17 - SILTY SAND, trace clay, tan. 3.0 35 3 SS-18 M SANDY SILTY CLAY, tan, very stiff. -#200=88% LL=73% 36.9 SS-19 - SILTY CLAY, some sand, tan, very stiff. P1=37

- SILII CLAI, Some ,			- 1	- 1			-
-	- ss	-20		4.3			-
- hard.	40 園						H
some sand.	- ss	-21		4.5			1
- trace sand.	- ss	5-22		4.5			-
	45 g s:	s-23		4.5			No.
	- s	s-24		4.5		(*)	-
	- s	s-25		3.0			
very stiff.	50 T	ss-26		4.0			11
— hard. —	+	8		4.5			-
— slickensided.]	ss-27	ħ				-
	55 🔣	ss-28	•0	4.3			M
	-	ss-29		4.5			-
L beauty populitions ded	1	ss-30		4.5	27.7	-#200=80% LL=62% PI=32	-
— some sand, mottled tan and brown, non-slickensided	60 II			4.5		1,1-32	H
- tan.		ss-31		7-2			

Continued on Next Page

RECORD OF SUBSURFACE EXPLORATION

G-25 B 144-23 (Page 3) Boring: Date of Boring: __ April 24, 1998 "-oject Name: Kingsville Landfill 326-82019 Project No.: _ Kingsville, Texas REMARKS Qp N Qu SAMPLE DEPTH DESCRIPTION - SURFACE -Continued 4.5 SS-32 - SILTY CLAY, with sand, tan, hard. 4.5 65 SS-33 -#200=76% LL=59% 24.3 2.8 \$5-34 PI=31 very stiff. 4.0 ss-35 - hard. 70 摄 3.3 SS-36 - very stiff. 2.5 SS-37 - very silty. 4.3 75 ss-38 hard, less silty. \$\$-39 - FINE SAND, some clay, tan. SS-40 80 SS-41 4.5 55-42 - CLAY, some sand, tan, hard. 4.5 85 SS-43 Total Depth of Boring = 86 Feet. NO GROUNDWATER READINGS

RECORD OF SUBSURFACE EXPLORATION Boring: ______ G-26 Date of Boring: __April 28, 1998 Project Name: Kingsville Landfill 326-82019 Project No.: _ Kingsville, Texas REMARKS Qp Qu DEPTH SAMPLE DESCRIPTION _ SURFACE -4.5 - SANDY CLAY, mottled dark brown and brown, hard. 55-1 4.5 ss-2 - dark gray. 4.5 5 1 **SS-3** 3.0 SS-4 turning light brown, very stiff. - becoming silty, calcareous nodules, soft. ss-5 10 SS-6 **SS-7** SS-8 I turning tan. 55-9 ss-10 20 4.5 SS-11 4.3 SS-12 - SILTY CLAY, with sand, tan, hard. 4.5 25 ST-13 4.5 ST-14 trace sand. 4.5 ST-15 30 ST-16

Continued on Next Page

RECORD OF SUBSURFACE EXPLORATION

oject Name: <u>Kingsville Landfi</u> e: <u>Kingsville, Texas</u>	**						1 28, 1998 82019	
	DEPTH	SAMPLE	N	Qu	Ор	Мс	REMARKS	7
DESCRIPTION								7
SURFACE								4
Continued								-
CLAY, with sand, tan.	-	sT-17				36.4	-#200=80% LL=79% PI=38	
850	-				1.7		8	
hard.	35 🖁	ST-18			4.3			-
CLAY, trace sand, tan, hard.		ss-19			4.5)	-
4					A-10420			1
•1		- ss-20			4.5			M
I	40				1			
- trace calcareous nodules.		ST-21	E-		4.5			
7 0 (40		ST-22			4.5			-
-]						_
	45	₩ ST-23			3.5			H
becoming very stiff.								_
-		ST-24			4.5		*	_
becoming hard.								-
_		_ sT-25			4.5			
_	50	H	-				-#200=68%	H
		ST-26			4.5	27.7	LL=71% PI=36	-
— with sand.		_	-				F1-30	
		_ sr-27			4.5			-
		_	-					e e
La contraction of the contractio	55	ST-28			4.5]
■ becoming silty, less sand.		_	4	-				
-		_ ss-29			2.3			
<pre>- becoming very stiff.</pre>		-	-					8
		_ ss-30			4.5			13
- becoming hard.	6	0 1	-					
		- ss-31			4.3			
		+						125
Continued on Next Page		-						
		4						

RECORD OF SUBSURFACE EXPLORATION

Boring: MW-24 (Page 3) G-28

Boring: MW-24 (Page 3) Date of Boring: April 28, 1998

Project Name: Kingsville Landfill Project No.: 326-82019

a: Kingsville, Texas			Pro	oject i	No.: _	_	-82019
DESCRIPTION	DEPTH	SAMPLE	N	Qu	αр	Mc	REMARKS
SURFACE —					-		
	. -						-
***							-
		ss-32			1.8		-
SILTY CLAY, some sand, tan, stiff.							-
	er 19	65 77			4.5		- a
becoming hard.	65 g	ss-33			A.85		-
*	-					17.7	-#200=66% LL=50% —
with sand.	-	ss-34			4.5	17.7	PI=30
	-				1		
becoming very stiff.		ss-35			3.5		1 -
	70 }	4	1				B
		ss-36			3.0		-
			-				-
Total Depth of Boring = 72 Feet.							-
							-
							1
1							
- 91	£	-					
		-					- 0
		-					
		-					
-		H					
		_	1				
-							
_							
		H					
		-					
		-					
		-					
				Ÿ	~		1
Ш				48			
Γ							
-							
		-	1	1		1	T.
-							

- SAND, with clay, light brown.

Continued on Next Page

Boring: _a: Kingsville_Landfill _a: Kingsville, Texas DESCRIPTION SURFACE SANDY CLAY, light brown, hard. with Caliche.	DEPTH -	SAMPLE SS-1 SS-2 SS-3					1 29, 1998 -82019 REMARKS
DESCRIPTION SURFACE SANDY CLAY, light brown, hard.	DEPTH	ss-1 ss-2			αр		
DESCRIPTION SURFACE SANDY CLAY, light brown, hard.	DEPTH	ss-1 ss-2	N	Qu		Мс	REMARKS
SANDY CLAY, light brown, hard.	5 1	ss-2			4.5		_
SANDY CLAY, light brown, hard.	5 III	ss-2		74 - 4	4.5		_
with Caliche.	5 🛚						C ccc
with Caliche.	5 🗟	ss-3		1			_
with Caliche.	5	ss-3					a=
	-				4.5		
CALICHE, with sand, silty, hard.	-	- SS-4					-
more sand.	-	ss-5					8-
more sand.	10	-			1		1
	-	ss-6					
	-						
¥.	-	- ss-7					
	-	-					
H.	15 }	ss-8]
SAND, with clay, light brown.		ss-9					
estration (Environments - Tabouration - Discordani		-	-		1-		
` •		ss-10					
	20						
•		SS-11					
DE:		- ss-12					
·			-				
CLAYEY SILTY SAND, light brown.	25	SS-13					
		_	-				

ss-15

SS-16

30

RECORD OF SUBSURFACE EXPLORATION

B MW-25 (Page 2) G-30 Boring: Date of Boring: __April P. ject Name: Kingsville Landfill 326-82019 Project No.: Kingsville, Texas Mc REMARKS DEPTH SAMPLE Qp DESCRIPTION - SURFACE -Continued 3.8 SS-17 SILTY CLAY, some sand, tan, very stiff. 35 B SS-18 I CLAYEY SAND, tan. 2.8 55-19 - SANDY CLAY, tan, very stiff. 8.3 SS-20 40 3 2.5 SS-21 - SILTY CLAY, some sand, very stiff. 4.3 SS-22 Decoming hard. 45 SS-23 4.3 I trace sand. 55-24 3.3 - less silty, becoming very stiff. SS-25 - CLAYEY SAND, tan. SS-26 3.0 - SILTY CLAY, trace sand, tan, very stiff. -#200=87% LL=77% 31.8 4.5 ST-27 - CLAY, some sand, tan, hard. P1=43 4.5 ST-28 ST-29 4.5 ST-30 4.5 60 4.5 ST-31 Continued on Next Page

RECORD OF SUBSURFACE EXPLORATION

G-31

B ##-25 (Page 3) Boring: _ Date of Boring: April Project Nama: Kingsville Landfill Project No.: 326-82019 Kingsville, Texas DEPTH SAMPLE REMARK DESCRIPTION - SURFACE -4.5 - CLAY, trace sand, tan, hard. ST-32 -#200=92% LL=77% PI=39 4.5 30.5 65 3 ST-33 4.5 ST-34 ST-35 4.5 70 日 4.5 ST-36 4.5 ST-37 75 ST-38 4.5 4.5 ST-39 -#200=83% 20.5 LL=58% ST-40 4.5 - some sand. P1=31 80 4.5 ST-41 ST-42 4.5 85 ST-43 4.5 becomes silty. ST-44 4.5 very stiff. Total Depth of Boring = 86 Feet. No groundwater readings

1	Īī	Professio	onal Service Industries					
9	.			**************************************				G-32
Ц				GENE	RAL NOTES			
]		SAMPLE IDE	NTIFICATION					
50		The Ur	nified Soil Classific	aton System is u	sed to identify the so	oil unless ot	therwise noted.	
H		SOIL PROPE	RTY SYMBOLS					
J		N:	Standard "N" pen 30 inches on a 2 i		er foot of a 140 pour	nd hammer	falling	
400		Qu:	Unconfined comp	ressive strength	TSF.			10
		Qp:	Penetrometer val	ue, unconfined c	ompressive strength	, TSF.		
50		Mc:	Water content, %	٠.٠				
		LL:	Liquid limit, %.					
7		PI:	Plasticity index, %	6.				
J		δd:	Natural dry densit	y, PCF.				
1		₹:	Apparent groundy	vater level at tim	e noted after comple	etion of bori	ng.	
J		DRILLING AN	ND SAMPLING SYM	MBOLS				
		SS: ST:	Split-Spoon - 1 3/ Shelby Tube - 3"		except where noted.			
-		AU: DB:	Auger Sample. Diamond Bit.	olo, oloopi III				
]	1	CB:	Carbide Bit.					
7		WS:	Washed Sample.	PICTENCY CL AS	REIEICATION			
			ENSITY AND CON				145 - 25	
7		TERM (NON-COHESIVE	SOILS)	STANDARD PENET	RATION RE	ESISTANCE	
J			Very Loose Loose Medium			0-4 4-10		1 (9)
1			Dense Very Dense		3	0-30 0-50		
J					OV	er 50		
1		TER	M (COHESIVE SO	ILS)	Qu ·	(TSF)		
			Very Soft Soft			- 0.25 - 0.50		
]			Firm (Medium)		0.50) - 1.00) - 2.00		
v.			Very Stiff Hard			- 4.00		
		PARTICLE S			4.00			
		Boulders Cobbles	8 in.+ 8 in3 in.	Coarse Sand Medium Sand	5mm-0.6mm 0.6mm-0.2mm	Silt Clay	0.074mm-0.0	005mm 005mm
70		Gravel	3 in5mm	Fine Sand	0.2mm-0.074mm			

G-33

ORGANIC MATTER CONTENT (ASTM D-2974-87)

Sample	Organic Matter (%)
SB-12 0-2	0.77
SB-15 0-2	1.2
SB-17 0-2	0.52
SB-18 0-2	0.70

PH (ASTM D-4972-89)

Sample	Ph
SB-12 14-19	7.5
SB-12 46-47	7.6
SB-13 8-10	7.4
SB-13 20-25	7.5
SB-13 25-30	8.0
SB-14 10-15	7.5
SB-14 35-37	8.5
SB-15 10-12	7.0
SB-15 23-24	7.5
SB-16 16-18	8.0
SB-16 18-20	8.0
SB-17 0-5	8.0
SB-17 5-10	8.5
SB-17 23-24	8.5
SB-18 10-15	8.0
SB-18 15-17	8.5

WET AND DRY DENSITY (ASTM D-2937)

G-34

Sample		Wet Density (pcf)	Dry Density (pcf)
SB-12	2-3	114.96	101.2
	7-8	127.53	112.3
	14-19	121.84	102.3
	19-24	118.76	96.1
SB-13	4-8	108.79	100.7
	25-26	114.94	94.8
	26-27	123.27	101.4
	30-35	116.50	94.0
	35-36	112.63	93.6
	40-45	122.92	96.9
SB-14.	5-10	116.69	104.7
	10-15	113.11	95.1
	20-25	108.57	86.99
	30-33	114.20	88.3
	33-34	123.86	98.54
	34-35	116.82	92.7
	35-37	104.29	82.1
SB-15	5-10	- 126.40	112.6
	12-13	113.38	100.4
	-14-16	97.04	84.2
	24-25	121.79	100.0
SB-16	1-3	99.59	86.8
	3-5	114.66	104.9
	45-47	110.03	84.3
SB-17	8-9	85.07	64.6
	17-18	95.09	82.7
	23-24	111.74	94.5
	24-29	108.86	78.9
	32-33	115.38	93.8
SB-18	2-5 5-10 9-10 17-18 40-42	109.22 97.82 127.25 122.97 106.75	99.1 84.9 110.8 99.3

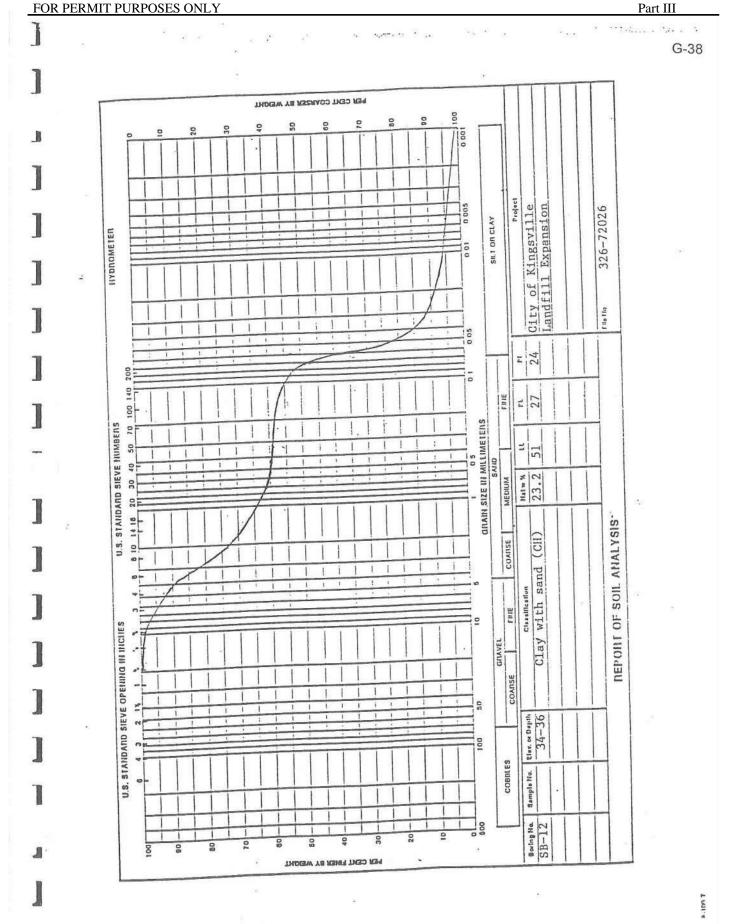
Part III, Attachment 4, Appendix 1, p.g. 322

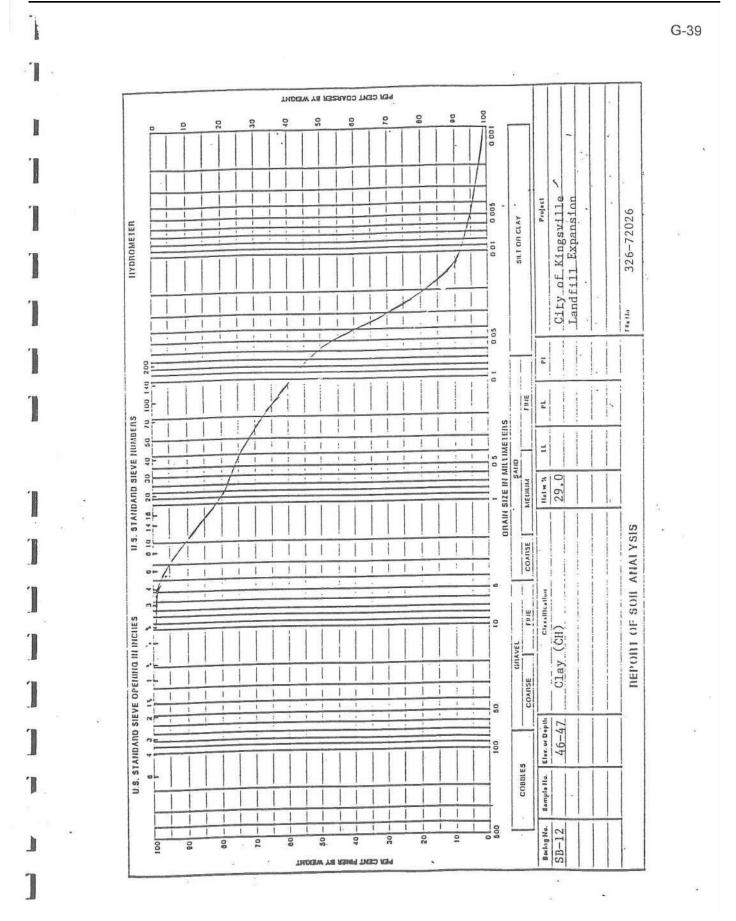
Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

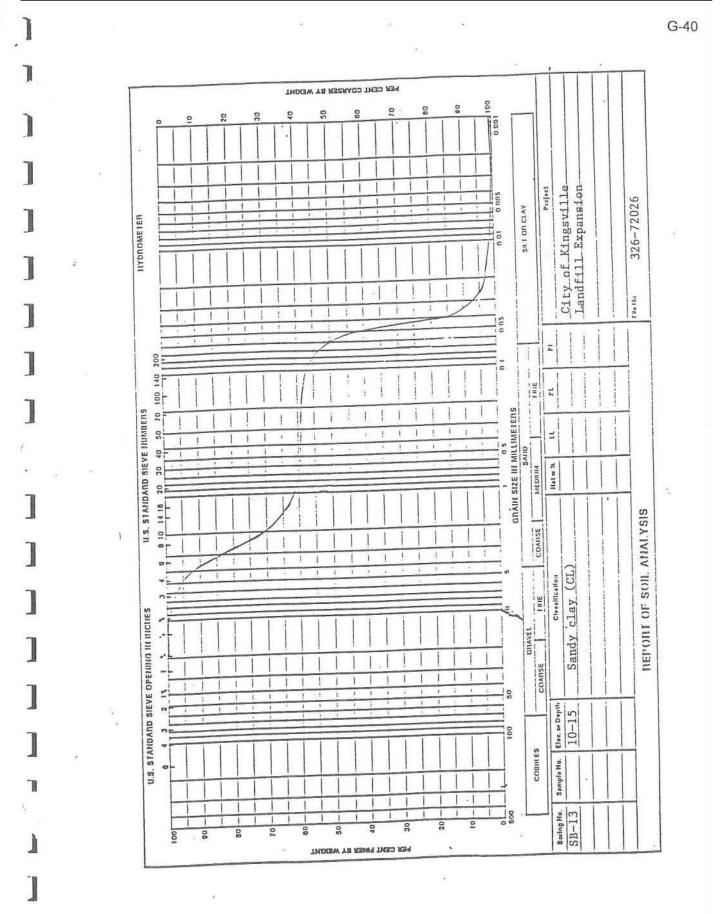
G-35

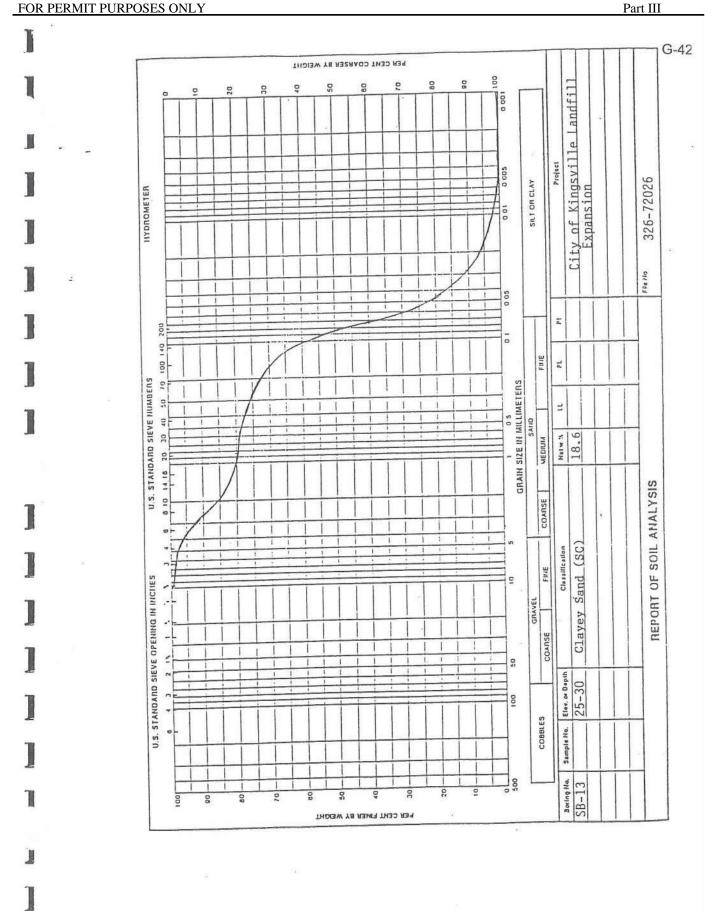
DENSITY DETERMINATION TESTS

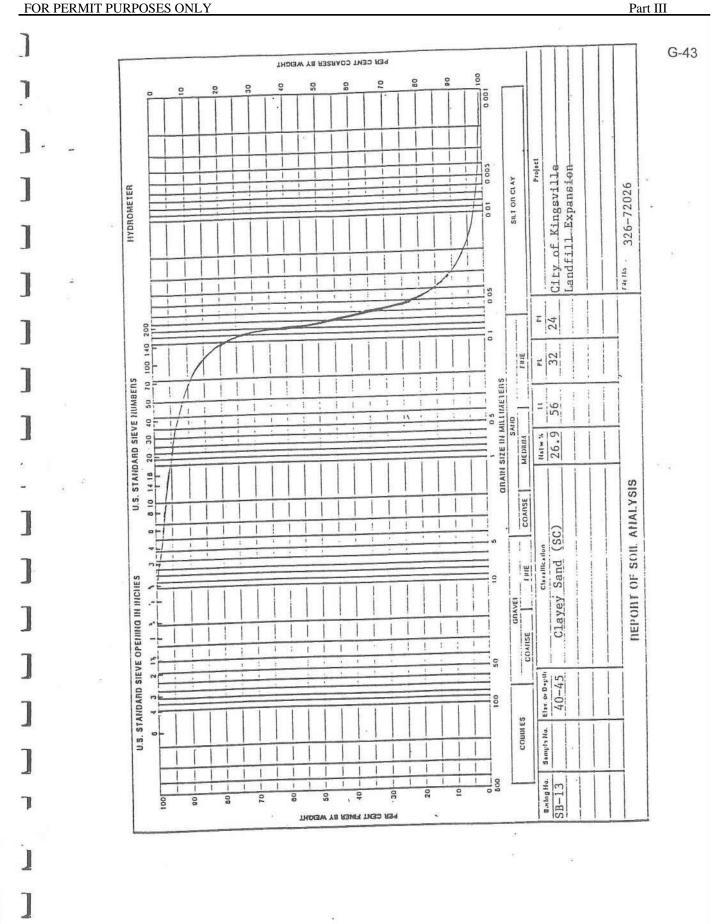
Tested for:

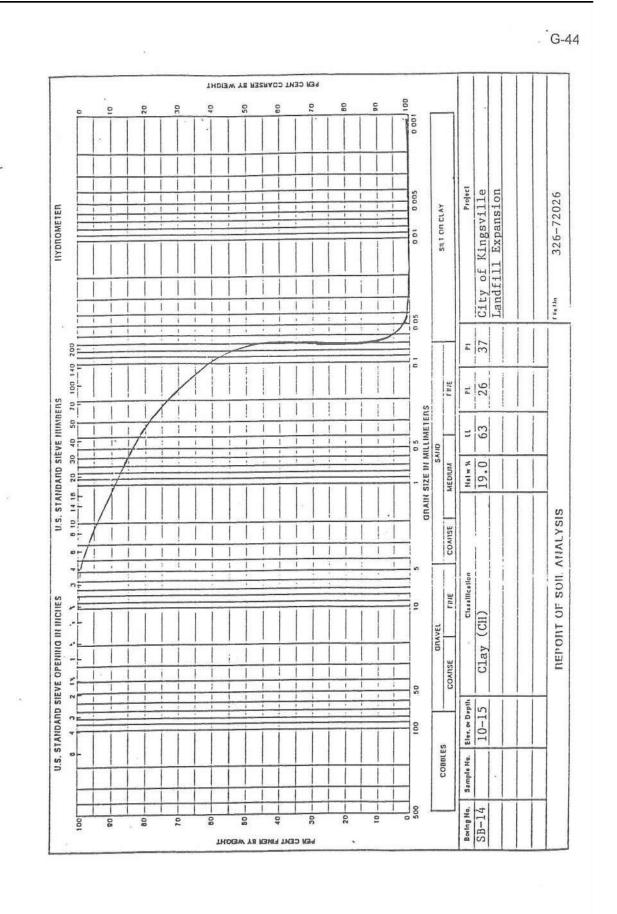

Ray N. Finch, Ph.D. P.E.

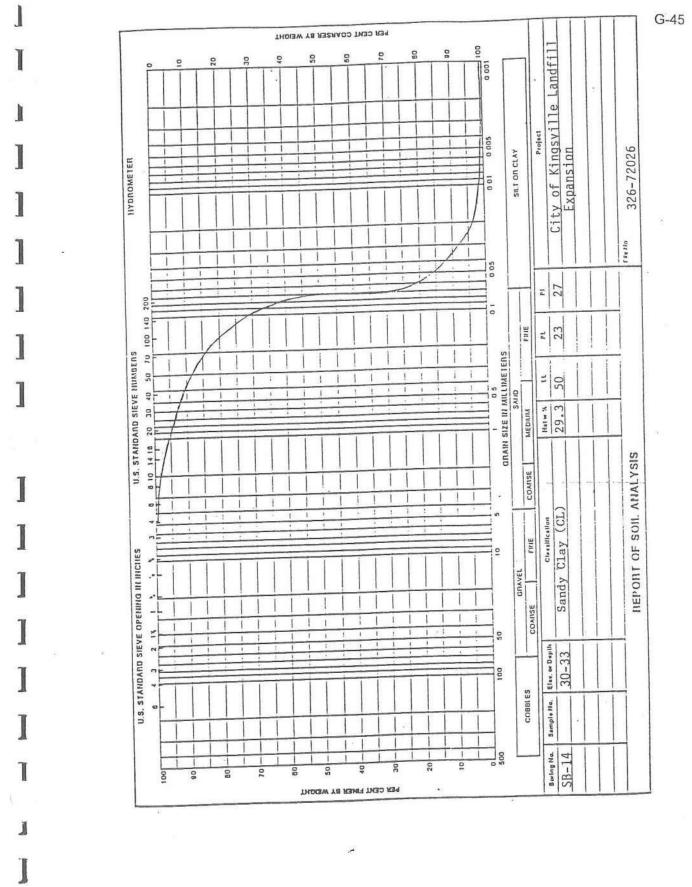

Company:

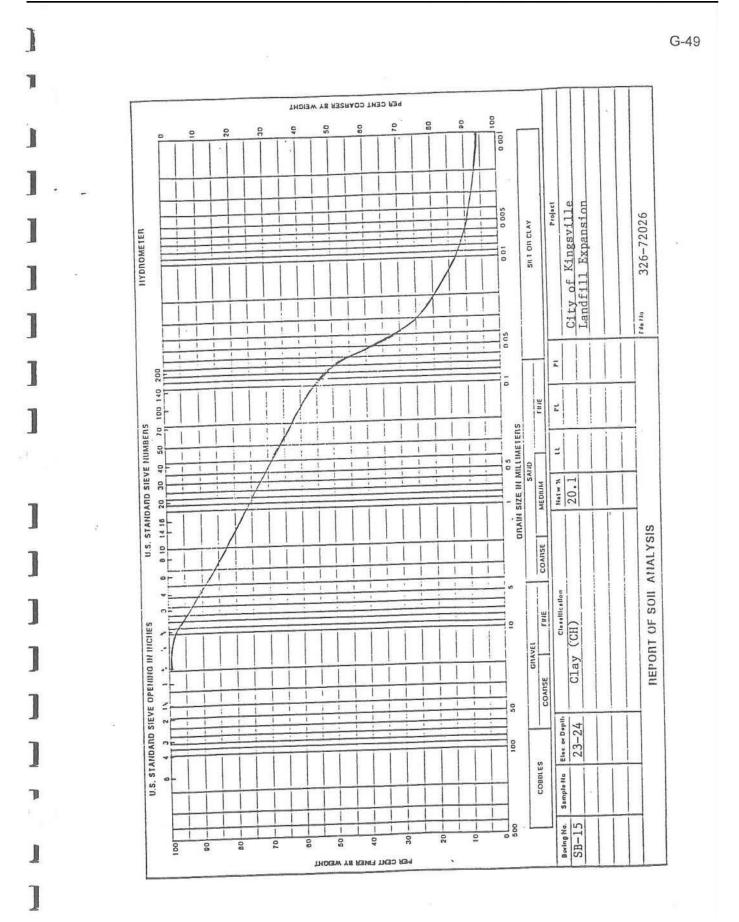

Finch Energy & Environmental Services

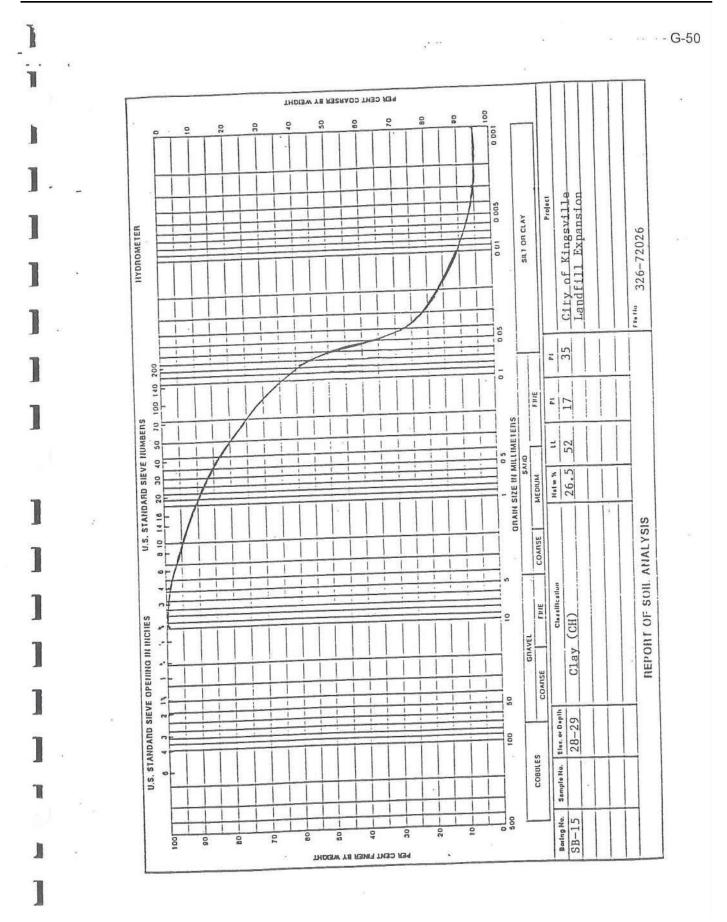

Results:

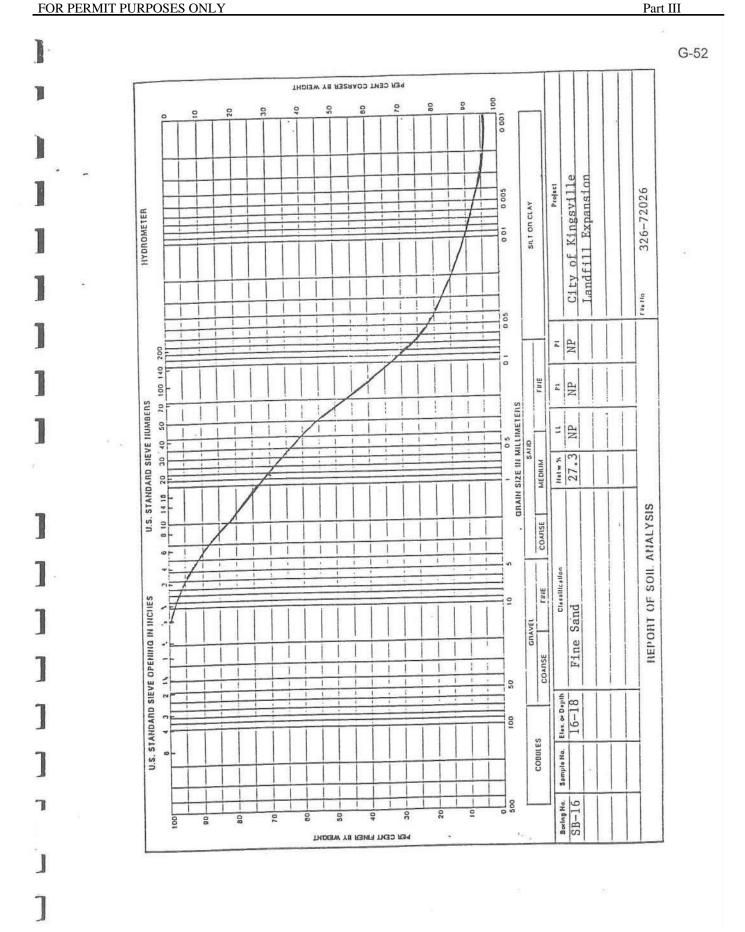

Sample	Depth (ft.)	Wet Density (lbs./ft ³)	Dry Density (lbs./fr³) 94.2 105.3
MW-21	64-66	119.8	
MW-23	82-84	125.8	
MW-24	52-54	114.5	86.2
MW-25	58-60	139.0	104.3

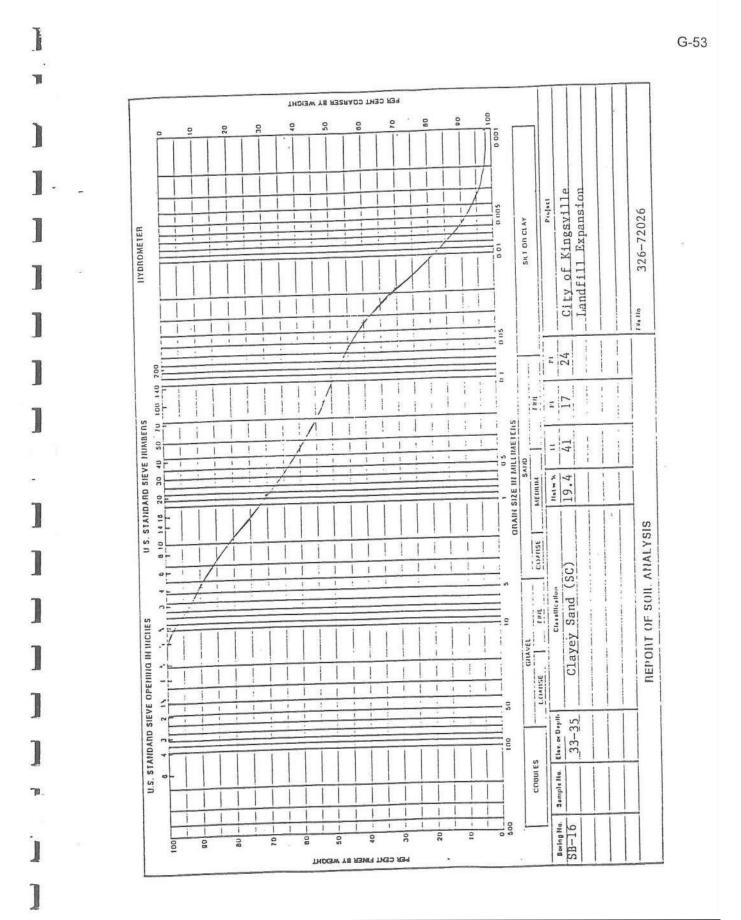


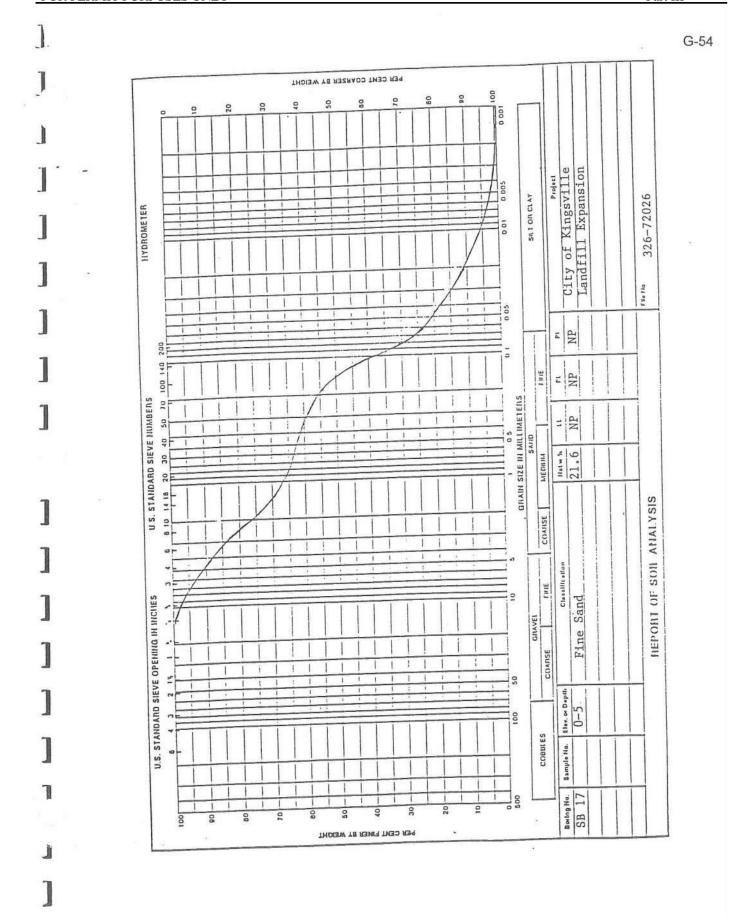


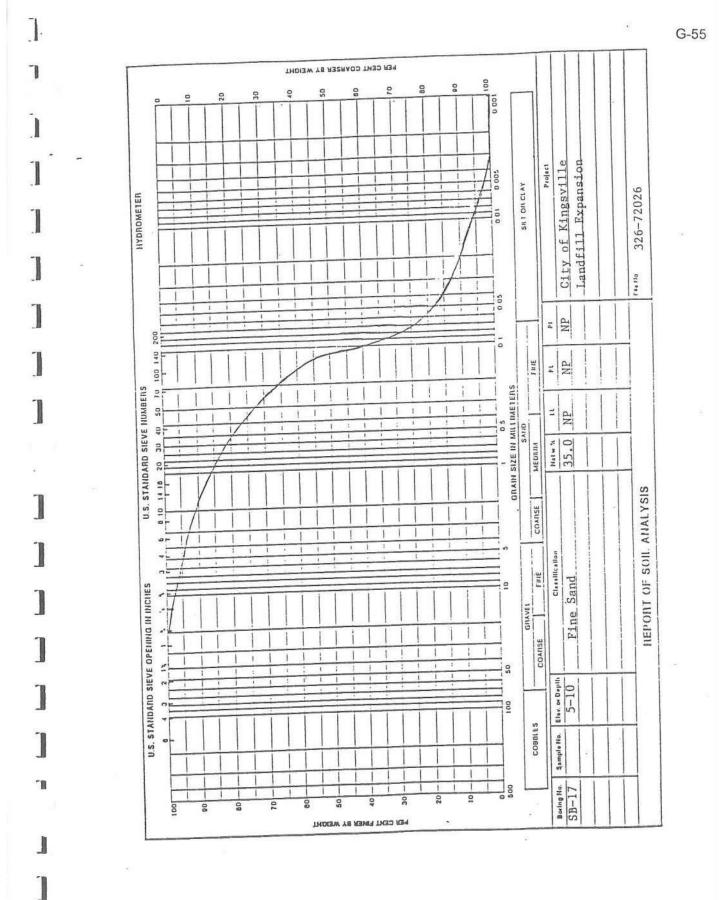


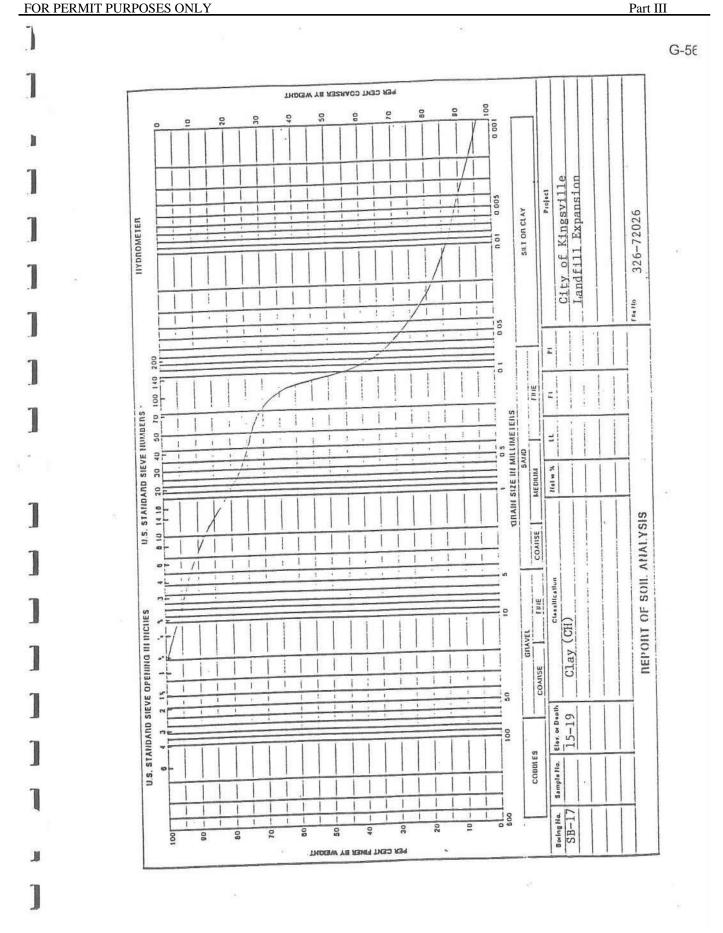


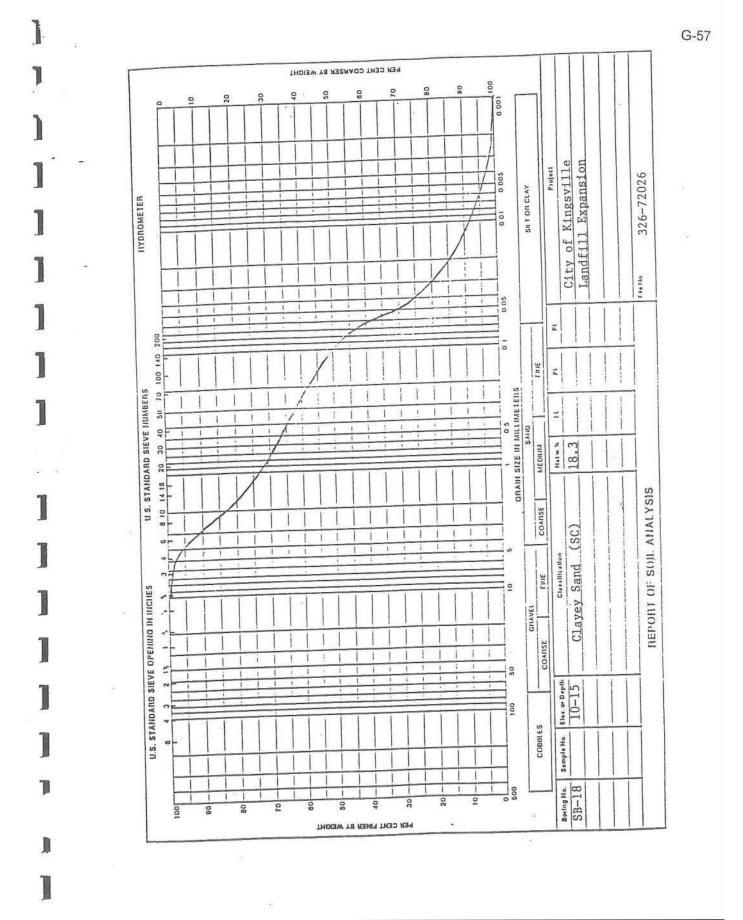


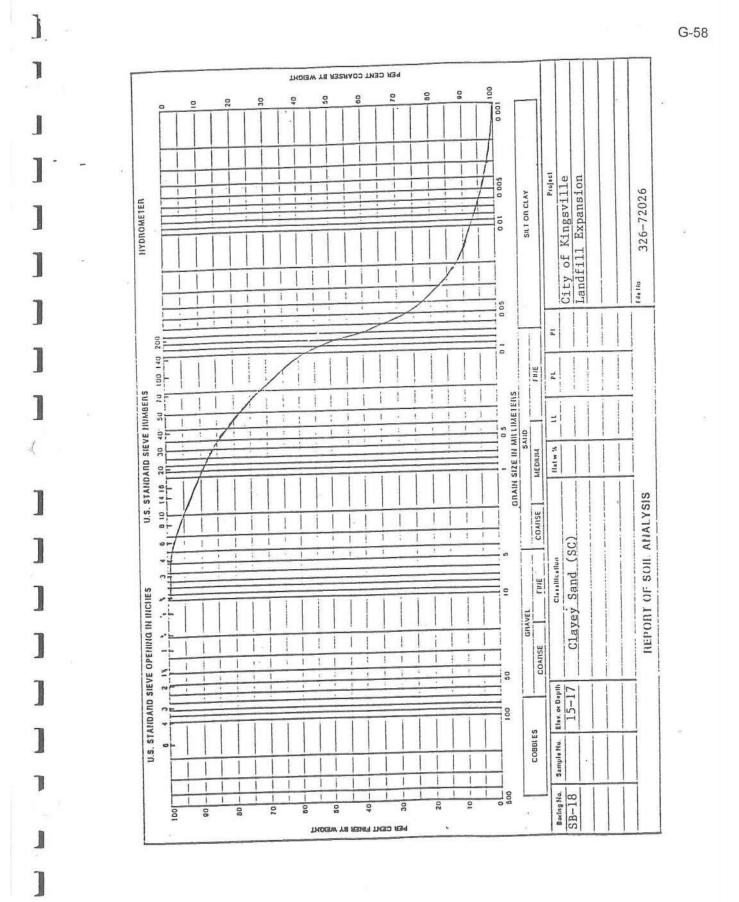


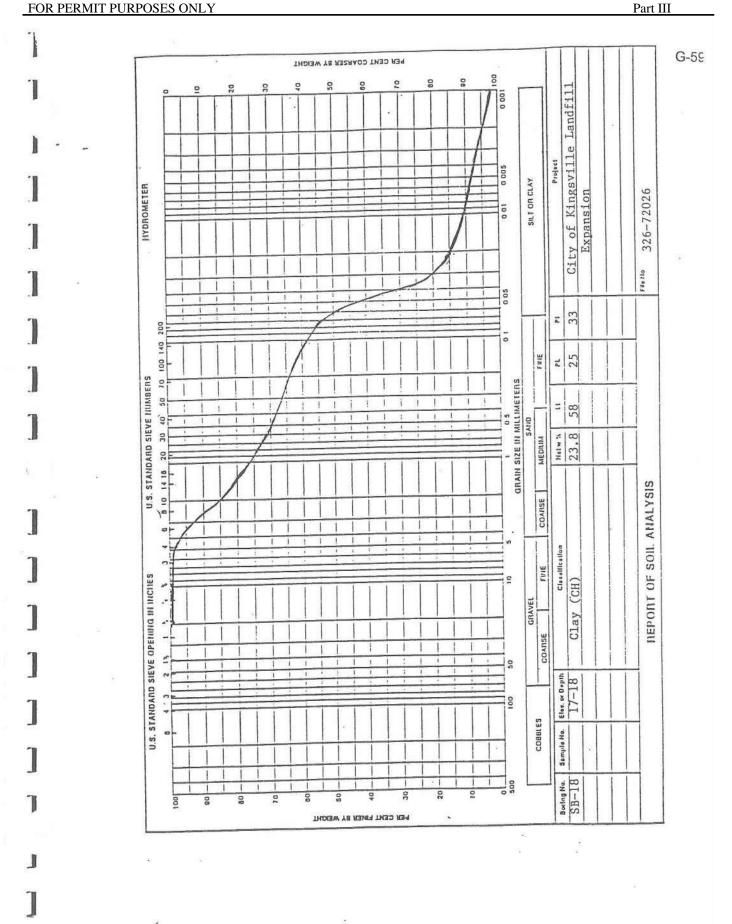


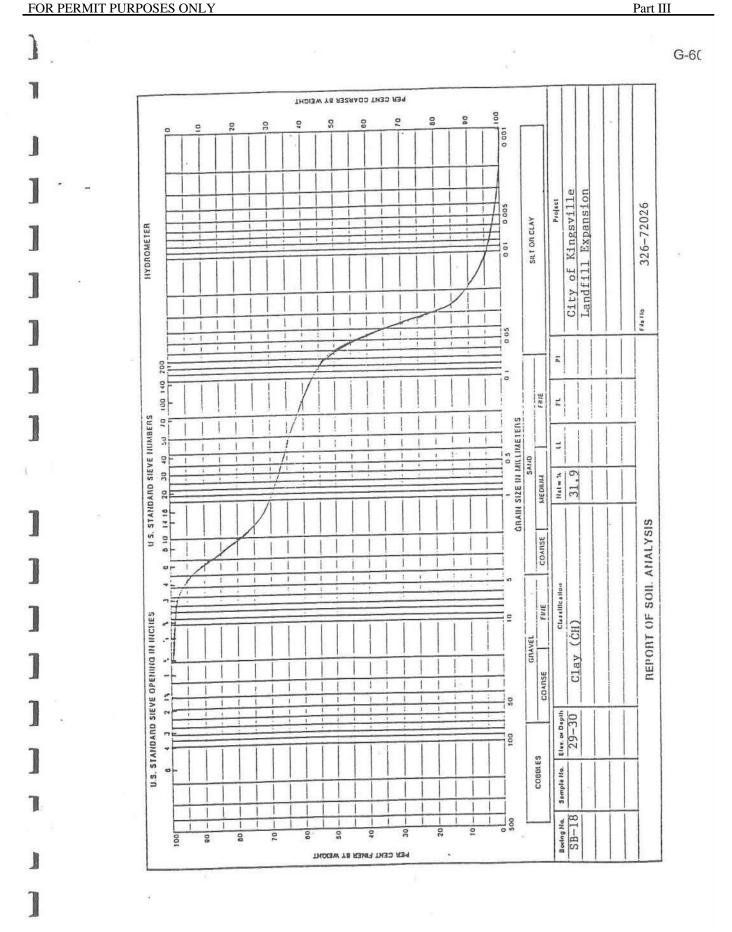












		Atterbe	rg Limit		Finer
Sample Identification	Classification	Liquid Limit	Plastic Index	Water Content	#200 Sieve
		(8)			
B-12; S-1, 0-2	Silty Clay			7.2	
S-3, 5-7	Sandy Clay			14.1	60
S-4, 7-8	Sandy Clay	41	28	13.6	
S-6, 14-19	Clayey Sand	51	28	19.1	48
S-7, 19-24	Clayey Sand	48	26	23.6	33
S-9, 29-34	Clay	53	29	24.7	
S-10, 34-36	Clay	51	24	23.2	
S-11, 36-41	Clay with Sand			25.2	5,1
S-13, 46-47	Clay, some Sand			29.0	
S-14, 47-48	Clay, some Sand	59	25	30.2	

	Atterbe	rg Limit		Finer
Classification	Liquid Limit	Plastic Index	Water Content	#200 Sieve
Sandy Clay	30	12		
Sandy Clay			8.0	62
Sandy Clay	43	26	9.4	66
Clay with Sand	59	36		,
Clay some Sand	59	29	21.3	
Clay with Sand			21.3	
Clay with Sand	63	29	21.6	
Clayey Sand			18.6	48
Clayey Sand	59	28	23.9	46
Clayey Sand			20.3	
Clayey Sand	56	24	26.9	
Fine Sand			-24.7	30
Fine Sand		NON	26.7	
	Sandy Clay Sandy Clay Sandy Clay Clay With Sand Clay some Sand Clay with Sand Clay with Sand Clayey Sand Clayey Sand Clayey Sand Clayey Sand Clayey Sand Clayey Sand Fine Sand	Classification Liquid Limit Sandy Clay Sandy Clay Sandy Clay Sandy Clay 43 Clay with Sand Clay some Sand Clay with Sand Clay with Sand Clay with Sand Clayey Sand Selection Fine Sand	Sandy Clay Sand Sandy Clay Sandy Clay Sand Sandy Clay Sandy	Classification Liquid Limit Plastic Index Water Content Sandy Clay 30 12 8.0 Sandy Clay 43 26 9.4 Clay with Sand 59 36 29 21.3 Clay with Sand 59 29 21.3 21.3 Clay with Sand 63 29 21.6 18.6 Clayey Sand 59 28 23.9 Clayey Sand 59 28 23.9 Clayey Sand 56 24 26.9 Fine Sand 24.7

		Atterbe	rg Limit	10/-1-4	Finer
Sample Identification	Classification	Liquid Limit	Plastic Index	Water Content	#200 Sieve
B-14; S-2, 5-10	Sandy Clay	44	26	11.5	56
S-3, 10-11	Sandy Clay			14.4	53
S-4, 11-15	Clay with Sand	63	37	19.0	
S-5, 15-20	Clay with Sand	9		22.2	
S-6, 20-25	Clay	58	33	24.8	
S-7, 25-30	Clayey Sand			28.5	46
S-8, 30-33	Sandy Clay	50	27	29.3	66
S-9, 33-34	Clay, trace Sand	61	33	25.7	*
S-11, 35-37	Clay, some Sand	64	37	26.0	85
S-12, 39-40	Silty Clay	41	15	29.5	

		Atterbe	rg Limit		Finer
Sample Identification	Classification	Liquid Limit	Plastic Index	Water Content	#200 Sieve
B-15; S-2, 5-10	Clayey Sand	30	19	12.3	47
S-3, 10-12	Sandy Clay			11.6	51
S-4, 12-13	Clay, some Sand			12.9	
S-5, 13-14	Clay with Sand	68	46	15.3	55
S-6, 14-16	Clay, some Sand	79	56	15.3	
S-7, 16-19	Clay with Sand	79	56	15.3	65
S-8, 19-22	Clay with Sand	83	60	21.2	
S-10, 23-24	Clay with Sand	2		20.1	1
S-11, 24-25	Clay with Sand	50	32	21.3	53
S-13, 25-28	Clay with Sand	52	35	26.5	58
S-14, 28-29	Clay with Sand			29.0	66
S-15, 30-30	Clayey Sand	29	8		(C. J.

City of Kingsville, MSWLF Hydrogeologic Study Summary of Test Results

30.6

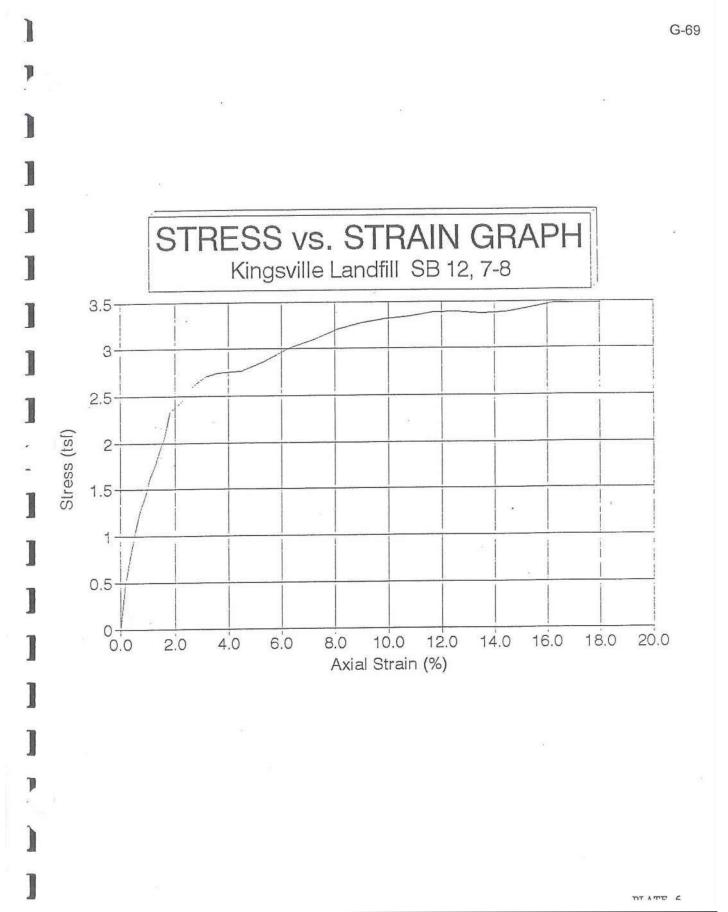
51

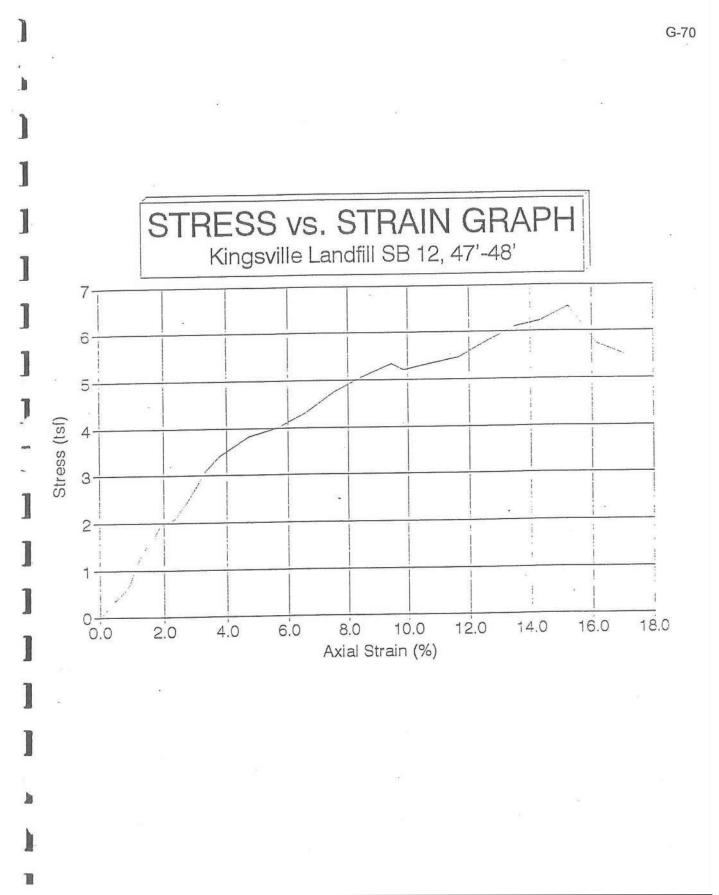
83

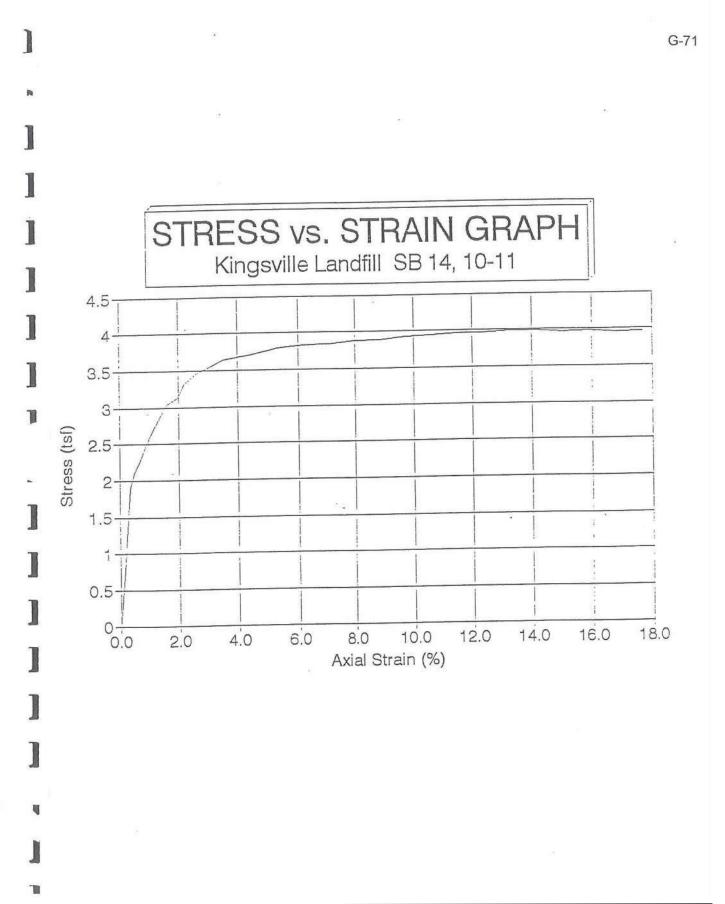
(C)		Atterbe	rg Limit		Finer
Sample Identification	Classification	Liquid Limit	Plastic Index	Water Content	#200 Sieve
			T		
B-16; S-2, 3-5	Sandy Clay			9.3	2
S-3, 5-10	Clayey Sand	45	23	11.6	31
S-8, 16-18	Fine Sand		NON	27.3	22
S-9, 18-20	Fine Sand	43	13	22.3	24
S-14, 26-29	Clayey Sand	50	29	24.5	30
S-17, 33-35	Clayey Sand	41	24	19.4	46
S-18, 35-37	Clayey Sand			21.0	

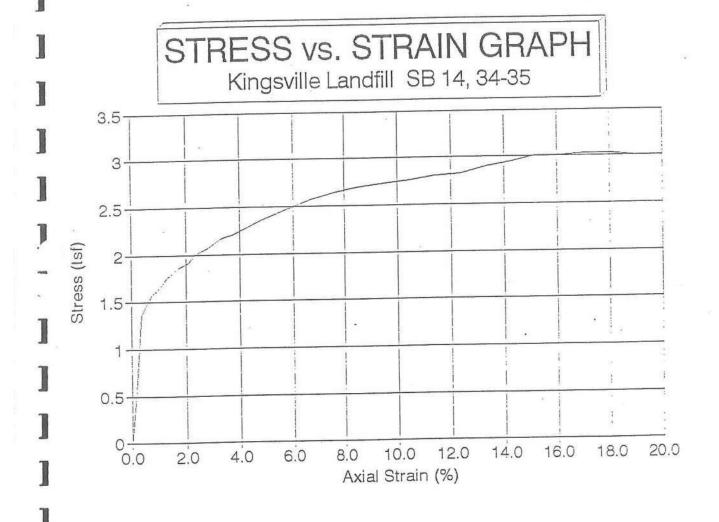
79

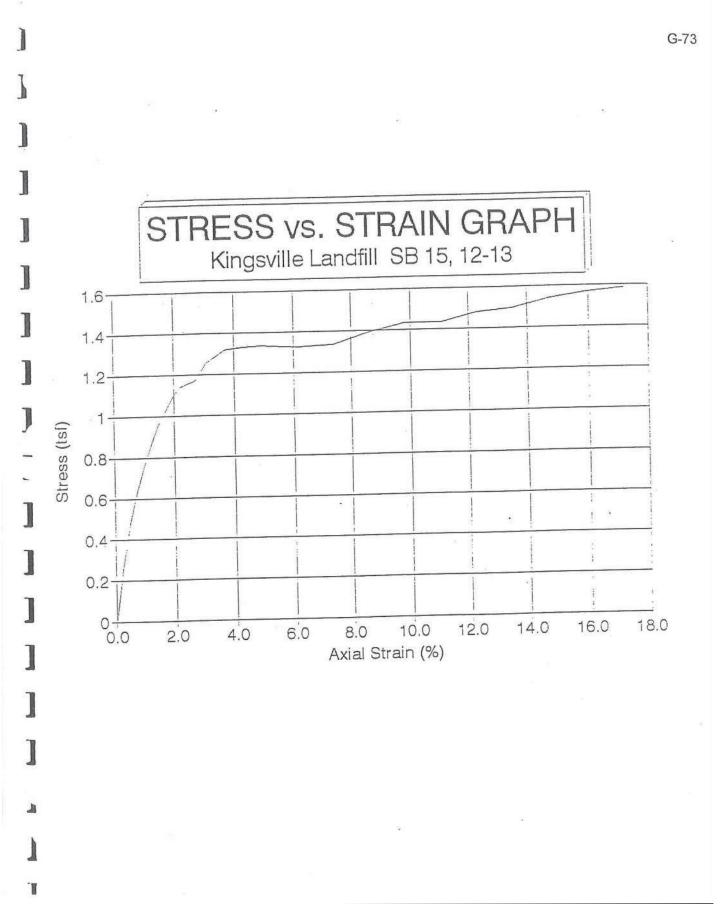
Clay, some Sand

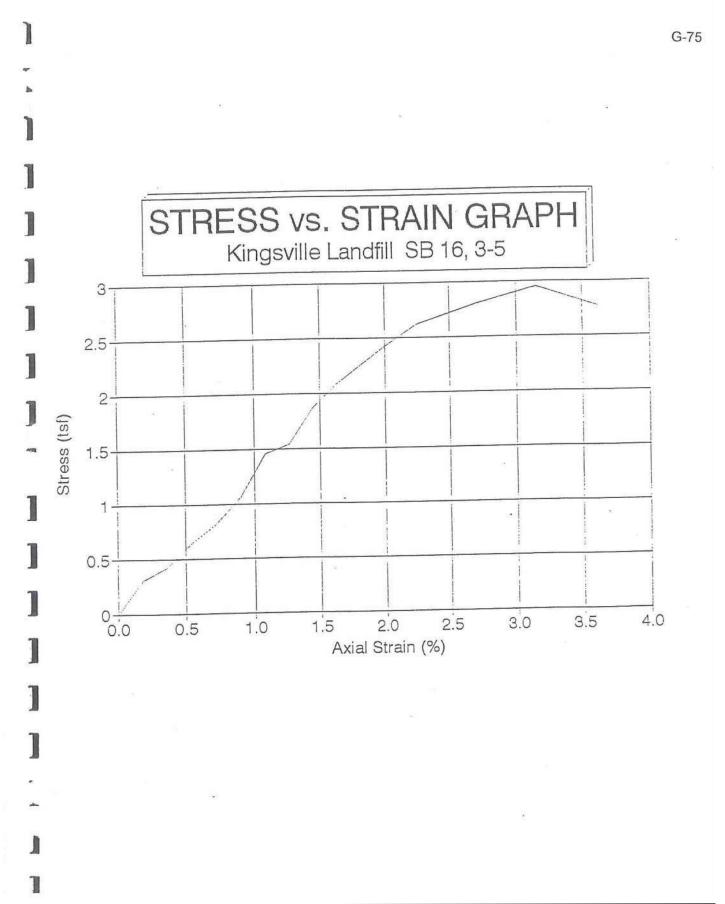

S-23, 45-47

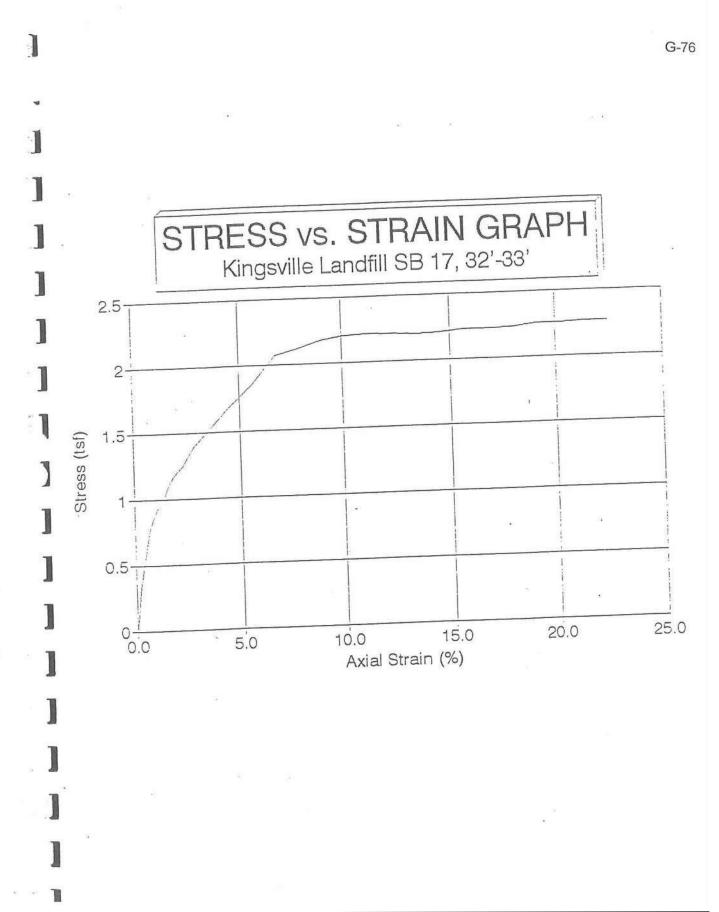

		Atterbe	rg Limit	Motor	Finer #200
Sample Identification	Classification	Liquid Limit	Plastic Index	Water Content	Sieve

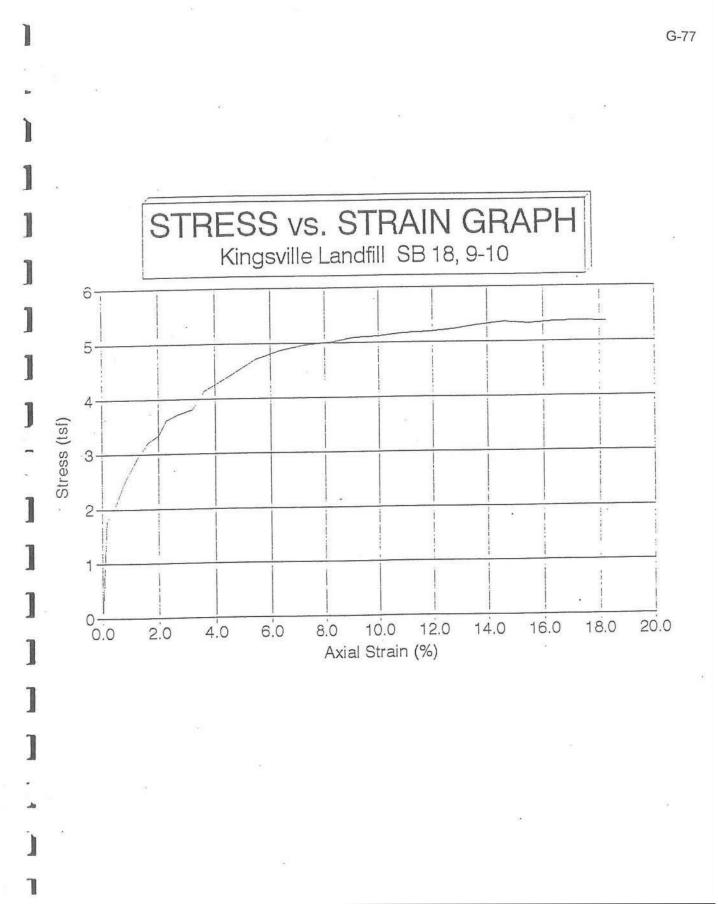

B-17; S-2, 2-5	Fine Sand with Clay		NON	21.6	
S-3, 5-8	Fine Sand with Clay			35.0	25
S-4, 8-9	Fine Sand with Clay		NON	31.4	
S-5, 9-10	Sandy Clay	41	19	32.0	66
S-8, 17-18	Clay with Sand	66	46	31.5	
S-12, 24-29	Clay, some Sand	74	52	38.0	83
S-14, 31-32	Clay, trace Sand			23.0	
S-15, 32-33	Clay, trace Sand	62	41		· ·
				4	

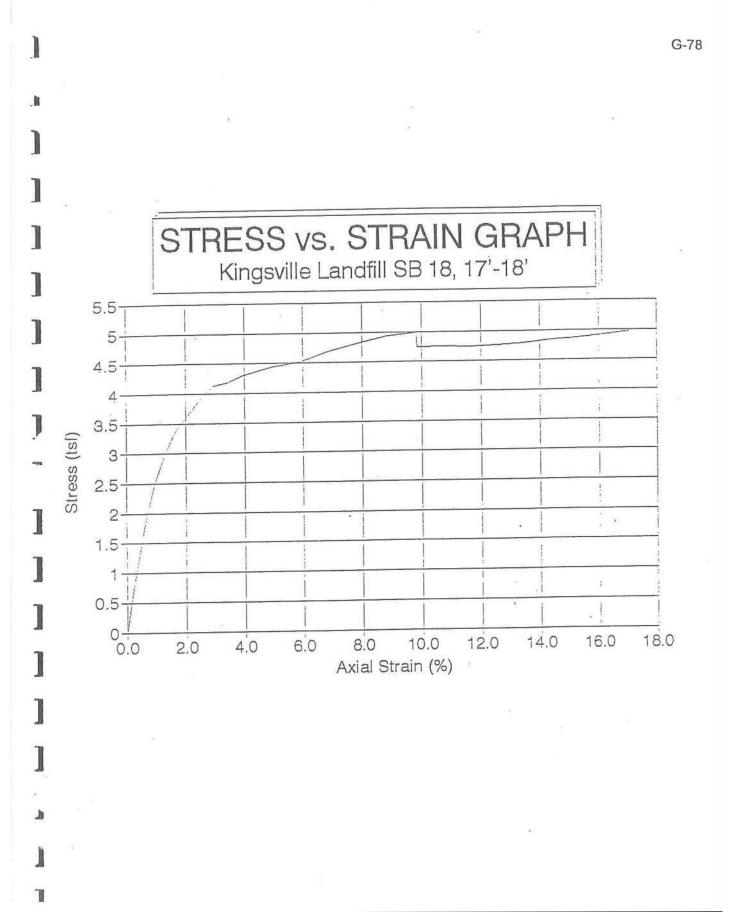

	5907	Atterbe	erg Limit	\A/ataw	Finer #200
Sample Identification	Classification	Liquid Limit	Plastic Index	Water Content	Sieve
B-18; S-3, 5-9	Clay with Sand	59	44	15.2	60
S-4, 9-10	Clay, some Sand			14.8	
S-5, 10-15	Clayey Sand			18.3	45
S-7, 17-18	Clay with Sand	58	33	23.8	57
S-10, 24-29	Clay with Sand	66	47	26.5	78
S-11, 29-30	Clay, some Sand			31.9	
S-14, 34-39	Clay, some Sand	73	48	34.9	81
S-15, 39-42	Clay, some Sand			31.1	

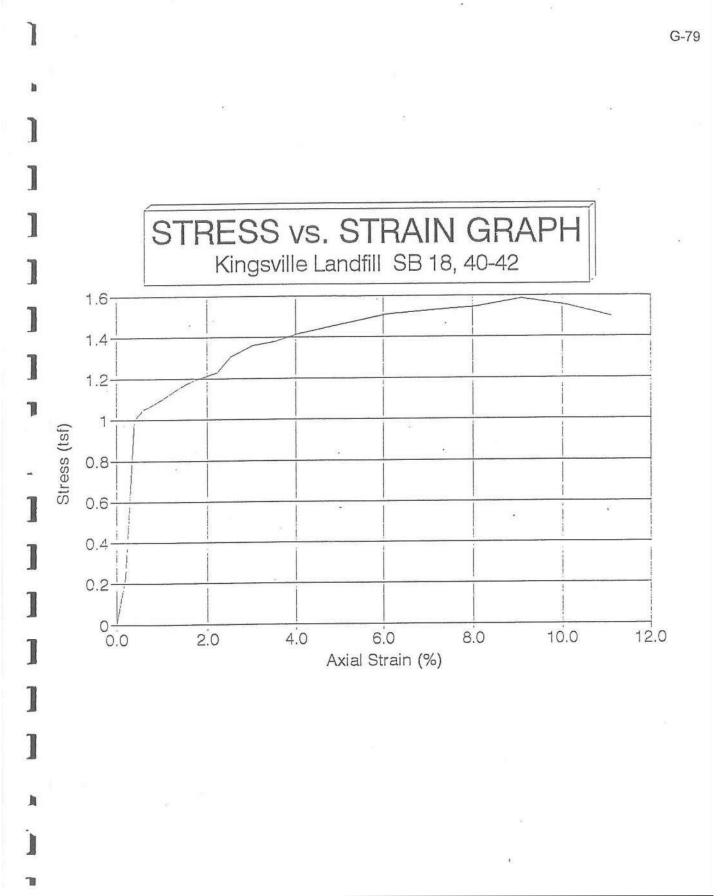

City of Kingsville MSWLF - Permit 235B Attachment 4 - Geology Report
G-2 Compressive Strength Test Results










G-74 STRESS vs. STRAIN GRAPH Kingsville Landfill SB 15, 24'-25' 1.6 1.4-1.2 Stress (Isf) 0.8 0.6 0.4 0.2 4.5 2.5 3.0 3.5 4.0 1.5 2.0 1.0 0.5 0.0 Axial Strain (%)

ingsville MSWLF - Permit 235B Attachment 4 - Geology Report	
	X 1
	(4)
ults	G-3 Hydraulic Conducti
	*
8 8	
7	
	8

COEFFICIENT OF PERMEABILITY (ASTM D-5084)

Sample	Average K (cm/s)	
	Vertical	Horizonta
SB-12 2-3 9-14		1.6 x 10 ⁻⁴ 2.0 x 10 ⁻⁶
SB-13 0-5 4-8 25-26 35-36	5.8 x 10 ⁻⁶ 3.4 x 10 ⁻⁷ 4.6 x 10 ⁻⁴	1.0 x 10 ⁻² 5.0 x 10 ⁻² 3.0 x 10 ⁻²
SB-14 10-15 20-25 33-34	6.9 x 10-5 1.2 x 10-7	5.0 x 10 ⁻
SB-15 5-10 13-14 23-24	3.0×10^{-7} 2.4×10^{-7}	5.0 x 10°
SB-16 1-3 33-35 35-37	1.2 x 10 ⁻⁵ 4.2 x 10 ⁻⁶	6.0 x 10
SB-17 8-9 23-24 32-33	1.0 x 10 ⁻⁴ 9.0 x 10 ⁻⁸ 6.7 x 10 ⁻⁸	. 3.0 x 10 1.0 x 10
SB-18 2-5 29-30	2.3 x 10 ⁻⁸	1.0 x 10

Part III, Attachment 4, Appendix 1, p.g. 369

Hanson Professional Services Inc. Submittal Date: September 2018

Revision: 0

JUN 19 '98 09:04 FR PSI-CORPUS CHRISTI 512 854 6049 TO 15125925552

P.02/02

G-82

COEFFICIENT OF PERMEABILITY TESTS (ASTM 3-5084)

Tested for:

Ray N. Finch, Ph.D, P.E.

Company:

Finch Energy & Environmental Services

Results: Vertical Permeabilities of Deep Soil Borings

Sample	Depth (ft.)	Average K
MW-21	50-52	1.99E -09 cm/s
MW-21	62-64	3.00 E -08 cm/s
MW-21	78-80	1.56 E -08 cm/s
MW-23	36-38	4.40 E -08 cm/s
MW-23	46-48	1.60 E -08 cm/s
MW-23	66-68	3.80 E -08 cm/s
MW-24	36-38	1.33 E -09 cm/s
MW-24	50-52	3.28 E -09 cm/s
MW-24	68-70	1.21 E -08 cm/s
MW-25	52-54	2.45 E -08 cm/s
MW-25	64-66	2.30 E -08 cm/s
MW-25	78-80	6.18 E- 09 cm/s

	ville MSWLF - Permit 235B schment 4 - Geology Report	
G-4 Cation-Exchange Test Results		
	\$	

City of Kingsville, MSWLF Cation Exchange Capacity Summary of Test Results

Soil Sample Ide	entification	Cation Exchange
Boring Number	Depth	Capacity (meg/100g)
SB-12	0 - 2'	11.2
SB-12	19' - 24'	14.8
SB-13	0 - 2'	13.1
SB-13	30' - 35'	21.6
SB-14	0 - 2'	12.9
SB-14	25' - 30'	26.6
SB-15	0 - 2'	22.0
SB-15	25' - 28'	20.7
SB-16	3' - 5'	21.8
SB-16	26' - 29'	8.92
SB-17	0 - 5'	26.0
SB-17	19' - 24'	15.6
SB-18	0 - 2'	16.3
SB-18	5' - 10'	17.2
SB-18	19' - 21'	19.4

TEL. 512-884-0371

PO BOX 2552 78403

C-1:--

G-85

JORDAN LABORATORIES, INCORPORATED ANALYTICAL & ENVIRONMENTAL CHEMISTS CORPUS CHRISTI, TEXAS December 9, 1997

F.E.E., INC. P.O. Box 73 Kingsville, Texas 78364-0073

Report of Analysis

				Ca	tion
				Exchange	Capacity
Identif	cication			meg,	/100g
(Soil S	Samples)				
SB12 0)'-2'			1:	1.2
SB12 1	9'-24'			14	4.8
SB13 0)'-2'	84		1:	3.1
SB13 3	30'-35'		9	2:	1.6
SB14 0)'-2'	+		1:	2.9
SB14 2	5'-30'			20	5.6
SB15 0	2'-2'			2:	2.0
SB15 2	25'-28'			20	0.7
SB16 3	3'-5'			2:	1.8
SB16 2	6'-29'				3.92
SB17 0	7-5			20	5.0
SB17 1	9'-24'			15	5.6
SB18 0	7-2			10	5.3
SB18 5	-10'			1.	7.2
SB18 1	9'-21'			19	9.4
	SB12 C SB12 C SB13 C SB13 C SB14 C SB14 C SB15 C SB15 C SB16 C SB16 C SB17 C SB17 C SB17 C SB17 C SB18 C	Identification (Soil Samples) SB12 0'-2' SB12 19'-24' SB13 0'-2' SB13 30'-35' SB14 0'-2' SB14 25'-30' SB15 0'-2' SB15 25'-28' SB16 3'-5' SB16 26'-29' SB17 0'-5' SB17 19'-24' SB18 0'-2' SB18 5'-10' SB18 19'-21'	(Soil Samples) SB12 0'-2' SB12 19'-24' SB13 0'-2' SB13 30'-35' SB14 0'-2' SB14 25'-30' SB15 0'-2' SB15 25'-28' SB16 3'-5' SB16 26'-29' SB17 0'-5' SB17 19'-24' SB18 0'-2' SB18 5'-10'	(Soil Samples) SB12 0'-2' SB12 19'-24' SB13 0'-2' SB13 30'-35' SB14 0'-2' SB14 25'-30' SB15 0'-2' SB15 25'-28' SB16 3'-5' SB16 26'-29' SB17 0'-5' SB17 19'-24' SB18 0'-2' SB18 5'-10'	Identification meg, (Soil Samples) SB12 0'-2' SB12 19'-24' SB13 0'-2' SB13 30'-35' SB14 0'-2' SB14 25'-30' SB15 0'-2' SB15 25'-28' SB16 3'-5' SB16 26'-29' SB17 19'-24' SB18 0'-2' SB18 5'-10' Exchange meg, 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15

Analysis Date: 12-8-97

Analyst: Nixon Method AGHB60 (19)

Samples Received 11-21-97

Results on dry basis.

Respectfully Submitted.

Carl F. Crownover, Pres.

Revision: 0

	City of Kingsville Attachr	nent 4 - Geolog	y Repor
	2000		
(8)			
G-5 Permeability Calo	culations		
			•

Time	Reading	Length	Reading Length Diameter dZout	dZout	L/A	O	Н	\succeq	from Average
									¥
0	12.5	6.5151	5.5372	ERR	0.2706	0.0006480365	ERR	ERR	
0.25	9.3	6.5151	5.5372	3.2	0.2706	0.0006480365	0.083	1.18E-05	
0.5	7.2	6.5151	5.5372	2.1	0.2706	0.0006480365	0.112	1.02E-05	
0.75	2.67	6.5151	5.5372	1.53	0.2706	0.0006480365	0.145	9.53E-06	
-	4.59	6.5151	5.5372	1.08	0.2706	0.0006480365	0.184	8.42E-06	
1.25	3.85	6.5151	5.5372	0.74	0.2706	0.0006480365	0.227	7E-06	-21.3
1.5	3.28	6.5151	5.5372	0.57	0.2706	0.0006480365	0.27	6.38E-06	-10.5
1.75	2.87	6.5151	5.5372	0.41	0.2706	0.0006480365 0.317	0.317	5,31E-06	7.9
Ø	2.57	6.5151	5,5372	0.3	0.2706	0.0006480365	0.363	4.39E-06	23.9
Average K =	× =	5.8E-06 cm/s	s/mo				9		

Time	Reading	Length	Reading Length Diameter dZout	dZour	LA	D	H	\bowtie	from Average
0 7 7 7 7 7 7 7 7 1 7 9 1 9 1 9 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4	17.2 10.7 9.3 8.1 7.4 6.7 6	6.03504 6.03504 6.03504 6.03504 6.03504 6.03504 6.03504 6.03504	6.56844 6.56844 6.56844 6.56844 6.56844 6.56844 6.56844 6.56844	4.8 1.5 1.4 1.2 0.7 0.7 0.6	0.1781 0.1781 0.1781 0.1781 0.1781 0.1781 0.1781 0.1781 0.1781	0.1781 0.0004265937 0.1781 0.0004265937 0.1781 0.0004265937 0.1781 0.0004265937 0.1781 0.0004265937 0.1781 0.0004265937 0.1781 0.0004265937 0.1781 0.0004265937	ERR 0.061 0.085 0.097 0.112 0.129 0.141 0.155	1.09E-06 4.29B-07 4.59E-07 4.52E-07 2.96E-07 3.25E-07 3.45E-07 3.45E-07	3.6 -7.1

	K from Average	ERR	6.55E-05 5.6		8.18E-05 -17.8		
	F	ERR	0.116 6.				
٠	O	ERR 0.2013 0.0004821905	0.2013 0.0004821905 (0.2013 0.0004821905 0.179	1.6 0.2013 0.0004821905 0.274	0.2013 0.0004821905 0.473	
	L/A	0.2013	0.2013	0.2013	0.2013	0.2013	
	dZout	EAR	3.2	N	1.6	0.8	
	Reading Length Diameter dZout	6.2992	6.2992	6.2992	6.2992	6.2992	
Landfill -25'	Length	6.2738	6.2738	6.2738	6.2738	6.2738	
Kingsville Landfill SB-14, 20'-25'	Reading	6	5.8	3.8	2.2	4.4	
_ 01	Time	0.00	0.05	0.10	0.15	0.20	

0	Nearing		Length Diameter d/out	d/out	LA	ن	1	Y.	from Average
									X
0	17	6.223	7.0993	-17	0.1572	0.0003765542	ERR		
4	15.5	6.223	7.0993	1.5	0.1572	0.0003765542	0.061	1.33E-07	
8	13.9	6.223	7.0993	1.6	0.1572	0.0003765542	0.067	1.57E-07	
10	13.6	6.223	7.0993	0.3	0.1572	0.0003765542	0.075	6.29E-08	
12	. 13	6.223	7.0993	9.0	0.1572	0.0003765542	0.077	1.3E-07	
14	12.8	6.223	7.0993	0.2	0.1572	0.0003765542	0.08	4.47E-08	
16	12.2	6.223	7.0993	9.0	0.1572	0.0003765542	0.081	1.38E-07	-19.5
18	11.8	6.223	7.0993	0.4	0.1572	0.0003765542	0.085	9.61E-08	17.0
20	11.4	6.223	7.0993	4.0	0.1572	0.0003765542	0.088	9.94E-08	14.2
22	10.9	6.223	7.0993	0.5	0.1572	0.0003765542	0.091	1.29E-07	-11.7

Time	Reading	Length	Length Diameter	dZout	L/A	O	₽	X	from Average
									М
0.0	11	7.9248	7.0612	-11	0.2024	0.0004847191	ERR		
1.0	8.6	7.9248	7.0612	1.2	0.2024	0.0004847191	0.095	8.59E-07	
2.0	9.3	7.9248	7.0612	0.5	0.2024	-	0.106	3.89E-07	
3.0	8.7	7.9248	7.0612	9.0	0.2024	0.0004847191		4.95E-07	
4.0	8.2	7.9248	7.0612	0.5	0.2024			4.4E-07	
5.0	8	7.9248	7.0612	0.2	0.2024	0.0004847191		1.83E-07	
0.9	7.74	7.9248	7.0612	0.26	0.2024		0.13	2.45E-07	18.7
7.0	7.4	7.9248	7.0612	0.34	0.2024	-	0.134	3.33E-07	-10.6
8.0	7.1	7.9248	7.0612	0.3	0.2024	_	0.141	3.07E-07	-1.9
9.0	6.8	7.9248	7.0612	0.3	0.2024	0.0004847191	0.147	3.213-07	-6.3
Average K =	n	3E-07	s/wo						52

11 6.0706 7.2136 ERR 0.1485 0.0003557839 ERR ERR 8.0706 7.2136 3 0.1485 0.0003557839 0.095 2.1E-05 6.3 6.0706 7.2136 1.7 0.1485 0.0003557839 0.13 1.57E-05 4.1 6.0706 7.2136 0.9 0.1485 0.0003557839 0.208 1.3E-05 3.4 6.0706 7.2136 0.7 0.1485 0.0003557839 0.254 1.23E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-05 2.05 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.305 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	Time	Reading	Length	Reading Length Diameter dZout	dZout	LA	O	H	×	from Average	
11 6.0706 7.2136 ERR 0.1485 0.0003557839 ERR ERR 6.3 6.0706 7.2136 3 0.1485 0.0003557839 0.013 1.57E-05 5.3 6.0706 7.2136 1.7 0.1485 0.0003557839 0.165 1.52E-05 4.1 6.0706 7.2136 0.9 0.1485 0.0003557839 0.208 1.3E-05 3.4 6.0706 7.2136 0.7 0.1485 0.0003557839 0.254 1.23E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.5 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.353 1.09E-05))							¥	
8 6.0706 7.2136 3 0.1485 0.0003557839 0.095 2.1E-05 6.3 6.0706 7.2136 1.7 0.1485 0.0003557839 0.13 1.57E-05 4.1 6.0706 7.2136 1.3 0.1485 0.0003557839 0.165 1.52E-05 3.4 6.0706 7.2136 0.7 0.1485 0.0003557839 0.208 1.3E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-05 2.0 6.0706 7.2136 0.45 0.1485 0.0003557839 0.365 9.3E-05 2.0 6.0706 7.2136 0.49 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	•	=	6.0706		EAR	0.1485	0.0003557839	EAR	ERR		
6.3 6.0706 7.2136 1.7 0.1485 0.0003557839 0.13 1.57E-05 5 6.0706 7.2136 1.3 0.1485 0.0003557839 0.165 1.52E-05 4.1 6.0706 7.2136 0.9 0.1485 0.0003557839 0.208 1.3E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-05 2.5 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	~	00	6.0706		m	0.1485	0.0003557839	0.095	2.1E-05		
5 6.0706 7.2136 1.3 0.1485 0.0003557839 0.165 1.52E-05 4.1 6.0706 7.2136 0.9 0.1485 0.0003557839 0.208 1.3E-05 3.4 6.0706 7.2136 0.7 0.1485 0.0003557839 0.254 1.23E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.365 9.3E-06 2.5 6.0706 7.2136 0.49 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	_	6.3	6.0706		1.7	0.1485	0.0003557839	0.13	1.57E-05		
4.1 6.0706 7.2136 0.9 0.1485 0.0003557839 0.208 1.3E-05 3.4 6.0706 7.2136 0.7 0.1485 0.0003557839 0.254 1.23E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-06 2.5 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	S	5	6.0706		1.3	0.1485	0.0003557839	0.165	1,52E-05		
3.4 6.0706 7.2136 0.7 0.1485 0.0003557839 0.254 1.23E-05 2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-06 2.5 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	3	4.1	6.0706		0.9	0.1485	0.0003557839	0.208	1.3E-05		
2.95 6.0706 7.2136 0.45 0.1485 0.0003557839 0.306 9.3E-06 2.5 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	7	3.4	6.0706		0.7	0.1485	0.0003557839	0.254	1.23E-05	-5.1	
2.5 6.0706 7.2136 0.45 0.1485 0.0003557839 0.353 1.09E-05 2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	0	2.95	6.0706		0.45	0.1485	0.0003557839	0.306	9.3E-06	20.4	
2.01 6.0706 7.2136 0.49 0.1485 0.0003557839 0.416 1.43E-05	00	2.5	6.0706		0.45	0.1485	0.0003557839	0.353	1.09E-05	7.2	
	7	2.01	6.0706		0.49	0.1485	0.0003557839	0.416	1.43E-05	-22.5	
	werage K		1.2E-05 cm/s	CIII/S							

Kingsville Landfill SB-16, 33-35

from Average	¥			0.00						10	10	3.71.5	3.4	.4.0	18.0		
¥		ERR	1.18E-05	1.12E-05	1E-05	9.87E-06	8.91E-06	8,21E 00	7.2E-06	7.14E-06	5.84E-06	4.95E-06	4.07E-08	4.39E-06	3.46E-06		
L		EAR	0.077	0.095	0.115	0.137	0.163	0.19	0.219	0.248	0.281	0.345	92E.0	0.403	0.436		
O		0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924	0.0009351924		159
L/A		0.3904	0.3904	0.3904	0.3904	0.3904	0.3904	0.3904	0.2004	0.3904	0.3904	0.3904	0.3904	0.3904	0.3904		
dZout		-13.5	2.51	1.94	1.45	1.2	0.92	0.73	0.56	0.49	0.68	0.25	0.19	0.19	0.14		
Reading Length Diameter dZout		4.05384	4.05384	4.05384	4.05384	4:05384	4.05384	4.05384	4.05384	4.05384	4.05384	4.05384	4.05384	4.05384	4.05384	06	s/wo
Length		5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936	5.03936		4.2E-06
Reading		13.5	10.99	9.02	7.6	6.4	5.48	4.75	4.19	3.7	3.02	2.77	2.58	2.39	2.25		II
Time		0	0.25	0.5	0.75	-	1.25	1.5	1.75	~	2.5	2.75	3	3.25	3.5		Average K =

Time	Reading	Length	Diameter	dZout	L/A	O	Ι	X	from Average
			88		8	8			K
0.0	13	9.1186	7.08406	-13	0.2314	0.0005541438			ä
20.0	9.6	9.1186	7.08406	3.4	0.2314	0.0005541438	0.08	1.29E-07	i
22.0	9.35	9.1186	7.08406	0.25	0.2314	0.0005541438	0	1.12E-07	
24.0	9.2	98116	9UF 8U L	0.15	0 2314	0.0005541438	0.111		
25.0	9.05	9.1186	7.08406	0.15	0.2314	0.0005541438	0.113	6.97E-08	
28.0	8.95	9.1186	7.08406	0.1	0.2314	0.0005541438	0.115		
30.0	8.8	9.1186	7.08406	0.15	0.2314	0.0005541438	0.116		
32.0	8.68	9.1186	7.08406	0.12	0.2314	0.0005541438	0.118	5.82E-08	
34.0	8.55	9.1186	7.08406	0.13	0.2314	0.0005541438	0.12	6.4E-08	4.8
36.0	8.4	9.1186	7.08406	0.15	0.2314	0.0005541438	0.122	7.51E-08	
Average K =		6.7E-08	cm/s						

** TOTAL PAGE.10 **

G-95

15 7.2898 12.92 7.2898 12.92 7.2898 12.65 7.2898 12.2 7.2898 11.71 7.2898 11.53 7.2898 11.53 7.2898 11.53 7.2898 11.53 7.2898 11.53 7.2898 10.92 7.2898	Time	Reading	Reading Length	Diameter dZout	dZout	L/A	O	H	¥	from Average
15. 7.2898 7.239 -15. 0.1771 0.0004242455 ERR 13.9 7.2898 7.239 -13.9 0.1771 0.0004242455 0.069 12.92 7.2898 7.239 -12.92 0.1771 0.0004242455 0.075 12.41 7.2898 7.239 -12.65 0.1771 0.0004242455 0.084 11.98 7.2898 7.239 0.21 0.1771 0.0004242455 0.089 11.71 7.2898 7.239 0.22 0.1771 0.0004242455 0.085 11.71 7.2898 7.239 0.22 0.1771 0.0004242455 0.085 11.71 7.2898 7.239 0.22 0.1771 0.0004242455 0.089 11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.089 11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.089 11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.22 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.092 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.092))							¥
13.9 7.2898 7.239 -13.9 0.1771 0.0004242455 0.069 12.92 7.2898 7.239 -12.92 0.1771 0.0004242455 0.075 12.65 7.2898 7.239 -12.65 0.1771 0.0004242455 0.081 12.4 7.2898 7.239 0.21 0.1771 0.0004242455 0.069 11.98 7.2898 7.239 0.22 0.1771 0.0004242455 0.084 11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.085 11.53 7.2898 7.239 0.18 0.1771 0.0004242455 0.089 11.1 7.2898 7.239 0.21 0.1771 0.0004242455 0.099 10.92 7.2898 7.239 0.22 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.18 0.1771 0.0004242455	00	15	7.2898	7.239	-15	0.1771	0.0004242455	EAR		
12.92 7.2898 7.239 -12.92 0.1771 0.0004242455 0.075 12.65 7.2898 7.239 -12.65 0.1771 0.0004242455 0.081 12.2 7.2898 7.239 2.59 0.1771 0.0004242455 0.069 11.98 7.2898 7.239 0.21 0.1771 0.0004242455 0.084 11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.085 11.53 7.2898 7.239 0.18 0.1771 0.0004242455 0.087 11.13 7.2898 7.239 0.21 0.1771 0.0004242455 0.099 11.1 7.2898 7.239 0.21 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.1771 0.0004242455 0.092 10.75 7.2898 7.239 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.1771 0.0004242455 0.094 10.75	8	13.9	7.2898	7.239	-13.9	0.1771	0.0004242455	0.069	-8.4E-07	
12.65 7.2898 7.239 -12.65 0.1771 0.0004242455 0.081 12.41 7.2898 7.239 0.259 0.1771 0.0004242455 0.069 11.98 7.2898 7.239 0.22 0.1771 0.0004242455 0.084 11.98 7.2898 7.239 0.22 0.1771 0.0004242455 0.085 11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.089 11.53 7.2898 7.239 0.18 0.1771 0.0004242455 0.09 11.1 7.2898 7.239 0.21 0.1771 0.0004242455 0.09 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094	S	12.92	7.2898	7.239	-12.92	0.1771	0.0004242455	0.075	-2.1E-07	
12.2 7.2898 7.239 0.21 0.1771 0.0004242455 0.069 1.28 7.2898 7.239 0.21 0.1771 0.0004242455 0.084 11.98 7.2898 7.239 0.27 0.1771 0.0004242455 0.085 11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.085 11.53 7.2898 7.239 0.27 0.1771 0.0004242455 0.089 11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.099 11.1 7.2898 7.239 0.21 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094	00	12.65	7.2898	7.239	-12.65	0.1771	0.0004242455	0.081	-1.8E-07	
12.2 7.2898 7.239 0.21 0.1771 0.0004242455 0.084 11.98 7.2898 7.239 0.22 0.1771 0.0004242455 0.085 11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.087 11.53 7.2898 7.239 0.18 0.1771 0.0004242455 0.089 11.1 7.2898 7.239 0.21 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.092 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.095	00.	1241	7.2898	7.239	2.59	0.1771	0.0004242455	0.069	4.12E-08	
11.98 7.2898 7.239 0.22 0.1771 0.0004242455 0.085 11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.087 11.53 7.2898 7.239 0.21 0.1771 0.0004242455 0.089 11.1 7.2898 7.239 0.21 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094	8	12.2	7.2898	7.239	0.21	0.1771	0.0004242455	0.084	2.22E-08	
11.71 7.2898 7.239 0.27 0.1771 0.0004242455 0.087 11.53 7.2898 7.239 0.18 0.1771 0.0004242455 0.089 11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.094	00.	11.98	7.2898		0.22	0.1771	0.0004242455	0.085	2.36E-08	
11.53 7.2898 7.239 0.18 0.1771 0.0004242455 0.089 11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.09 11.1 7.2898 7.239 0.22 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.095	00.	11.71	7.2898	7.239	0.27	0.1771	0.0004242455	0.087	2.96E-08	
11.32 7.2898 7.239 0.21 0.1771 0.0004242455 0.09 11.1 7.2898 7.239 0.22 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.17 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.095	00	11.53	7.2898	7,239	0.18	0.1771	0.0004242455	0,089	2,01E-08	
11.1 7.2898 7.239 0.22 0.1771 0.0004242455 0.092 10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.095	00	11.32	7.2898	7.239	0.21	0.1771	0.0004242455	0.09	2.39E-08	-5.0
10.92 7.2898 7.239 0.18 0.1771 0.0004242455 0.094 10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.095	00	1.1	7.2898	7.239	0.22	1000	0.0004242455	0.092	2.55E-08	-12.1
10.75 7.2898 7.239 0.17 0.1771 0.0004242455 0.095	00	10.92	7.2898	7.239	0.18	_	0.0004242455		2.12E-08	6.6
0.35.08	00.	10.75	7.2898	7.239	0.17	0.1771	0.0004242455		2.04E-08	10.4
00-100	Аургапр К		2.3F-08	s/wo			*			

Kingsville Landfill SB-18, 29-30

City of Kingsville	lle	MW,'2.	DEPTH 50-52	25.					
TIME	Reading	Length	Diameter	dZout	L/A	S	-	\times	from Average K
C	14.4	6.985	7.0358	-144	0.1797	0.00043033	ERR	L	
30	14.2	6.985	7.0358	0.2	0.1797	0.00043033	_	3.1E-U9	
06	13.85	6.985	7.0358	0.35	0.1797	0.00043033		Z./E-U9	
150	13.6	6.985	7.0358	0.25	0.1797	0.00043033		2E-03	
1015	10.75	6.985	7.0358	2.85	0.1797	0.00043033		1.8E-09	
1075	10.55	6.985	7.0358	0.2	0.1797	0.00043033		4. IE-US	
1135	10.38	6.985	7.0358	0.17	0.1797	0.00043033		1.8E-US	
1195	10.2	6.985	7.0358	0.18	0.1797	0.00043033		1.9E-09	3.0
1000	10	6 985	7.0358	0.2	0.1797	0.00043033	0.102	Z.ZE-08	
1233	2 6	0000	7 0358	0	79710	0 00043033	0.104	2.2E-09	
1285	9.9	0.900	00000.7	- >					
AVERAGE	K =	1.99457803E-09	cm/s						

City of Kingsville	9	MW21	DEPTH 62-64	79					
TIME	Reading	Length	Diameter	dZout	L/A	ပ	\vdash	×	from Average K
C	12.4	7.0612	7.0866	-12.4	0.179	0.00042881	ERR		
) -	12.2	7.0612	7.0866	0.2	0.179	0.00042881	0.084	1.067E-07	
2	12	7.0612	7.0866	0.2	0.179	0.00042881	0.085	1.085E-07	
	11.9	7.0612	7.0866	0.1	0.179	0.00042881	0.087	5.492E-08	
4	11.75	7.0612	7.0866	0.15	0.179	0.00042881	0.087	8.325E-08	
. rV	11.7	7.0612	7.0866	0.05	0.179	0.00042881	0.089	2.798E-08	
20	10.75	7.0612	7.0866	0.95	0.179	0.00042881	0.089	3.711E-08	-23.9
35	10.2	7.0612	7.0866	0.55	0.179	0.00042881	0.097	2.3E-08	
50	4.6	7.0612	7.0866	0.8	0.179	0.00042881	0.102	3.579E-08	-19.5
65	8.9	7.0612	7.0866	0.5	0.179	0.00042881	0.111	2.394E-08	
AVERAGE K=	"H.,	2.99575674E-08	cm/s						

City of Kingsville	d)	MW21 78-80	·o						
TIME	Reading	Length	Diameter	dZout	L/A	S	⊢	¥	from Average K
C	14	7 0104	7.0358	-14	0.1803	0.00043189	ERR		
S (%		7 0104	7.0358	~	0.1803	0.00043189	0.074	1.635E-08	
8	123	7,0104	7.0358	0.7	0.1803	0.00043189	0.08	1.221E-08	
8 6	11.35	7.0104	7.0358	0.95	0.1803	0.00043189	0.085	1.774E-08	
120	10.65	7.0104	7.0358	0.7	0.1803	0.00043189	0.092	1.404E-08	
150	9 95	7.0104	7.0358	0.7	0.1803	0.00043189	0.098	1.5E-08	
190	5.0	7 0104	7 0358	0.65	0.1803	0.00043189	0.105	1.49E-08	4.4
100	, o	7 0104	7 0358	0.6	0.1803	0.00043189	0.112	1.471E-08	5.6
017	0.0	7.0104	7 0358	90	0 1803	0.00043189	0.12	1.576E-08	-1.1
740	۵. م	4010.7	1.000	9 0	0 4000	0.00042480	0 120	1 RORE OR	0 %
270	7.5	7.0104	7.0358	0.0	0.1003	0.00043169	0.123	1.030L-00	
			2						
AVERAGE K=	11	1.55899395E-08	cm/s						

MAY 29 '98 12:45 FR PSI-CHEMISTRY

412 922 4043 TO 15128546049--812 P.03/05

G-99 40.9 20.0 0.101 35,2 53700 0.82 4.5E-08 3.5 4.4 41.1 105.0 34.1 2.70 Professional Service Industries, Inc. 850 Poplar Street, Phisburgh, PA 15220 (412) 922 - 4000 Specification: ASTM D 5084 Depth (ft): 36-38 Test Type: Falling Head with Rising Tailwaler 5.0 psi 0,000 in 0.072 in 0.072 in 2.958 in 20.0 40.5 40.5 32,3 7200 1.00 3.4E-08 101.0 32.4 6.2 0.50 6.1 %<#200: 0.524 Specific Gravity: PERMEABILITY TEST REPORT 20.0 40.8 40.5 1.00 4.8E-08 4.4E-08 101.0 32.4 00699 105.0 4.8 33.7 6.1 Confining pressure: Initial Porosity: Initial Dial Rdng. Change in Ht. Corrected Ht. Dial after Sat. 40.9 40.8 1.00 9500 4.9E-08 4.8 0,10 33.7 05.0 34.1 114.5 51.6 113 2.958 1.408 38.42 .231 Sample Number Average Coefficient of Permeability(cm/sec) FINAL 1 금 Sample Description: LIGHT BROWN FAT CLAY Final Gradient Final Reading Inilial Reading Final Reading Initial Gradient Initial Reading Elapsed Time (sec) Temperature(C) Pressure (psi) 3.030 1.408 35.47 109.4 36.4 89 1.101 Pressure (psi) Determination No. Project Name: KINGSVILLE LANDFILL Ratio Flow In/Flow Out Coefficient of Permeability (k), (cm/sec) Sample Condition: UNDISTURBED INITIAL Sample Type: SPLIT SPOON Client: FINCH ENG. Project Number: 326-82019 Boring Number: 23 Void Ratio: Dry Density (pcf): Percent Saturation: Moisture Content: Height (in): Wet Density (pcf): SAMPLE DATA Weight (g) Dlameter (in) TEST DATA Upper Burrette Burrette Lower

MAY 29 '98 12:45 FR PSI-CHEMISTRY

412 922 4043 TO 15128546049--812 P.04/05

Droine Mumber 326-82019			A 000	650 Popisi Silber, Julionigh, In 1922 (112) 722	
Project Name: Kil	5		,		
	20	EABILITY	PERMEABILITY TEST REPORT)RT	
SAMPLE DATA				Daniel (4) 110	T
Boring Number: 23		Sample Number:		Depin (ii): de 24 e	T
Sample Description: LIGHT BROWN FAT C	IGHT BROWN FAT CLAY			:006#7%	
Sample Type: SPLIT SPOON		1		Specific Gravity:	2.70
Sample Condition: UNDISTURBED	INDISTURBED PI:			Specification: ASTM D 5084	
	- 1	FINAL		I	
Height (in):	2.792	2.741		with Richa Tailwater	
Diameter (In):	1.380	1,380		A Dai	
Weight (g):	126.00	131.87	Conlining pressure:	1 2	
Wet Density (pcf):	115.0	122.6	Intial Porosity:	4,000,0	
Moisture Content:	27.0	45.0	Initial Dial Hong.:	0.000 m	
Dry Densily (pcf):	90'6	84.5	Dial affer Sat.:	O.USI III	
Percent Saluration:	85	122	Change in Ht.:	OLUGU.	
Void Ballo:	0.861	0.993	Carrected Ht.:	2.741 III	7
TIEST DATE					77.
ובסו מעושו	Determination No.:	-	2	3 4	0 100
10000		105.0	105.0	105.0	0.001
Rurrette	Initial Reading	1.3	1.4	1.7	Ni c
	Elnal Boading	1.4	1.7	1,8	2.2
- I limited	Droseire (psi)	101.0	101.0	101.0	101.0
Jackdo	Initial Roading	39.9	39.7	39.3	38,8
allaling	Einal Beading	39.8	39.3	39.2	38.7
	Burnati mill I	11400	55800	11700	18000
	Clapsed I III e (sec)	20.02	21.5	21.0	20.0
	U	1 00	0.75	1.00	1.00
Kall	Rallo Flow III/Flow Cut	45.3	45.2	45.1	42.0
	Initial Gradieni	0.00	45.1	45.1	45.0
	Final Gradieni	2000	1 4F-08	1.9E-08	1.2E-08
Coefficient of Dermoshilly (K), [Cm/Sec]	hilly (K) [cm/sec)	K.0C-001			

MHY 23 '38 12:45 FK PSI-CHEMISTRY

412 522 4043 TO 15128546049--B12 P.05/05

stries, Inc.	4000						2.70										Milan San San San San San		4	105.0	3.7	0.0	101.0	37.2	36.1	0009	21.0	1.00	40.6	40.2	3.85-08	
Professional Service Industries, Inc.	850 Poplar Street, Phisburgh, PA [5220(412) 922-4000		RT	10 1 11 11 10 1 10 1 10 1 10 1 10 10 10	Deptu (n): 66~60		Crootile Gravity	Specification: ASTAND 5084	Total Tuno: Colling Hoad	with Ricina Tailwater	iso O &		di 000 0	1 2000 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 2000	0.000 in	3.039 In		3	105.0	3.3	3.7	101.0	37.6	37.2	22800	21.5	1.00	40,3	40.3	4.0E-08;	
Pro	920 Pe		<i>TEST REPORT</i>							The second secon		Continuing pressure.	Initial Porosity.	Initial Dial Hang.	Dial after Sat.:	Change in HI.:	Corrected Ht.:		2	105.0	1.7	2.2	101.0	39.9	39.4	26100	21.0	1.00	40.8	40.7	4.4E-08	O DE U
			RMEABILITY TEST		Sample Number:			1	FINAL	3.039	0,440	163.84	125.3	25.2	100.0	66	0.684		_	105.0	3.8	4.5	101.01	37.0	36.3	57000	20.0	1.00	40.2	40.1	2.9E-08	1
	26-82019	Project Name: KINGSVILLE LANDFILL CIent: FINCH ENG.	PERM	•	23	LIGHT BROWN FAT CLAY	T	UNDISTURBED PI		3.104	1.412	159.47	125.0	19.0	105.0	882	0.604		Determination No.:			Final Reading	Processing (Dell)	Initial Reading	Final Reading	Classed Time (and	Temperature(C)	Ratio Flow In/Flow Out	Initial Gradient	Final Gradient	ability (k) (cm/sec)	difficulting (n), follower
	Project Number: 326-82019	Project Name: F Client: F		SAMPLE DATA	Boring Number: 23	Sample Description: LIGHT BROWN FAT	Sample Type:	Sample Condition: UNDISTURBED		Height (in):	Diameter (in):	Weight (g):	Wel Density (pcf):	Moisture Content:	Dry Densily (pol):	Percent Saturation:	Void Ratio:	TEST DATA		Lower	Rirrelle			Plirrette				Rail			Coofficient of Permeability (k) (cm/sec)	כמבוווכופווו מו ו מיייי

City of Kingsville	ille	47-77 IVI	00-00						
TIME	Reading	Length	Diameter	dZouf	LA	O	-	¥	from Average K
C	127	3 8354	3.68808	-12.7	0.359	0.00085994	ERR		*
) ~	126	3.8354	3.68808	0.1	0.359	0.00085994	0.082	1E-07	
- 0	12.5	3.8354	3.68808	0.1	0.359	0.00085994	0.083	1E-07	
1 "	12 45	3.8354	3.68808	0.05	0.359	0.00085994	0.083	5.3E-08	
0 4	12.4	3.8354	3.68808	0.05	0.359	0.00085994	0.084	5.3E-08	
. rc	12.35	3.8354	3.68808	0.05	0.359	0.00085994	0.084	5.3E-08	
98	12 31	3 8354	3.68808	0.04	0.359	0.00085994	0.084	1.4E-09	-3.6
2 0	12.20	3 8354	3 68808	0.03	0.359	0.00085994	0.085	1.1E-09	
00	12.20	0.000	3 68808	0.04	0.359	0 00085994	0.085	1.4E-09	
96	17.74	5.0304	3.00000	0.0	000	200000000000000000000000000000000000000	2000	1 1 1 00	
126	12.2	3.8354	3.68808	0.04	0.359	0.00085884	0.065	1.4E-03	
AVERAGE K=	X =	1.32896172E-09	cm/s						

	K from Average K	R,				13 1.1E-08	1E-08	3.4E-09		2.6E-09	2.7E-09	
	⊢					0.0004319 0.113		0.0004319 0.	0.0004319 0.19	0.0004319 0.2	0.0004319 0.2	
	LA	0.1803	0.1803	0.1803	0.1803	0.1803	0.1803	0.1803	0.1803	0.1803	0.1803	
-55,	dZout	-10	0.25	0.25	0.3	0.3	0.2	3.45	0.12	0.12	0.12	
Depth so-52	Diameter	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	9 cm/s
MW ZH	Length	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	7.0612	3.27611861E-09
lle	Reading	10	9.75	9.5	9.2	8	8.7	5.25	5.13	5.01	4.89	Κ=
City of Kingsville	TIME	O	2	1	20	40	55	1050	1110	1170	1230	AVERAGE P

City of Kingsville	e	1910 0-24	01-00						
TIME	Reading	Length	Diameter	dZout	LA	O	F	×	from Average K
0	10.5	3.79984	3.81254	-10.5	0.3328	0.00079725	ERR		
20	10.2	3.79984	3.81254	0.3	0.3328	0.00079725		1.8E-08	
50	9.85	3.79984	3.81254	0.35	0.3328	0.00079725	0.102	1.4E-08	
80	9.5	3.79984	3.81254	0.35	0.3328	0.00079725		1.5E-08	
110	9.2	3.79984	3.81254	0.3	0.3328	0.00079725		1.3E-08	
140	6 8	3.79984	3.81254	0.3	0.3328	0.00079725		1.3E-08	
170	86	3.79984	3.81254	0.3	0.3328	0.00079725		1.4E-08	-15.1
200	, e	3 79984	3.81254	0.3	0.3328	0.00079725		1.4E-08	
230) ×	3 79984	3.81254	0.2	0.3328	0.00079725		9.9E-09	
260	7.9	3.79984	3.81254	0.2	0.3328	0.00079725		1E-08	
AVERAGE K=	II	1.21241225E-08	cm/s						

City of Kingsville	ville	MW25	DEPTH ら2・54	'S'					
TIME	Reading	Length	Diameter	dZout	ΓΙΑ	O	H	×	from Average K
C	10.1	6.7056	7.0104	-10.1	0.1737	0.00041611			
· "	9.75	6.7056	7.0104	0.35	0.1737	0.00041611		7.5E-08	
9 9	9.5	6.7056	7.0104	0.25	0.1737	0.00041611	0.107	5.5E-08	
11	9.2	6.7056	7.0104	0.3	0.1737	0.00041611		4.1E-08	
	8.75	6.7056	7.0104	0.45	0.1737	0.00041611		3.2E-08	
33	83	6.7056	7.0104	0.45	0.1737	0.00041611		3.4E-08	
51	7.7	6.7056	7.0104	9.0	0.1737	0.00041611		2.4E-08	
2 (7.4	6.7056	7.0104	0.3	0.1737	0.00041611		2.5E-08	-3.5
7.7	7.1	6 7056	7.0104	0.3	0.1737	0.00041611		2.6E-08	
81	6.85	6.7056	7.0104	0.25	0.1737	0.00041611	0.147	2.3E-08	10
AVERAGE	¥ "	2.44774432E-08	s/mo						

City of Kingsville	ville	MW25	DEPTH 64-66	-66					
TIME	Reading	Length	Diameter	dZout	L/A	O	H	×	from Average K
0	10.5	6.7564	6.7564	-10.5	0.1884	0.00045138	ERR		
ഗ	10.3	6.7564	6.7564	0.2	0.1884	0.00045138		2.7E-08	
10	10	6.7564	6.7564	0.3	0.1884	0.00045138	0.101	4.1E-08	
25	9.3	6.7564	6.7564	0.7	0.1884	0.00045138		3.3E-08	
40	8.8	6.7564	6.7564	0.5	0.1884	0.00045138		2.5E-08	
55	8.3	6.7564	6.7564	0.5	0.1884	0.00045138		2.7E-08	
70	7.85	6.7564	6.7564	0.45	0.1884	0.00045138		2.6E-08	is.
85	7.5	6.7564	6.7564	0.35	0.1884	0.00045138		2.1E-08	8.5
100	7.2	6.7564	6.7564	0.3	0.1884	0.00045138	0.139	1.9E-08	
115	6.8	6.7564	6.7564	0.4	0.1884	0.00045138	0.145	2.6E-08	(50)
AVERAGE	×	2 29697766F-08	cm/s						E
1			,						

** TOTAL PAGE,14 **

City of Kingsville	ville	MW25	78-80						
TIME	Reading	Length	Diameter	dZout	L/A	O	Н	¥	from Average K
0	10.6	7.0358	7.0612	-10.6	0.1797	0.00043034			
2	10.4	7.0358	7.0612	0.2	0.1797	0.00043034	200	6.3E-08	
1 ~	10.2	7.0358	7.0612	0.2	0.1797	0.00043034		2.6E-08	
17	10.1	7.0358	7.0612	0.1	0.1797	0.00043034		6.5E-09	
47	9.73	7.0358	7.0612	0.37	0.1797	0.00043034	0.103	8.2E-09	
77	4.6	7.0358	7.0612	0.33	0.1797	0.00043034		7.6E-09	
107	. 6	7.0358	7.0612	0.3	0.1797	0.00043034	0.111	7.1E-09	
137	8.85	7.0358	7.0612	0.25	0.1797	0.00043034	0.114	6.1E-09	
167	88	7.0358	7.0612	0.25	0.1797	0.00043034	0.118	6.3E-09	
197	8.4	7.0358	7.0612	0.2	0.1797	0.00043034	0.121	5.2E-09	16.3
AVERAGE	= ⊻	6.17565979E-09	s/wo						

THIS PAGE LEFT BLANK INTENTIONALLY

City of Kingsville MSWLF - Permit 235E Attachment 4 - Geology Repor
*
G-6 Effective Cohesion/Angle of Internal Friction
· · · · · · · · · · · · · · · · · · ·

September 25, 1997

Finch Energy & Environmental Services P.O. Box 73
Kingsville, Texas 78364

Re: Subsurface Exploration and

Laboratory Analysis

Proposed Landfill Expansion

Kingsville, Texas

PSI File Number: 326-72026

Addendum

Gentlemen:

It was requested that PSI provide ϕ' and c' values for the samples on which we performed unconsolidated undrained triaxial tests. These values are provided in the following table.

Soil Identification	Effective Cohesion, c' (psf)	Effective Angle of internal Friction, φ'
SB-12, 7' - 8'	200	. 26
SB-12, 47' - 48'	200	26
SB-14, 10' - 11'	200	26
SB-14, 34' - 35'	200	24
SB-15, 12' - 13'	200 .	21
SB-15, 24' - 25'	200	24
SB-16, 3' - 5'	200	26
SB-17, 32' - 33'	200	24
SB-18, 9' - 10'	200	21
SB-18, 17' - 18'	200	24
SB-18, 40' - 42'	200	24

Part III, Attachment 4, Appendix 1, p.g. 398

Please call should you have any questions or if we could be or further assistance.

Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, INC.

Amy R. Rein, E. T.

Staff Engineer

Mark J. O'Connor, P.E.

Geotechnical Department Manager

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

GEOTECHNICAL DATA P.S.I. Laboratory, ASTM D-3080 Light Olive Green Clay (Aquiclude)

	Lt. C	live Green Clay	Geotechnical Prop	perties	
Soil Boring	Depth,	C',Cohesion Coefficient	Psi, Angle of Int. Friction	W_{m}	Rho,
Number	ft (bgs)	Lbf/ft²	degrees	wt %	Lbm/ft ³
21	64' - 66'	1100	26.3	20	108
23	82' - 84'	700	19.4	28	90
24	52' - 54'	560	35.0	28	89.6
25	58' - 60'	940	26.6	30	85.3
Avg.	65'	825	26.8	26.5	93.2
Max.	84'	1100	35.0	30	108
Min.	52'	560	19.4	20	85.3

November 1997 Revision 1- June 1998

Revision: 0

FOR PERMIT PURPOSES ONLY		Part III
	ATTACHMENT H	

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

APPENDIX H

ENGINEERING DESIGN CALCULATIONS and ANALYSES

HH	Slope:Stability.Analysis	H-0a
H.2	Settlement Analysis	1-132
H.3	Pipe Stability Analysis F	1-134
H.4	HDPE Liner Stress Analysis h	1-157
H5	Anchor Trench Pullout Analysis H	1-166

November 1997 Revision 1 June 1998

H-0

Revision: 0

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

APPENDIX H.1

SLOPE STABILITY ANALYSIS

Revision 1

June 1998

H-0a

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

ATTACHMENT 4 - GEOLOGY REPORT

APPENDIX H.1 Slope Stability Analysis

THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES $\underline{1}$ THROUGH $\underline{131}$.

Revision 1 6/22/98

Part III, Attachment 4, Appendix 1, p.g. 404

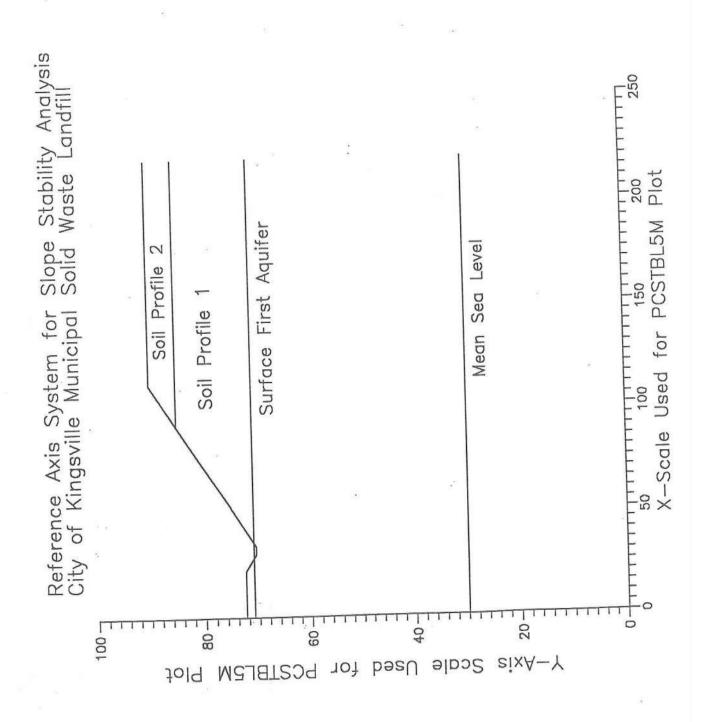
Part III

Summary of Slope Stability Analysis Cases

Friction angle(\$\phi\$)	# of Boundaries	Soil Types	Slope Type	Type of Failure Analysis	Minimum Factor of safety
Base of Land	fill				
21°	8	2	4:1	CIRCL2*	2.53
21°	8	2	3:1	CIRCL2*	2.57
24°	8	2	3:1	RANDOM**	2.67
21°	8	2	3:1	BLOCK***	2.44
Waste on Top	of Landfill				
a	12	4	4:1	CICLE#	4.77
@	12	4	4:1	CICLE#	4.49
a	12	4	4:1	BLOCK***	4.63
b .	10	3	4:1	CICLE#	5.05

* Factors of Safety were calculated using the Modified Bishop Method and a Circular surface search method

** Factors of Safety were calculated using the Modified Janbu Method and Irregular surface searching method


*** Factors of safety were calculated using Modified Janbu Method and Block surface search method

Factors of Safety were calculated using the Modified Janbu Method and a Random Circular surface search method

Surface of first aquifer was at 41 feet above mean sea level

^{24, 21, &}amp; 20 degrees for soil type 2, 3 and 4 respectively

^b 21 and 20 degrees for soil type 2, and 3 respectively @ 21, 10, and 20 for soil type 2, 3, and 4 respectively

RECEIVED SEP 2 9 199

September 25, 1997

Finch Energy & Environmental Services P.O. Box 73 Kingsville, Texas 78364

> Subsurface Exploration and Re:

Laboratory Analysis

Proposed Landfill Expansion

Kingsville, Texas

PSI File Number: 326-72026

Addendum

Gentlemen:

It was requested that PSI provide ϕ' and c' values for the samples on which we performed unconsolidated undrained triaxial tests. These values are provided in the following table.

Soil Identification	Effective Cohesion, c' (psf)	Effective Angle of internal Friction, ϕ'	
SB-12, 7' - 8'	200	. 26	
SB-12, 47' - 48'	200	26	
SB-14, 10' - 11'	200	26	
SB-14, 34' - 35'	200	24	
SB-15, 12' - 13'	200 .	21 _	
SB-15, 24' - 25'	200	24 .	
SB-16, 3' - 5'	200	26	
SB-17, 32' - 33'	200	24 .	
SB-18, 9' - 10'	200	21	
SB-18, 17' - 18'	200	24 ·	
SB-18, 40' - 42'	200	24 . / .	

H-4

201 - 240 Court Bodgo Island Drive • Cornus Christi, TX 78416 • Phone 512/854-4801 • Fax 512/854-6049

Part III, Attachment 4, Appendix 1, p.g. 407

Hanson Professional Services Inc. Submittal Date: September 2018

water To keep

Revision: 0

Please call should you have any questions or if we could be or further assistance.

Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, INC.

Amy R. Rein, E. T. Staff Engineer

Mark J. O'Connor, P.E.

Geotechnical Department Manager

6/129

Part III

** PCSTABL5M **

by Purdue University

1

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 6/21/98
Time of Run: 3
Run By: jos
Input Data Filename: kmsw14.in
Output Filename: kmsw14.out
Unit: ENGLISH

City of Kingsville, Texas Municipal Solid Waste Landfill Permit
Application 235-B
[Slope Stability Analysis (4:1 slope)]

BOUNDARY COORDINATES

7 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	72.50	22.00	72.50	1
2	22.00	72.50	30.00	70.50	1
2	30.00	70.50	34.00	70.50	1
. 3	34.00	70.50	42.00	72.50	1
5	42.00	72.50	92.00	85.00	1
6	92.00	85.00	112.00	90.00	2
7	112.00	90.00	220.00	90.00	2
8	92.00	85.00	220.00	85.00	1

Revision: 0

7/124

Part III

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil

Type	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Angle	Pore Pressure Param.	Pressure Constant (psf)		
1 2	94.5 86.8	112.1 99.6	200.0	21.0	.00	.0	1 .	

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water	
No.	(ft)	(ft)	
1 2	.00	71.00 71.00	

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

900 Trial Surfaces Have Been Generated.

30 Surfaces Initiate From Each Of 30 Points Equally Spaced Along The Ground Surface Between X = 0.00 ft. and X = 80.00 ft.

Each Surface Terminates Between X = 110.00 ft. and X = 150.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is $\ Y = .00 \ \text{ft.}$

3.00 ft. Line Segments Define Each Trial Failure Surface.

6

8/129

Part III

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 37 Coordinate Points

Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
.,	************			
1	24.83	71.79		
	27.35	70.17		
2	29.95	68.67		
4	32.61	67.28		
5	35.32	66.00		
6	38.09	64.85		
7	40.91	63.82		
8	43.77	62.92		
9	46.67	62.14		
10	49.60	61.49		
11	52.55	60.97		
12	55.53	60.58		
13	58.52	60.32		
14	61.51	60.19		
15	64.51	60.20		
16	67.51	60.33		
17	70.50	60.60		
18	73.47	61.00		
19	76.42	61.52	3	
20	79.35	62.18		
21	82.25	62.97		
22	85.10	63.88		
23	87.92	64.91		
24	90.69	66.07		
25	93.40	67.35		
26	96.06	68.75		
27	98.65	70.26		
28	101.17	71.89		
29	103.62	73.62		
30	105.99	75.46		
31	108.27	77.40		
32	110.47	79.44		
33	112.58	81.58		
34	114.59	83.81		
35	116.50	86.12		
36	118.31	88.51		
37	119.34	90.00		

Circle Center At X = 62.9; Y = 128.5 and Radius, 68.3

*** 2.534 ***

Individual da	ta on	the	44	slices
---------------	-------	-----	----	--------

			Water	Water	Tie	Tie	Earthqu		
			Force	Force	Force	Force	For	ce Sur	charge
01:	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
Slice	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
No.	1.2	28.3	.0	.0	.0	.0	.0	.0	.0
1	1.3	98.9	.0	39.4	.0	.0	. 0	.0	.0
2	2.6	411.8	27.2	295.5	.0	.0	.0	.0	.0
3	.1	10.7	1.6	8.5	.0	.0	.0	.0	.0
4	2.6	742.4	81.3	558.2	.0	.0	.0	.0	.0
5	1.4	554.3	43.5	388.7	.0	.0	.0	.0	.0
6	1.4	645.4	28.5	427.2	.0	.0	.0	.0	.0
7	2.8	1776.2	.0	1042.9	.0	.0	.0	.0	.0
8		2337.5	.0	1247.1	.0	.0	.0	. 0	.0
9	2.8	1037.2	.0	523.6	.0	.0	.0	.0	.0
10	1.1	1837.5	.0	904.5	.0	.0	.0	.0	.0
11	1.8	3382.1	.0	1585.6	.0	. 0	. 0	.0	.0
12	2.9	3854.7	.0	1719.3	.0	. 0	.0	.0	.0
13	2.9	4287.8	.0	1828.8	.0	.0	.0	.0	. 0
14	3.0		.0	1914.2	.0	. 0	.0	.0	.0
15	3.0	4677.1	.0	1975.0	.0	.0	. 0	.0	. 0
16	3.0	5019.0	.0	2011.3	.0	.0	.0	.0	.0
17	3.0	5310.4	.0	2022.9	.0	.0	.0	.0	. 0
18	3.0	5548.6	.0	2009.9	.0	.0	0	.0	.0
19	3.0	5731.9	.0	1972.2	.0	.0	.0	.0	.0
20	3.0	5858.8		1910.0	.0	.0	.0	.0	.0
21	3.0	5928.8	.0		.0	.0	.0	.0	.0
22	3.0	5941.7	.0	1823.3 1712.3	.0	.0	.0	.0	.0
23	2.9	5898.1	.0	1577.3	.0	.0	.0	.0	.0
24	2.9	5799.3	.0		.0	.0	.0	.0	.0
25	2.9	5647.0	.0	1418.5 1236.2	.0	.0	.0	.0	. 0
26	2.8	5443.7	.0		.0	.0	.0	.0	.0
27	2.8	5192.5	.0	1030.7	.0	.0	.0	.0	. 0
28	1.3	2395.5	.0	418.1	.0		.0	.0	.0
29	1.4	2499.3	.0	384.4	.0	.0	.0	0	.0
30	2.7	4546.8	.0	551.9	.0		.0	. 0	.0
31	2.6	4162.2	.0	279.6	.0		.0	.0	.0
32	1.1	1740.1	.0	31.3			.0	.0	.0
33	1.4	2018.5	.0	.0	.0		.0	.0	
34	2.4	3384.9	.0	.0			.0	.0	
35	2.4	3000.1	.0	.0	.0		.0	.0	
36	2.3	2601.8	.0	.0	.0		.0	.0	
37	2.2	2195.4	.0	.0			.0	.0	
38	1.5	1328.7	.0	.0	.0		.0	.0	
39	. 6	454.2	.0	.0	.0		.0	.0	
40	2.0	1311.5	.0	.0	.0		.0	.0	
41	1.0	484.3	.0	.0	.0		.0	.0	
42	. 9	356.3	.0	.0	.0		.0	.0	
43	1.8	421.5	.0	.0	.0			.0	
44	1.0	66.2	.0	.0	.0	.0	.0	.0	.0

Failure Surface Specified By 37 Coordinate Points

C	1/	
V)	/	
Y		
ſ	/	

0/129

Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	24.83	71.79	
2	27.34	70.15	
3	29.92	68.63	
4	32.58	67.22	
5	35.29	65.94	
6	38.05	64.78	
7	40.87	63.75	
8	43.73	62.84	
9	46.63	62.07	
10	49.56	61.42	
11	52.51	60.92	
12	55.49	60.54	
13	58.48	60.30	
14	61.48	60.20	
15	64.48	60.23	
16	67.48	60.39	
17	70.46	60.70	
18	73.43	61.13	
19	76.37	61.70	
20	79.29	62.41	
21	82.17	63.24	
22	85.01	64.21	
23	87.81	65.30	
24	90.55	66.51	
25	93.23	67.85	
26	95.85	69.31	
27	98.41	70.89	
28	100.88	72.58	
29	103.28	74.38	
30	105.60	76.29	
31	107.82	78.30	
32	109.96	80.41	
33	111.99	82.62	
34	113.93	84.91	
35	115.75	87.29	
36	117.47	89.75	
37	117.63	90.00	
Circle Co	nter At X =	62.3 ; Y = 126.5 and Radius,	66.3
CTICIE CE	HUUL MU M		

2.537

Revision: 0

11/129

Failure Surface Specified By 37 Coordinate Points

Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
821	20.25	70.50		
1	30.35	68.92		
2	32.90			
3	35.52	67.46		
4	38.20	66.11		
5	40.93	64.88		
6	43.72	63.78		
7	46.56	62.80		
8	49.43	61.94		
9	52.34	61.21		
10	55.28	60.60		
11	58.24	60.13		
12	61.22	59.79		
13	64.22	59.58		
14	67.21	59.50		
15	70.21	59.55		
16	73.21	59.74		
17	76.19	60.05		
18	79.16	60.50		
19	82.10	61.08		
20	85.02	61.78		
21	87.90	62.61		
22	90.74	63.57		
23	93.54	64.65		
24	96.29	65.86		
25	98.98	67.18		
26	101.61	68.62		
27	104.18	70.17		
28	106.67	71.84		
29	109.09	73.61		
30	111.43	75.49		
31	113.69	77.47		
32	115.85	79.55		
33	117.93	81.72		
34	119.90	83.97		
35	121.78	86.32		
36	123.54	88.74		
37	124.38	90.00		
Circle	Center At X =	67.5 ; Y =	127.8	and Radi

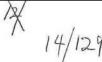
Circle Center At X = 67.5; Y = 127.8 and Radius, 68.3

*** 2.537 ***

Part III

Failure Surface Specified By 38 Coordinate Points

Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1	24.83	71.79			
1	27.36	70.19			
2	29.96	68.69			
3	32.63	67.31			
5	35.34	66.04			
. 6	38.11	64.88			
	40.92	63.84			
7	43.78	62.92			
	46.67	62.12			
9		61.44			
10	49.59 52.54	60.88			
11	55.51	60.45			
12	58.49	60.15			
13	61.49	59.96			
14	64.49	59.91			
15	67.49	59.98			
16	70.48	60.17			
17		60.49			
18	73.46 76.43	60.94			
19		61.51			
20	79.38	62.20			
21	82.29	63.02			
22	85.18	63.95			
23	88.03 90.84	65.01			
24		66.18			
25	93.60	67.46			
26	96.31	68.86			
27	98.97 101.56	70.37			
28	104.09	71.98			
29	104.09	73.70			
30	108.93	75.52			
31	111.24	77.44			
32	113.46	79.46			
33	115.60	81.56			
34	117.64	83.76			
35	119.60	86.03	55		
36		88.39			
37	121.45	90.00			
38	122.61	90.00			
Circle	Center At X =	64.3 ; Y =	131.4	and Radi	us, 71.5


Failure Surface Specified By 37 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	30.35	70.50
2	32.88	68.89
3	35.48	67.39
4	38.14	66.02
5	40.86	64.76
6	43.64	63.62
7	46.47	62.61
8	49.33	61.73
9	52.24	60.97
10	55.17	60.35
11	58.13	59.85
12	61.11	59.49
13	64.10	59.26
14	67.10	59.17
15	70.10	59.21
16	73.09	59.38
17	76.08	59.69
18	79.04	60.13
19	81.99	60.70
20	84.91	61.40
21	87.79	62.23
22	90.63	63.19
23	93.43	64.28
24	96.17	65.49
25	98.86	66.82
26	101.49	68.27
27	104.05	69.83
28	106.54	71.51
29	108.95	73.29
30	111.28	75.18
31	113.52	77.18
32	115.67	79.27
33	117.72	81.45
34	119.68	83.73
35	121.53	86.09
36	123.28	88.53
37	124.23	90.00
(A-2)		

Circle Center At X = 67.7; Y = 126.4 and Radius, 67.3

*** 2.538 ***

Part III

Failure Surface Specified By 38 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	24.83	71.79
2	27.38	70.22
3	30.00	68.75
4	32.67	67.39
5	35.40	66.14
6	38.18	65.01
7	41.00	63.99
8	43.86	63.09
9	46.76	62.31
10	49.68	61.65
11	52.63	61.11
12	55.61	60.69
13	58.59	60.40
14	61.59	60.23
15	64.59	60.18
16	67.58	60.26
17	70.58	60.47
18	73.56	60.79
19	76.53	61.24
20	79.47	61.81
21	82.39	62.51
22	85.28	63.32
23	88.13	64.25
24	90.94	65.30
25	93.70	66.47
26	96.42	67.74
27	99.08	69.13
28	101.68	70.63
29	104.21	72.24
30	106.68	73.94
31	109.07	75.75
32	111.39	77.66
33	113.62	79.66
34	115.78	81.75
35	117.84	83.93
36	119.81	86.19
37	121.69	88.53
38	122.77	90.00

Circle Center At X = 64.2; Y = 132.7 and Radius, 72.5

*** 2.541 ***

15/129

Failure Surface Specified By 38 Coordinate Points

Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	27.59	71.10	
2	30.20	. 69.64	
3	32.88	68.28	
4	35.61	67.03	
5	38.38	65.89	
6	41.20	64.86	
7	44.05	63.94	
8	46.95	63.14	
9	49.87	62.46	
10	52.81	61.89	
11	55.78	61.44	
12	58.76	61.11	
13	61.75	60.90	
14	64.75	60.81	
15	67.75	60.84	
16	70.75	60.99	
17	73.74	61.26	
18	76.71	61.65	
19	79.67	62.16	
20	82.60	62.79	
21	85.51	63.53	
22	88.38	64.39	
23	91.22	65.37	
24	94.02	66.45	
25	96.77	67.65	
26	99.47	68.96	
27	102.11	70.37	
28	104.70	71.89	
29	107.22	73.51	
30	109.68	75.23	
31	112.07	77.05	
32	114.38	78.96	
33	116.61	80.96	
34	118.76	83.06	
35	120.83	85.23	
36	122.81	87.49	
37	124.69	89.82	
38	124.83	90.00	

Circle Center At X = 65.5; Y = 135.7 and Radius, 74.9

*** 2.543 ***

Part

16/129

Failure Surface Specified By 39 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	27.59	71.10
2	30.02	69.35
3	32.53	67.70
4	35.11	66.17
5	37.75	64.75
6	40.46	63.46
7	43.22	62.29
8	46.04	61.25
9	48.89	60.34
10	51.79	59.55
11	54.72	58.90
12	57.67	58.38
13	60.65	57.99
14	63.64	57.74
15	66.63	57.63
16	69.63	57.65
17	72.63	57.80
18	75.61	58.09
19	78.58	58.52
20	81.53	59.08
21	84.45	59.77
22	87.34	60.59
23	90.18	61.54
24	92.98	62.62
25	95.73	63.83
26	98.42	65.16
27	101.05	66.60
28	103.60	68.17
29	106.09	69.85
30	108.50	71.64
31	110.82	73.53
32	113.06	75.53
33	115.20	77.63
34	117.25	79.83
35	119.19	82.11
36	121.03	84.48
37	122.77	86.93
38	124.38	89.46
39	124.70	90.00
		Value (44) (1900 4400 10 14

Circle Center At X = 67.7; Y = 124.0 and Radius, 66.4

*** 2.546 ***

Failure Surface Specified By 35 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	30.35	70.50
2	33.08	69.27
3	35.86	68.14
4	38.68	67.13
5	41.54	66.22
6	44.44	65.43
7	47.36	64.76
8	50.31	64.20
9	53.28	63.76
10	56.26	63.43
11	59.25	63.23
12	62.25	63.14
13	65.25	63.17
14	68.25	63.32
15	71.24	63.59
16	74.21	63.97
17	77.17	64.47
18	80.10	65.09
19	83.01	65.82
20	85.89	66.67
21	88.73	67.63
22	91.53	68.70
23	94.29	69.88
24	97.00	71.17
25	99.66	72.57
26	102.26	74.07
27	104.79	75.67
28	107.27	77.37
29	109.67	79.16
30	112.00	81.05
31	114.25	83.03
32	116.43	85.10
33	118.52	87.25
34	120.52	89.48
35	120.96	90.00

Circle Center At X = 63.0; Y = 139.2 and Radius, 76.0

*** 2.549 ***

Failure Surface Specified By 40 Coordinate Points

Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	24.83	71.79	
2	27.20	69.95	
3	29.65	68.22	
4	32.18	66.61	
5	34.77	65.10	
6	37.44	63.72	
7	40.16	62.46	
8	42.93	61.32	
9	45.76	60.31	
10	48.62	59.43	
11	51.53	58.68	
12	54.46	58.06	
13	57.42	57.57	
14	60.40	57.22	
15	63.40	57.00	
16	66.39	56.92	
17	69.39	56.97	
18	72.39	57.16	
19	75.37	57.48	
20	78.34	57.94	
21	81.28	58.53	
22	84.19	59.25	
23	87.06	60.10	
24	89.90	61.08	
25	92.69	62.19	
26	95.42	63.43	
27	98.10	64.78	
28	100.71	66.26	
29	103.25	67.85	
30	105.72	69.55	
31	108.11	71.37	
32	110.41	73.29	
33	112.63	75.31	
34	114.75	77.43	
35	116.78	79.65	
36	118.70	81.95	
37	120.52	84.34	
38	122.22	86.80	
39	123.82	89.35	
40	124.19	90.00	

Circle Center At X = 66.7; Y = 123.3 and Radius, 66.4

*** 2.553 ***

				.,	-	C	F	Т
	Y		A	X	I	S	1	1
		.00	27.50	55.0		82.50	110.00	137.50
X	.00	+	+	+-	*	+	+	+
		-						
		_						
		-						
		-			*			
	27.50	+		• • • •	11*			
		_			013.			
		3 <u>44</u>			.013.*			
		- 1			.819 013			
A	55.00	_		8				
A	33.00	-		8	319			
		_		8	819			
		-		!				
		55.6 240			8119.			
X	82.50	+		!	8319.			8
1000		77.5			.3119			
						* 2		
		-			33	19		
		-			5	312		
I	110.00	+			!	83112* .833112.		
		_				83311		•
		-				333		
		-						
	137.50	_						
S	137.30	_						
		-						
		-						
		_		99 4				
	165.00	+						
		-						*
		100						
		-						
F	192.50	+						
		_						
		<u>-</u>						
		-						
_	000 00	_				W * *		
T	220.00	T						

NY 20/124

Part III

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: 6/21/98 3 jos

Run By: Input Data Filename:

jos kmsw13.in kmsw13.out

Output Filename:

ENGLISH

Unit:

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

[Slope Stability Analysis (3:1 slope)]

BOUNDARY COORDINATES

7 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
	.00	72.50	22.00	72.50	1
1	22.00	72.50	28.00	70.50	1
2		70.50	32.00	70.50	1
3	28.00	70.50	38.00	72.50	1
4	32.00		75.50	85.00	1
5	38.00	72.50	90.50	90.00	2
6	75.50	85.00	5.00	90.00	2
7	90.50	90.00	220.00	85.00	1
8	75.50	85.00	220.00	65.00	*

11/129

Part III

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil

Type	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)		Pressure Constant (psf)	
1 2	94.5 86.8	112.1 99.6	200.0	21.0	.00	.0	1 .

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)
1 2	0.00	71.00 71.00

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

25 Trial Surfaces Have Been Generated.

5 Surfaces Initiate From Each Of 5 Points Equally Spaced Along The Ground Surface Between X = 0.00 ft. and X = 80.00 ft.

Each Surface Terminates Between X = 110.00 ft. and X = 150.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

3.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

22/129

* * Safety Factors Are Calculated By The Modified Bishop Method * * Failure Surface Specified By 46 Coordinate Points

Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	.00	72.50		
2	2.26	70.53		
3	4.60	68.65		
4	7.01	66.86		
5	9.49	65.18		
6	12.04	63.59		
7	14.65	62.11		
8	17.31	60.74		
9	20.04	59.47		
10	22.80	58.32		
11	25.62	57.28		
12	28.47	56.35		
13	31.36	55.54		
14	34.28	54.84		
15	37.22	54.27		
16	40.19	53.81		
17	43.17	53.47		
18	46.16	53.26		
19	49.16	53.16		
20	52.16	53.19		
21	55.15	53.34		
22	58.14	53.60		
23	61.12	53.99		
24	64.07	54.50		
25	67.01	55.12		
26	69.91	55.87		20
27	72.79	56.73		
28	75.62	57.71		
29	78.42	58.80		
30	81.17	60.00		
31	83.87	61.31		
32	86.51	62.73		
33	89.09	64.25		
34	91.61	65.88		
35	94.07	67.61		
36	96.45	69.43		
37	98.75	71.35		
38	100.98	73.37	33	
39	103.12	75.47		
40	105.18	77.65		
41	107.14	79.92		
42	109.02	82.26		
43	110.79	84.68		
44	112.47	87.16		
45	114.05	89.71		
46	114.21	90.00		
Circle	Center At X =	50.0 ; Y =	127.5	ar

Circle Center At X = 50.0; Y = 127.5 and Radius, 74.3

H-22

Individual	data	on	the	54	slices

		Individua	I data .	on cho					
			Water	Water	Tie	Tie	Earthqu	iake	
			Force	Force	Force	Force	Ford	ce Surc	harge
		Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
Slice	Width	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
No.	(ft)		.0	.0	.0	.0	. 0	.0	.0
1	1.7	121.8	.0	10.6	.0	.0	.0	.0	.0
2	.5	91.2	.0	264.6	.0	.0	.0	.0	.0
3	2.3	701.7	.0	607.6	.0	.0	.0	.0	.0
4	2.4	1219.3		932.4	.0	.0	.0	.0	. 0
5	2.5	1737.4	. 0		.0	.0	.0	.0	. 0
6	2.5	2250.5	.0	1238.5	.0	.0	.0	.0	.0
7	2.6	2753.3	.0	1525.4	.0	.0	.0	.0	.0
8	2.7	3240.7	.0	1792.5	.0	.0	.0	.0	. 0
9	2.7	3707.8	.0	2039.5		.0	.0	.0	.0
10	2.0	2907.9	.0	1585.7	.0	.0	.0	.0	.0
11	. 8	1231.8	.0	680.3	.0		.0	.0	.0
12	2.8	4366.6	.0	2471.5	. 0	.0	.0	.0	.0
13	2.4	3741.2	16.1	2205.9	.0	.0		.0	.0
14	. 5	742.3	14.7	449.9	.0	.0	. 0	.0	.0
15	2.9	4712.8	90.1	2818.5	.0	.0	.0	.0	.0
16	. 6	1081.1	20.0	639.2	.0	.0	.0	.0	.0
17	2.3	4024.5	18.0	2320.3	.0	.0	.0		.0
18	2.9	5635.9	.0	3078.4	. 0	.0	.0	.0	
19	. 8	1566.4	.0	825.4	.0	. 0	.0	.0	. 0
20	2.2	4557.0	.0	2349.6	.0	.0	.0	.0	. 0
21	3.0	6568.2	.0	3249.3	.0	.0	.0	.0	.0
22	3.0	6967.1	.0	3301.1	.0	.0	.0	.0	.0
23	3.0	7317.0	.0	3330.2	.0	. 0	.0	.0	.0
24	3.0	7615.5	.0	3336.7	.0	.0	.0	.0	.0
25	3.0	7860.7	.0	3320.6	.0	.0	.0	.0	. 0
26	3.0	8051.1	.0	3281.8	.0	.0	.0	.0	.0
27	3.0	8185.6	.0	3220.5	.0	.0	.0	.0	.0
28	3.0	8263.7	.0	3136.7	.0	.0	.0	.0	.0
29	2.9	8285.5	.0	3030.6	.0	.0	.0	.0	.0
30	2.9	8251.5	.0	2902.3	.0	.0	.0	.0	.0
31	2.9	8162.6	.0	2752.0	.0	.0	.0	.0	.0
32	2.7	7668.6	.0	2470.4	.0	.0	.0	.0	.0
33	.1	351.8	.0	109.7	.0	.0	.0	.0	.0
34	2.8	7815.9	.0	2386.8	.0	.0	.0	.0	.0
	2.7	7554.0	.0	2172.3	. 0	.0	.0	.0	.0
35	2.7	7247.2	.0	1937.1	.0	.0	.0	.0	.0
36	2.6	6898.9	.0	1681.4	.0	.0	.0	.0	.0
37		6512.8	.0	1405.9	.0	.0	.0	.0	.0
38	2.6	3434.7	.0	657.5	.0	.0	.0	.0	.0
39	1.4	2640.6	.0		.0		.0	.0	.0
40	1.1	5478.6	.0		.0		.0	.0	.0
41	2.5	4844.2	.0		.0		.0	.0	.0
42	2.4		.0		.0		.0	.0	.0
43	1.9	3468.4	.0		.0		.0	.0	.0
44	. 4	739.4	.0		.0		.0	.0	.0
45	2.2	3624.5			.0		.0	.0	.0
46	2.1	3073.1	.0		.0		.0	.0	.0
47	2.1	2532.9			.0		.0	.0	.0
48	2.0	2008.8	.0		.0		.0	.0	.0
49	1.9	1505.8	.0		.0		.0	.0	.0
50	1.8	1028.9	.0	.0	. 0		.0	. 0	9.5

Part	II

.0 .0 .0 .0

		00 5	.0		. 0	.0	.0	.0	.0
51	.2	98.5			.0	.0	.0	.0	.0
52	1.5	496.4	.0		.0	.0	. 0	.0	.0
53	1.6	213.8	.0		.0	.0	. 0	.0	.0
54	. 2	2.0	.0		. 0	. 0	•		
	Failur	e Surfac	e Specif	ied	Ву 43	Coordinat	te Point	ts	
	Poin	t X	-Surf	Y	-Surf				
	No.		(ft)		(ft)				
	1		20.00		72.50				
	2		22.59		70.99				
	3		25.24		69.57				
	4		27.93		68.25				
	5		30.66		67.01				
	6		33.43		65.86				
	7		36.24		64.82				
	8		39.09		63.86				
	9		41.96		63.00				
	10		44.87		62.24				
	11		47.79		61.58				
	12		50.74		61.02				
	13		53.70		60.56				
	14		56.68		60.20				
	15		59.67		59.94				
	16		62.67		59.78				
	17		65.67		59.72				
	18		68.67		59.77				
	19		71.66		59.91				
	20		74.65		60.16				
	21		77.63		60.50				
	22		80.60		60.95				
	23		83.55		61.50				
	24		86.48		62.15				
	25		89.38		62.89				
	26		92.26		63.74				
	27		95.11		64.68				
	28		97.93		65.71				
	29		100.70		66.84				
	30		103.44		68.07				
	31		106.14		69.39				
	32		108.79		70.79				

65.9 ; Y = 148.5 and Radius, 88.7 Circle Center At X =

72.29

73.87

75.54

77.29

79.12

81.03

83.02

85.08

87.22

89.42

90.00

2.709

111.39

113.94

116.43

118.87

121.24

123.56

125.80

127.98

130.09

132.12

132.62

33

34

35

36

37

38

39

40

41

42

43

Failure Surface Specified By 45 Coordinate Points

	v 0	V_C., v.f	
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	20.00	72.50	
1	22.12	70.38	
2	24.33	68.35	
3	26.63	66.43	
4		64.60	
5	29.02	62.89	
6	31.48	61.28	
7	34.01	59.79	
8	36.61		
9	39.28	58.41	
10	42.00	57.16	
11	44.78	56.02	
12	47.61	55.01	
13	50.47	54.12	
14	53.37	53.36	9.
15	56.31	52.73	
16	59.26	52.23	
17	62.24	51.86	i i
18	65.23	51.62	
19	68.23	51.52	
20	71.23	51.54	
21	74.23	51.70	
22	77.21	51.99	
23	80.18	52.42	
24	83.13	52.97	
25	86.05	53.65	
26	88.94	54.46	
	91.79	55.40	
27	94.60	56.46	
28	97.35	57.64	
29	100.05	58.95	
30	102.69	60.37	
31		61.91	
32	105.27	63.56	
33	107.78	65.32	
34	110.21		
35	112.56	67.18	
36	114.82	69.15	
37	117.00	71.21	
38	119.08	73.37	
39	121.07	75.62	
40	122.96	77.95	
41	124.74	80.37	
42	126.41	82.86	
43	127.97	85.42	
44	129.42	88.05	
45	130.38	90.00	
	409 FR	60 1 V = 110 E and	Radius, 68.0
Circle	Center At X =	69.1 ; Y = 119.5 and	Radius, 00.0

H-25

Failure Surface Specified By 31 Coordinate Points

Point	X-Surf	Y-Surf					
No.	(ft)	(ft)	*				
1	40.00	73.17					
2	42.52	71.53					
3	45.12	70.04					
2 3 4	47.80	68.69					
5	50.55	67.50					
5	53.36	66.45					
7	56.23	65.56					
8	59.14	64.83					
9	62.08	64.25					
10	65.05	63.84					
11	68.04	63.60					
12	71.04	63.51					
13	74.04	63.60					
14	77.03	63.84					
15	80.00	64.25					
16	82.95	64.82					
17	85.86	65.55					
18	88.72	66.44					
19	91.53	67.49					
20	94.28	68.68					
21	96.97	70.03					
22	99.57	71.52					
23	102.09	73.15					
24	104.51	74.92					
25	106.84	76.82					
26	109.05	78.84					
27	111.15	80.98					
28	113.14	83.23					
29	114.99	85.59					
30	116.72	88.04					
31	117.94	90.00					
Circle Ce	nter At X =	71.1 ; Y	=	118.3	and	Radius,	54.8

*** 2.869 ***

Part III

Failure Surface Specified By 40 Coordinate Points

Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1.0.					
1	20.00	72.50			
2	22.87	71.62			
3	25.76	70.81			
4	28.66	70.06			
5	31.59	69.39			
6	34.53	68.80			
7	37.48	68.27			
8	40.45	67.81			
9	43.42	67.43			
10	46.40	67.12			
11	49.40	66.88			
12	52.39	66.72			
13	55.39	66.63			
14	58.39	66.61			
15	61.39	66.67			
16	64.39	66.79			
17	67.38	67.00			
18	70.37	67.27			
19	73.35	67.62			
20	76.32	68.04			
21	79.28	68.53			
22	82.22	69.09			
23	85.16	69.73			
24	88.07	70.43			
25	90.97	71.21			
26	93.85	72.06			
27	96.70	72.98			
28	99.54	73.96			
29	102.34	75.02		-	
30	105.12	76.14			
31	107.88	77.34			
32	110.60	78.59		87	
33	113.29	79.92			
34	115.95	81.31			
35	118.58	82.76			
36	121.16	84.28			
37	123.71	85.86			
38	126.23	87.50			
39	128.70	89.20			
40	129.79	90.00			
Circle	Center At X =	57.6 ; Y =	189.6	and Radius	, 123.0

Failure Surface Specified By 56 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
20.7%		
1	.00	72.50
2	2.20	70.46
3	4.46	68.49
4	6.79	66.59
5	9.17	64.78
6	11.62	63.04
7	14.12	59.80
8	16.67	58.30
9	19.27	56.89
10	21.92	55.57
11 12	27.34	54.34
13	30.12	53.19
14	32.93	52.14
15	35.77	51.17
16	38.64	50.30
17	41.54	49.53
18	44.46	48.85
19	47.40	48.26
20	50.36	47.77
21	53.33	47.37
22	56.32	47.07
23	59.31	46.87
24	62.31	46.77
25	65.31	46.76
26	68.31	46.85
27	71.30	47.04
28	74.29	47.33 47.71
29	77.26	48.19
30	80.23	48.76
31	86.09	49.43
32 33	89.00	50.19
34	91.87	51.05
35	94.72	52.00
36	97.53	53.04
37	100.31	54.17
38	103.05	55.40
39	105.75	56.71
40	108.40	58.10
41	111.01	59.59
42	113.57	61.15
43	116.07	62.80
44	118.53	64.53
45	120.92	66.34
46	123.25	68.22
47	125.53	70.18
48	127.73	72.21
49	129.87 131.94	76.49
50	131.94	78.72
51	133.94	10.12

52	135.87	81.03			
53	137.72	83.39			
54	139.49	85.81			
55	141.18	88.28			
56	142.28	90.00			
Circle Ce	nter At X =	64.0 ; Y =	139.2	and Radius,	92.4
***	2.926	***			

Failure Surface Specified By 46 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	.00	72.50
1		71.57
2	2.85	
3	5.73	70.71
4	8.61	69.90
5	11.52	69.15
6	14.44	68.46
7	17.37	67.83
8	20.32	67.26
9	23.27	66.75
10	26.24	66.30
11	29.22	65.91
12	32.20	65.59
13	35.19	65.32
14	38.18	65.11
15	41.18	64.97
16	44.17	64.89
17	47.17	64.87
18	50.17	64.91
19	53.17	65.01
20	56.17	65.17
21	59.16	65.39
22	62.15	65.68
23	65.13	66.02
24	68.10	66.43
25	71.06	66.90
26	74.01	67.42
27	76.96	68.01
28	. 79.89	68.66
29	82.80	69.37
30	85.70	70.13
31	88.59	70.96
32	91.45	71.84
33	94.30	72.79
34	97.13	73.79
35	99.93	74.85
36	102.72	75.96
37	105.48	77.14
38	108.22	78.37
	110.93	79.65
39	110.93	15.05

40	113.61	80.99			
41	116.27	82.38			
42	118.90	83.83			
43	121.49	85.33			
44	124.06	86.89			
45	126.59	88.49			
46	128.86	90.00			
Circle Ce	enter At X =	46.7 ; Y =	211.6	and Radius,	146.8

Failure Surface Specified By 49 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
		70 50
1	20.00	72.50
2	22.33	70.61
3	24.72	68.80
4	27.18	67.08
5	29.70	65.44
6	32.27	63.90
7	34.89	62.44
8	37.56	61.08
9	40.28	59.81
10	43.04	58.64
11	45.85	57.57
12	48.68	56.59
13	51.55	, 55.72
14	54.45	54.94
15	57.37	54.27
16	60.32	53.70
17	63.28	53.24
18	66.26	52.88
19	69.25	52.62
20	72.25	52.47
21	75.25	52.42
22	78.25	52.48
23	81.24	52.65
24	84.23	52.92
25	87.21	53.29
26	90.17	53.77
27	93.11	54.35
28	96.03	55.03
29	98.93	55.82
30	101.79	56.71
31	104.63	57.69
32	107.42	58.78
33	110.18	59.96
34	112.89	61.24
35	115.56	62.61
36	118.18	64.08
37	120.74	65.64
21	লয় জিলাক বাংলা প্রথমী	

V	
1	- /
	31/1
	-11

38	123.25	67.28	9		
39	125.70	69.02			
40	128.09	70.83			
41	130.41	72.73			
42	132.66	74.71			
43	134.84	76.77			
44	136.95	78.91			
45	138.99	81.11			
46	140.94	83.39			
47	142.81	85.73			
48	144.60	88.14			
49	145.89	90.00			
Circle	Center At X =	75.1 ; Y =	138.0 and	Radius,	85.6
	*** 3 020	***			

Failure Surface Specified By 59 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	.00	72.50
2	2.17	70.43
3	4.41	68.43
4	6.70	66.50
5	9.06	64.64
6	11.47	62.86
7	13.94	61.15
8	16.46	59.52
9	19.03	57.98
10	21.65	56.51
11	24.31	55.12
12	27.01	53.82
13	29.75	52.60
14	32.53	51.47
15	35.34	50.43
16	38.19	49.48
17	41.06	48.61
18	43.96	47.84
19	46.88	47.15
20	49.82	46.56
21	52.78	46.06
22	55.75	45.65
23	58.73	45.34
24	61.73	45.11
25	64.72	44.99
26	67.72	44.95
27	70.72	45.01
28	73.72	45.17
29	76.71	45.41
30	79.69	45.75
31	82.66	46.19

32	85.61	46.71	
33	88.55	47.33	
34	91.46	48.04	
35	94.35	48.84	
36	97.22	49.73	
37	100.05	50.71	
38	102.86	51.78	
39	105.63	52.93	
40	108.36	54.17	
41	111.05	55.49	
42	113.70	56.90	
43	116.30	58.39	
44	118.86	59.96	
45	121.36	61.61	
46	123.82	63.34	
47	126.21	65.15	
48	128.55	67.02	
49	130.83	68.97	
50	133.05	70.99	
51	135.21	73.08	
52	137.29	75.23	
53	139.31	77.45	
54	141.26	79.73	
55	143.14	82.07	
56	144.94	84.47	
57	146.67	86.93	
58	148.32	89.43	
59	148.67	90.00	

Circle Center At X = 67.3; Y = 141.0 and Radius, 96.0

*** 3.045 ***

Failure Surface Specified By 52 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	20.00	72.50
2	22.20	70.46
3	24.48	68.51
4	26.82	66.64
5	29.23	64.85
6	31.70	63.15
7	34.23	61.54
8	36.82	60.02
9	39.46	58.59
10	42.15	57.26
11	44.88	56.03
12	47.66	54.89
13	50.48	53.86
14	53.33	52.92

```
15
               56.21
                            52.09
                            51.37
   16
               59.12
                            50.74
   17
               62.06
               65.01
                            50.23
   18
               67.98
                            49.81
   19
               70.97
                            49.51
   20
                            49.31
   21
               73.96
                            49.22
   22
               76.96
               79.96
                            49.24
   23
                            49.36
               82.96
   24
   25
               85.95
                            49.59
               88.93
                            49.93
   26
                            50.37
   27
               91.90
                            50.92
   28
               94.85
                            51.58
   29
               97.77
              100.67
                            52.34
   30
   31
              103.55
                            53.20
              106.39
                            54.17
   32
              109.19
                            55.23
   33
              111.96
                            56.40
   34
              114.68
                            57.66
   35
              117.35
                            59.02
   36
                            60.48
   37
              119.98
                            62.02
   38
              122.55
                            63.66
              125.06
   39
   40
              127.51
                            65.39
   41
              129.90
                            67.20
              132.22
                            69.10
   42
              134.48
                            71.08
   43
              136.66
                            73.14
   44
              138.76
                            75.28
   45
   46
              140.79
                            77.49
                            79.77
   47
              142.74
                            82.12
   48
              144.61
              146.39
                            84.54
   49
              148.08
                            87.01
   50
                            89.55
   51
              149.68
                            90.00
   52
              149.95
Circle Center At X =
                         78.0 ; Y = 133.1  and Radius,
                                                            83.9
```

H-33

	**		A X	I	S	F	T
	Y		A X	1	3	-	-
		00 27.5	0 55.	.00	82.50	110.00	137.50
	0.50			1			
X	.00 +	+-	+	*-	+	+	+
	_			617			
	-			17.			
	-			61 7.			
	-			61 772			
				51 73*			
	27.50 +			11 332*			
	-			1 3325*			
	-			1 3825*			
	-			13827544			
	1. 			382254 . 382.54 .			
				3 2.4			
A	55.00 +			1 2.4			
	3 .5	*		1.245			
				1.245			
	·-			.12475			
				.124 5			
X	82.50 +			. 1 45			
Λ	02.50			3 .1455			
	-			3 .2145			
	-			832175			
	-		996	633.2.11	L7		
	_		90	06 3.2.4	111		
I	110.00 +		9	96633 2	5411		18
				96633 2			
	_			0966.33			
	-				.32257.		
	-				53223		
	7-1-2				366 2		
S	137.50 +			9	99666		
	-				098866		
	_				0988		
	(1 27				O		
	_						
	165.00 +						
	163.00 +	96 ¥6					
	_						
	_	 					
	_						
		-					
F	192.50 +	433					
-		•					
	-	20					
	-	4 8					
	-	•					
	POSTERNO DE PROPERTO DE	•		A1444			
T	220.00 +	l a		W	* *		

Part III

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: 6/22/98 3 jos

Run By: Input Data Filename:

kmsw13fa.in kmsw13r.out

Output Filename:

ENGLISH

Unit:

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

[Slope Stability Analysis (3:1 slope)] Random Failure Surface Analysis

BOUNDARY COORDINATES

7 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	72.50	22.00	72.50	1
2	22.00	72.50	28.00	70.50	1
2	28.00	70.50	32.00	70.50	1
1	32.00	70.50	38.00	72.50	1
4	38.00	72.50	75.50	85.00	1
6	75.50	85.00	90.50	90.00	2
7	90.50	90.00	220.00	90.00	2
8	75.50	85.00	220.00	85.00	1

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil

Туре	Unit Wt.	Unit Wt.	Cohesion Intercept (psf)	Angle		Constant	Surface	
140	94.5	112.1	200.0	24.0	.00	.0	1	
2	86.8	99.6	.0	.0	.00	.0	1	

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	71.00
2	220.00	71.00

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Irregular Surfaces, Has Been Specified.

Janbus Empirical Coef. is being used for the case of $\,$ c & phi both $\,>\,$ 0 100 Trial Surfaces Have Been Generated.

10 Surfaces Initiate From Each Of 10 Points Equally Spaced Along The Ground Surface Between X = 100 ft. and X = 100 80.00 ft.

Each Surface Terminates Between X = 110.00 ft. and X = 150.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is $\, Y = \, .00 \,$ ft.

3.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Janbu Method * *
Failure Surface Specified By 40 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
NO.	(10)	,,
1	17.78	72.50
2	20.70	71.84
3	23.61	71.09
4	25.97	69.23
5	28.25	67.29
6	30.56	65.37
7	32.69	63.26
8	35.01	61.36
9	37.79	60.23
10	40.74	60.75
11	43.74	60.88
12	46.70	61.40
13	49.68	61.68
14	52.67	61.92
15	55.63	61.39
16	58.28	60.00
17	61.24	60.53
18	64.10	61.42
19	65.80	63.89
20	68.36	65.45
21	71.27	66.19
22	74.12	67.11
23	77.06	67.72
24	78.81	70.15
25	81.29	71.84
26	82.48	74.59
27	84.23	77.03
28	86.78	78.61
29	88.39	81.14
30	90.42	83.35
31	93.15	84.60
32	95.79	86.01
33	98.79	86.23
34	101.63	85.26
35	104.46	84.27
36	107.20	85.50
37	110.20	85.52
38	112.59	87.33
39	114.73	89.43
40	115.07	90.00
		10 March 2010 (1990)

2.668

Part III

38/129

Individual data on the 50 slices

Solice Width Weight Top Bot Norm Tan Hor Ver Load Class				Water	Water	Tie	Tie	Earthqu		
No. (ft) (lbs) (Force	Force	Force			
No. (ft) (lbs) (lb	Slice	Width	Weight	Top						
1			(lbs)	(lbs)	(lbs)					
1.3 101.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				.0						
1.6	2			.0	.0					
1				. 0	.0	. 0				
S					.0	.0				
6 2.0 563.3 21.5 438.5 0		2.2		.0	157.6	.0				
8 2.3 1079.4 72.1 873.9 .0			563.3		438.5	.0	.0			
8 2.3 1079.4 72.1 873.9 .0					74.3	.0				
9 1.4 941.9 44.9 804.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .10 .7 539.2 17.4 447.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .11 2.3 2290.7 .0 1627.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .12 2.8 3433.9 .0 1910.2 .0 .0 .0 .0 .0 .0 .0 .0 .13 .2 281.9 .0 142.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .14 2.7 3735.5 .0 1824.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .15 3.0 4247.9 .0 1906.7 .0 .0 .0 .0 .0 .0 .0 .0 .16 3.0 4357.8 .0 1846.4 .0 .0 .0 .0 .0 .0 .0 .0 .17 3.0 4549.4 .0 1771.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .17 3.0 4549.4 .0 1771.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		2.3			873.9	.0	.0	.0		
10		1 4				.0	.0	. 0		
11						. 0	.0			
12						.0	.0			
13						.0	.0	.0	.0	
14						. 0	.0	.0	.0	
15		2 7				.0	.0	.0	.0	
16							.0	.0		. 0
17									.0	. 0
18						. 0		.0	.0	. 0
19 3.0 5015.0 .0 1749.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									.0	.0
20									.0	. 0
21									.0	.0
21										
23									.0	.0
24										.0
24										
25										
26										
27										
28										
30										
31										
31										
32										
34										
34 2.5 2403.7 0										
36 2.0 1343.7 .0										
36 2.0 1343.7 10 0										
37 38 2.6 1401.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0										
38										
39 .8 340.1 .0	38									
40 1.9 730.6 .0	39									
41	40	1.9		.0			.0			
42 2.8 318.5 .0	41		1007.4							
43 .8 318.5 .0 .0 .0 .0 .0 .0 44 2.1 973.0 .0 .0 .0 .0 .0 .0 .0 45 1.6 762.4 .0 .0 .0 .0 .0 .0 .0 46 1.1 458.2 .0 .0 .0 .0 .0 .0 .0 47 3.0 1169.6 .0 .0 .0 .0 .0 .0 .0 48 2.4 741.1 .0 .0 .0 .0 .0 .0 .0 49 2.1 300.6 .0 .0 .0 .0 .0 .0 .0		2.8								
44 2.1 973.0 .0 .0 .0 .0 .0 .0 .0 45 1.6 762.4 .0 .0 .0 .0 .0 .0 .0 46 1.1 458.2 .0 .0 .0 .0 .0 .0 .0 47 3.0 1169.6 .0 .0 .0 .0 .0 .0 .0 48 2.4 741.1 .0 .0 .0 .0 .0 .0 .0 49 2.1 300.6 .0 .0 .0 .0 .0 .0 .0		. 8								
45										
46 1.1 458.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		1.6								
47 3.0 1169.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0										
48 2.4 741.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0			1169.6							
49 2.1 300.6 .0 .0 .0 .0 .0 .0				.0						
			300.6	.0						
			8.3	.0	.0	.0	.0	.0	.0	. 0

Failure Surface Specified By 40 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
140.	1221	30 102
1	17.78	72.50
2	20.70	71.84
3	23.61	71.09
4	25.97	69.23
5	28.25	67.29
6	30.56	65.37
7	32.69	63.26
8	35.01	61.36
9	37.79	60.23
10	40.74	60.75
11	43.74	60.88
12	46.70	61.40
13	49.68	61.68
14	52.67	61.92
15	55.63	61.39
16	58.28	60.00
17	61.24	60.53
18	64.10	61.42
19	65.80	63.89
20	68.36	65.45
21	71.27	66.19
22	74.12	67.11
23	77.06	67.72
24	78.81	70.15
25	81.29	71.84
26	82.48	74.59
27	84.23	77.03
28	86.78	78.61
29	88.39	81.14
30	90.42	83.35
31	93.15	84.60
32	95.79	86.01
33	98.79	86.23
34	101.63	85.26
35	104.46	84.27
36	107.20	85.50
37	110.20	85.52
38	112.59	87.33
39	114.73	89.43
40	115.07	90.00
40	113.07	50.00

Failure Surface Specified By 40 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
		70 50
1	17.78	72.50
2	20.70	71.84
3	23.61	71.09
4	25.97	69.23
5	28.25	67.29
6	30.56	65.37
7	32.69	63.26
8	35.01	61.36
9	37.79	60.23
10	40.74	60.75
11	43.74	60.88
12	46.70	61.40
13	49.68	61.68
14	52.67	61.92
15	55.63	61.39
16	58.28	60.00
17	61.24	60.53
18	64.10	61.42
19	65.80	63.89
20	68.36	65.45
21	71.27	66.19
22	74.12	67.11
23	77.06	67.72
24	78.81	70.15
25	81.29	71.84
26	82.48	74.59
27	84.23	77.03
28	86.78	78.61
29	88.39	81.14
30	90.42	83.35
31	93.15	84.60
32	95.79	86.01
33	98.79	86.23
34	101.63	85.26
35	104.46	84.27
36	107.20	85.50
37	110.20	85.52
38	112.59	87.33
39	114.73	89.43
40	115.07	90.00
	TO SECOND TO TO TO TO	

Failure Surface Specified By 33 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	35.56	71.69
2	37.90	69.81
3	40.78	68.96
4	43.03	66.97
5	45.56	65.36
6	48.43	64.51
7	50.99	62.93
8	53.76	61.80
9	56.72	62.31
10	59.51	63.42
11	62.50	63.70
12	65.40	64.45
13	68.31	65.17
14	71.28	65.59
15	74.28	65.47
16	77.24	64.96
17	80.13	64.17
18	83.13	64.08
19	86.13	64.10
20	88.50	65.94
21	90.99	67.61
22	92.51	70.20
23	95.09	71.72
24	98.08	72.00
25	100.69	73.49
26	103.39	74.79
27	105.92	76.40
28	106.99	79.20
29	109.08	81.35
30	109.10	84.35
31	110.05	87.20
32	111.69	89.71
33	111.73	90.00
		<u> </u>
***	3.419	
***	3.419	

Failure Surface Specified By 33 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	35.56	71.69
2	37.90	69.81
3	40.78	68.96
4	43.03	66.97
5	45.56	65.36
6	48.43	64.51
7	50.99	62.93
8	53.76	61.80
9	56.72	62.31
10	59.51	63.42
11	62.50	63.70
12	65.40	64.45
13	68.31	65.17
14	71.28	65.59
15	74.28	65.47
16	77.24	64.96
17	80.13	64.17
18	83.13	64.08
19	86.13	64.10
20	88.50	65.94
21	90.99	67.61
22	92.51	70.20
23	95.09	71.72
24	98.08	72.00
25	100.69	73.49
26	103.39	74.79
27	105.92	76.40
28	106.99	79.20
29	109.08	81.35
30	109.10	84.35
31	110.05	87.20
32	111.69	89.71
33	111.73	90.00

Failure Surface Specified By 32 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	44 44	74 65
1	44.44	74.65
2	47.25	73.58
3	49.73	71.90
4	52.68	71.34
5	55.55	70.47
6	58.13	68.94
7	61.08	68.38
8	63.80	67.11
9	66.16	65.26
10	68.53	63.43
11	71.51	63.06
12	74.09	64.58
13	77.07	64.96
14	80.07	64.93
15	83.05	65.31
16	85.51	67.02
17	88.05	68.61
18	90.54	70.29
19	93.47	70.94
20	95.50	73.15
21	97.82	75.06
22	98.47	77.98
23	99.95	80.59
24	102.22	82.55
25	104.93	83.83
26	107.48	85.42
27	110.44	85.90
28	113.30	86.80
29	116.00	88.11
30	118.95	88.66
31	121.78	89.66
32	123.96	90.00
52	123.30	50.00

Failure Surface Specified By 49 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	26 67	70.04
1	26.67	70.94
2	28.81	68.85
3	31.52	67.55
4	33.99	65.85
5	36.22	63.84
6	38.41	61.79
7	41.07	60.41
8	43.92	59.48
9	46.55	58.03
10	48.92	56.20
11	51.18	54.21
12	53.38	52.18
13	56.38	52.21
14	59.35	52.67
15	62.34	52.86
16	65.04	54.17
17	67.96	54.86
18	70.83	54.00
19	73.47	52.57
20	76.36	51.75
21	79.26	51.01
22	82.18	51.69
23	84.98	50.61
24	87.97	50.29
25	90.68	49.01
26	93.68	48.87
27	96.67	48.70
28	99.35	50.05
29	101.82	51.76
30	103.47	54.26
31	105.53	5.6.45
32	108.24	57.72
33	109.91	60.22
34	112.71	61.28
35	115.71	61.45
36	118.04	63.34
37	119.75	65.80
38	121.83	67.97
39	123.16	70.65
40	124.19	73.47
41	126.29	75.61
42	129.11	76.65
43	130.64	79.23
44	131.81	82.00
45	133.83	84.21
46	136.78	84.78
47	139.45	86.14
48	141.05	88.68
49	142.49	90.00
-marror		1.50 (\$1.50 (\$1.50))
***	3.822	***

Failure Surface Specified By 28 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	53.33	77.61
2	55.87	76.01
3	58.37	74.35
4	61.26	73.56
5	63.47	71.53
6	66.09	70.07
7	68.33	68.07
8	71.06	66.82
9	73.66	65.32
10	76.61	64.79
11	79.61	64.74
12	82.42	65.79
13	85.22	66.87
14	88.21	66.63
15	91.00	67.75
16	92.35	70.43
17	94.71	72.28
18	96.32	74.81
19	98.09	77.23
20	100.49	79.04
21	102.23	81.48
22	103.96	83.93
23	106.58	85.40
24	109.58	85.45
25	112.29	86.73
26	114.94	88.14
27	117.69	89.35
28	118.09	90.00

*** 3.943 ***

Failure Surface Specified By 33 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
		1000000
1	44.44	74.65
2	46.62	72.58
3	49.62	72.58
4	51.87	74.56
5	54.61	75.79
6	57.58	76.17
7	60.58	76.09
8	63.48	75.30
9	66.45	74.89
10	69.20	73.68
11	71.95	72.49
12	74.91	72.02
13	77.83	72.71
14	80.76	73.35
15	83.76	73.17
16	86.66	72.40
17	89.65	72.47
18	92.15	74.13
19	94.16	76.36
20	96.72	77.92
21	99.62	78.68
22	102.35	79.94
23	104.47	82.06
24	107.13	83.45
25	109.87	84.67
26	112.64	85.84
27	114.98	87.71
28	117.70	88.97
29	120.65	89.54
30	123.64	89.78
31	126.58	89.19
32	129.57	88.93
33	131.73	90.00
***	4.041	***

Failure Surface Specified By 41 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	26.67	70.94
2	28.86	68.90
3	31.32	67.18
4	34.27	66.63
5	37.18	65.91
6	40.07	66.74
7	43.06	66.62
8	45.96	65.84
9	48.43	64.14
10	50.60	62.07
11	53.14	60.46
12	56.13	60.31
13	58.93	59.23
14	61.08	57.13
15	63.90	56.11
16	66.88	56.48
17	69.87	56.28
18	72.83	56.80
19	75.73	56.06
20	78.67	55.44
21	81.62	55.96
22	84.52	55.19
23	87.51	55.47
24	89.66	57.56
25	92.44	58.67
26	95.44	58.52
27	98.36	59.21
28	101.30	58.60
29	104.03	59.85
30	106.44	61.63
31	108.00	64.19
32	108.70	67.11
33	109.17	70.08
34	110.83	72.57
35	111.06	75.56
36	112.26	78.32
37	112.67	81.29
38	114.14	83.91
39	115.97	86.29
40	117.70	88.74
41	119.46	90.00

48/129

	Y	·		А	Х	I	S	F	T
		.00	27	.50	55.	00	82.50	110.00	137.50
Χ	.00	+		+	+		·+ <u>-</u> -	+	+
		-							
		_					KE .		
]			
	07.50	-				,			
	27.50	+				117			
		_				1704			
		-				1.44			
		-	8			71.4.9			
А	55.00	+				.146			
**		-			7.	014.6.	.89		
		-				.11688			
		_				0.618			
		-				441			
Χ	82.50	+				46.3			
		-				4469	911. 1911 *		
		_				004			
		-			77.	0	4.661		
	7.6	-				70			
I	110.00	+					000.4144		20
		_					68		
		-				7	776		
		-					.779.		
c	137 50	+					777.9		
S	137.50	-					77		
		-							
		-							
		_			8				
	165.00	+							
		-							
		-							
		_							
		-							
F	192.50	+							
		_							
		-							
		-							
200	060 00	-					,		
T	220.00	+				Į.	v * *		

Part III

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: 6/23/98 3

Run By:

JOS

Input Data Filename:

kmsw13fb.in kmsw13fb.out

Output Filename:

ENGLISH

Unit:

City of Kingsville, Texas Municipal Solid Waste Landfill

Permit Application 235-B [Slope Stability Analysis (3:1 slope at ϕ = 21°]

BOUNDARY COORDINATES

7 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	72.50	22.00	72.50	1
1	22.00	72.50	28.00	70.50	1
2		70.50	32.00	70.50	1
3	28.00	70.50	38.00	72.50	1
4	32.00	72.50	75.50	85.00	1
5	38.00		90.50	90.00	2
6	75.50	85.00	220.00	90.00	2
7	90.50	90.00		85.00	1
8	75.50	85.00	220.00	05.00	-

50/29

ISOTROPIC SOIL PARAMETERS

2 Type(s) of Soil

Туре	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pressure	Pressure Constant (psf)	
1 2	94.5 86.8	112.1 99.6	200.0	21.0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)	
1	.00	71.00	
2	220.00	71.00	

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Irregular Surfaces, Has Been Specified.

Janbus Empirical Coef. is being used for the case of c & phi both > 0 100 Trial Surfaces Have Been Generated.

10 Surfaces Initiate From Each Of 10 Points Equally Spaced Along The Ground Surface Between X=0.00 ft. and X=80.00 ft.

Each Surface Terminates Between X = 110.00 ft. and X = 150.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is $\,Y=\,$.00 ft.

3.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Janbu Method * * Failure Surface Specified By 40 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
NO.	(10)	
1	17.78	72.50
2	20.70	71.84
3	23.61	71.09
4	25.97	69.23
5	28.25	67.29
6	30.56	65.37
7	32.69	63.26
8	35.01	61.36
9	37.79	60.23
10	40.74	60.75
11	43.74	60.88
12	46.70	61.40
13	49.68	61.68
14	52.67	61.92
15	55.63	61.39
16	58.28	60.00
17	61.24	60.53
18	64.10	61.42
19	65.80	63.89
20	68.36	65.45
21	71.27	66.19
22	74.12	67.11
23	77.06	67.72
24	78.81	70.15
25	81.29	71.84
26	82.48	74.59
27	84.23	77.03
28	86.78	78.61
29	88.39	81.14
30	90.42	83.35
31	93.15	84.60
32	95.79	86.01
33	98.79	86.23
34	101.63	85.26
35	104.46	84.27
36	107.20	85.50
37	110.20	85.52
38	112.59	87.33
39	114.73	89.43
40	115.07	90.00
***	2.435	***

Part III

50 slices Individual data on the

			Water	Water	Tie	Tie	Earthqu	ıake	
			Water	Force	Force	Force	Ford		charge
			Force		Norm	Tan	Hor	Ver	Load
Slice	Width	Weight	Top	Bot	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
No.	(ft)	(lbs)	(lbs)	(lbs)	.0	.0	.0	.0	.0
1	2.9	91.2	.0	.0	.0	.0	.0	.0	.0
2	1.3	101.3	.0	.0		.0	.0	.0	.0
3	1.6	142.3	.0	.0	.0	.0	.0	.0	.0
4	.1	9.5	.0	.0	.0	.0	.0	.0	.0
5	2.2	339.7	. 0	157.6	.0		.0	.0	.0
6	2.0	563.3	21.5	438.5	.0	.0	.0	.0	.0
7	.3	87.6	7.9	74.3	.0	.0		.0	.0
8	2.3	1079.4	72.1	873.9	.0	.0	.0	.0	.0
9	1.4	941.9	44.9	804.0	.0	.0	.0		.0
10	. 7	539.2	17.4	447.3	.0	.0	.0	.0	.0
11	2.3	2290.7	.0	1627.2	.0	.0	.0	.0	
12	2.8	3433.9	.0	1910.2	. 0	.0	.0	.0	.0
13	.2	281.9	. 0	142.9	.0	.0	.0	.0	.0
14	2.7	3735.5	. 0	1824.3	.0	.0	.0	.0	.0
15	3.0	4247.9	. 0	1906.7	.0	.0	.0	.0	.0
16	3.0	4357.8	.0	1846.4	.0	.0	.0	.0	.0
17	3.0	4549.4	.0	1771.2	.0	.0	.0	. 0	.0
18	3.0	4749.5	.0	1722.2	.0	.0	.0	.0	.0
19	3.0	5015.0	.0	1749.1	.0	.0	.0	.0	.0
	2.7	5030.6	.0	1928.8	.0	.0	.0	. 0	.0
20	3.0	5994.6	.0	2009.4	.0	.0	. 0	.0	.0
21	2.9	5856.8	.0	1876.9	.0	.0	.0	.0	.0
22	1.7	3261.8	.0	1562.5	.0	.0	.0	.0	.0
23		4526.0	.0	1184.5	.0	.0	.0	.0	0
24	2.6	5012.5	.0	969.0	.0	.0	.0	.0	.0
25	2.9	4919.7	.0	814.1	.0	.0	.0	.0	. 0
26	2.9	2372.0	.0	329.1	.0	.0	.0	.0	. 0
27	1.4	2701.3	.0	342.4	.0	.0	. 0	.0	.0
28	1.6		.0	386.5	.0	.0	.0	.0	.0
29	1.7	2843.4	.0	39.9	.0	.0	.0	.0	. 0
30	1.3	1855.7		.0	.0	.0	.0	.0	.0
31	1.2	1768.7	.0	.0	.0	.0	.0	.0	.0
32	1.2	1536.7	.0	.0	.0	.0	.0	.0	.0
33	1.8	1919.7	.0	.0	0	.0	.0	.0	.0
34	2.5	2463.7	.0	.0	.0	.0	.0	.0	. 0
35	1.6	1348.0	.0		.0	.0	.0	.0	.0
36	2.0	1343.7	.0	.0	.0	.0	.0	.0	.0
37	. 1	46.8	.0	.0	.0	.0	.0	.0	.0
38	2.6	1401.8	.0	.0		.0	.0	.0	.0
39	. 8	340.1	.0	.0	.0	.0	.0	.0	.0
40	1.9	738.8	.0	.0	.0		.0	.0	.0
41	3.0	1007.4	.0	.0	.0	.0		.0	.0
42	2.8	1048.7	.0	.0	.0	.0	.0		
43	.8	318.5	.0	.0	.0	.0	.0		
44	2.1	973.0	.0	.0	. 0		.0		
45	1.6	762.4	.0	.0	.0	.0	.0		
46	1.1	458.2	.0	.0	. 0		.0		
47	3.0	1169.6	.0		0		.0	.0	
48	2.4	741.1	.0		.0		.0	.0	
49	2.1	300.6	.0	.0	.0	.0	.0	.0	.0

Part III

										1928
50	.3	8.3	.0	.0		.0	.0	.0	.0	.0
	Failure	Surface	Specifie	d By	40	Coordinate	Points			
	Point		Surf		urf					
	No.	(:	ft)	(f	t)					
	1		7.78		.50					
	2		0.70							
	3		3.61		.09					
	4		5.97		.23					(a)
	5	2	8.25		.29					
	6	3	0.56	65	.37					
	ブ	3	2.69	63	3.26					
	8		5.01	61	.36					
			7.79		.23					
	9				.75					
	10		0.74							
	11		3.74		.88					
	12		6.70		1.40					
	13		9.68		1.68					
	14	5	2.67		1.92					
	15	5	5.63	6	1.39					
	16	5	8.28	60	0.00					
	17	6	1.24	61	0.53					
	18		4.10	6	1.42					
	19		5.80	6	3.89)				
	20		8.36		5.45					
	21		1.27		6.19					
	22		4.12		7.11					
	23		7.06		7.72					
			8.81		0.15		9		,	8
	24		31.29		1.84					
	25		32.48		4.59					
	26		34.23		7.03					
	27				8.61					
	28		36.78							
	29		38.39		1.14					
	30		90.42		3.35					
	31		93.15		4.60					
	32		95.79		6.01					
	33		98.79		6.23					
	34		01.63		5.26					
	35	10	04.46		4.2					
	36	10	07.20	8	5.50	0				
	37	1.7	10.20	8	5.52	2				
	38	1:	12.59	8	7.33	3				
	39		14.73	8	9.43	3				
	40		15.07	9	0.0	0				
		***	2.435	**						

Revision: 0

Failure Surface Specified By 40 Coordinate Points

No. (ft) (ft) 1 17.78 72.50 2 20.70 71.84 3 23.61 71.09 4 25.97 69.23 5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43 40 115.07 90.00	Point	X-Surf	Y-Surf
1 17.78 72.50 2 20.70 71.84 3 23.61 71.09 4 25.97 69.23 5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59		(ft)	(ft)
2 20.70 71.84 3 23.61 71.09 4 25.97 69.23 5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43	NO.	1/	07-100-100-100
2 20.70 71.84 3 23.61 71.09 4 25.97 69.23 5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 <td>1</td> <td>17.78</td> <td>72.50</td>	1	17.78	72.50
3 23.61 71.09 4 25.97 69.23 5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 <td></td> <td>20.70</td> <td>71.84</td>		20.70	71.84
4 25.97 69.23 5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.71 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 30 90.42 83.35 </td <td></td> <td></td> <td>71.09</td>			71.09
5 28.25 67.29 6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35<		25.97	69.23
6 30.56 65.37 7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43			
7 32.69 63.26 8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.0		30.56	65.37
8 35.01 61.36 9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.		32.69	63.26
9 37.79 60.23 10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43			61.36
10 40.74 60.75 11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 <td< td=""><td></td><td>37.79</td><td>60.23</td></td<>		37.79	60.23
11 43.74 60.88 12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 37 110.20 85.52 38 112.59 <t< td=""><td></td><td>40.74</td><td>60.75</td></t<>		40.74	60.75
12 46.70 61.40 13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 <			60.88
13 49.68 61.68 14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59			61.40
14 52.67 61.92 15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73		49.68	61.68
15 55.63 61.39 16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		52.67	61.92
16 58.28 60.00 17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		55.63	61.39
17 61.24 60.53 18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		58.28	
18 64.10 61.42 19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		61.24	
19 65.80 63.89 20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43			
20 68.36 65.45 21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		65.80	
21 71.27 66.19 22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43			65.45
22 74.12 67.11 23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		71.27	66.19
23 77.06 67.72 24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		74.12	67.11
24 78.81 70.15 25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		77.06	67.72
25 81.29 71.84 26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		78.81	
26 82.48 74.59 27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		81.29	71.84
27 84.23 77.03 28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		82.48	74.59
28 86.78 78.61 29 88.39 81.14 30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		84.23	77.03
30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		86.78	78.61
30 90.42 83.35 31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43	29	88.39	
31 93.15 84.60 32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		90.42	
32 95.79 86.01 33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		93.15	84.60
33 98.79 86.23 34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		95.79	86.01
34 101.63 85.26 35 104.46 84.27 36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		98.79	
36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		101.63	
36 107.20 85.50 37 110.20 85.52 38 112.59 87.33 39 114.73 89.43	35	104.46	
37 110.20 85.52 38 112.59 87.33 39 114.73 89.43		107.20	
39 114.73 89.43		110.20	85.52
39 114.73 89.43		112.59	
		115.07	90.00

Failure Surface Specified By 33 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	35.56	71.69
2	37.90	69.81
3	40.78	68.96
4	43.03	66.97
5	45.56	65.36
6	48.43	64.51
7	50.99	62.93
8	53.76	61.80
9	56.72	62.31
10	59.51	63.42
11	62.50	63.70
12	65.40	64.45
13	68.31	65.17
14	71.28	65.59
15	74.28	65.47
16	77.24	64.96
17	80.13	64.17
18	83.13	64.08
19	86.13	64.10
20	88.50	65.94
21	90.99	67.61
22	92.51	70.20
23	95.09	71.72
24	98.08	72.00
25	100.69	73.49
26	103.39	74.79
27	105.92	76.40
28	106.99	79.20
29	109.08	81.35
30	109.10	84.35
31	110.05	87.20
32	111.69	89.71
33	111.73	90.00
	10 to	C 100 and

Failure Surface Specified By 33 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	35.56	71.69
2	37.90	69.81
3	40.78	68.96
4	43.03	66.97
5	45.56	65.36
6	48.43	64.51
7	50.99	62.93
8	53.76	61.80
9	56.72	62.31
10	59.51	63.42
11	62.50	63.70
12	65.40	64.45
13	68.31	65.17
14	71.28	65.59
15	74.28	65.47
16	77.24	64.96
17	80.13	64.17
18	83.13	64.08
19	86.13	64.10
20	88.50	65.94
21	90.99	67.61
22	92.51	70.20
23	95.09	71.72
24	98.08	72.00
25	100.69	73.49
26	103.39	74.79
27	105.92	76.40
28	106.99	79.20
29	1.09.08	81.35
30	109.10	84.35
31	110.05	87.20
32	111.69	89.71
33	111.73	90.00
		07

Failure Surface Specified By 32 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	44.44	74.65
2	47.25	73.58
3	49.73	71.90
4	52.68	71.34
5	55.55	70.47
6	58.13	68.94
7	61.08	68.38
8	63.80	67.11
9	66.16	65.26
10	68.53	63.43
11	71.51	63.06
12	74.09	64.58
13	77.07	64.96
14	80.07	64.93
15	83.05	65.31
16	85.51	67.02
17	88.05	68.61
18	90.54	70.29
19	93.47	70.94
20	95.50	73.15
21	97.82	75.06
22	98.47	77.98
23	99.95	80.59
24	102.22	82.55
25	104.93	83.83
26	107.48	85.42
27	110.44	85.90
28	113.30	86.80
29	116.00	88.11
30	118.95	88.66
31	121.78	89.66
32	123.96	90.00
		×

** 3.128 ***

Failure Surface Specified By 49 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1,01	,	
1	26.67	70.94
2	28.81	68.85
3	31.52	67.55
4	33.99	65.85
5	36.22	63.84
6	38.41	61.79
7	41.07	60.41
8	43.92	59.48
9	46.55	58.03
10	48.92	56.20
11	51.18	54.21
12	53.38	52.18
13	56.38	52.21
14	59.35	52.67
15	62.34	52.86
16	65.04	54.17
17	67.96	54.86
18	70.83	54.00
19	73.47	52.57
20	76.36	51.75
21	79.26	51.01
22	82.18	51.69
23	84.98	50.61
24	87.97	50.29
25	90.68	49.01
26	93.68	48.87
27	96.67	48.70
28	99.35	50.05
29	101.82	51.76
30	103.47	54.26
31	105.53	56.45
32	108.24	57.72
33	109.91	60.22
34	112.71	61.28
35	115.71	61.45
36	118.04	63.34
37	119.75	65.80
38	121.83	67.97
39	123.16	70.65
40	124.19	73.47
41	126.29	75.61
42	129.11	76.65
43	130.64	79.23
44	131.81	82.00
45	133.83	84.21
46	136.78	84.78
47	139.45	86.14
48	141.05	88.68
49	142.49	90.00
42		

*** 3.413 ***

Revision: 0

Failure Surface Specified By 28 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	53.33	77.61
2	55.87	76.01
3	58.37	74.35
4	61.26	73.56
5	63.47	71.53
6	66.09	70.07
7	68.33	68.07
8	71.06	66.82
9	73.66	65.32
10	76.61	64.79
11	79.61	64.74
12	82.42	65.79
13	85.22	66.87
14	88.21	66.63
15	91.00	67.75
16	92.35	70.43
17	94.71	72.28
18	96.32	74.81
19	98.09	77.23
20	100.49	79.04
21	102.23	81.48
22	103.96	83.93
23	106.58	85.40
24	109.58	85.45
25	112.29	86.73
26	114.94	88.14
27	117.69	89.35
28	118.09	90.00

*** 3.553 ***

Failure Surface Specified By 33 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	44.44	74.65
1 2 3		72.58
2	46.62	72.58
	49.62	74.56
4	51.87	
5	54.61	,5.,5
6	57.58	76.17
7	60.58	76.09
8	63.48	75.30
9	66.45	74.89
10	69.20	73.68
11	71.95	72.49
12	74.91	72.02
13	77.83	72.71
14	80.76	73.35
15	83.76	73.17
16	86.66	72.40
17	89.65	72.47
18	92.15	74.13
19	94.16	76.36
20	96.72	77.92
21	99.62	78.68
22	102.35	79.94
23	104.47	82.06
24	107.13	83.45
25	109.87	84.67
26	112.64	85.84
27	114.98	87.71
28	117.70	88.97
29	120.65	89.54
30	123.64	89.78
	126.58	89.19
31	129.57	88.93
32	131.73	90.00
33	131.73	50.00
		•

Failure Surface Specified By 41 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	26.67	70.94
2	28.86	68.90
3	31.32	67.18
4	34.27	66.63
5	37.18	65.91
6	40.07	66.74
7	43.06	66.62
8	45.96	65.84
9	48.43	64.14
10	50.60	62.07
11	53.14	60.46
12	56.13	60.31
13	58.93	59.23
14	61.08	57.13
15	63.90	56.11
16	66.88	56.48
17	69.87	56.28
18	72.83	56.80
19	75.73	56.06
20	78.67	55.44
21	81.62	55.96
22	84.52	55.19
23	87.51	55.47
24	89.66	57.56
25	92.44	58.67
26	95.44	58.52
27	98.36	59.21
28	101.30	58.60
29	104.03	59.85
30	106.44	61.63
31	108.00	64.19
32	108.70	67.11
33	109.17	70.08
34	110.83	72.57
35	111.06	75.56
36	112.26	78.32
37	112.67	81.29
38	114.14	83.91
39	115.97	86.29
40	117.70	88.74
41	119.46	90.00

62/129

200	2	Y	А	Х	I	S	F	T
		.00	27.50	55.0	0	82.50	110.00	137.50
X	.00	+	+	+-	*	+:	+	+
		-						
		_						
		_			1			
		-			*			
	27.50	+			11*			
		-			.117* 1704*			
		_			1.44.			
		-	50	7	1.4.9			
		-			116			
A	55.00	+			146 14.6.			
		_			11688			
		-		70	.618.	9		
		-			.61.9			
v	92 50	+		70.	.4411			
X	82.50	_		7.0.				
		() ()		70	44	911 *		
		-		70	04	661		
		_			0			
I	110.00	+				00.4144		
		-			7	0911		
		1				68		
		_			//	76 779.		
		-				777.9		
S	137.50	+				7		
		3 				77		
		-						
		-						
		_						
	165.00	+						
		_						
		-						
		-						
	102 50	200 200						
F	192.50	-						
		-						
		_						
		_						
Т	220.00	+			W	* *		
-		40						
42								

160

H-63

Y-Axis Scale Used for PCSTBL5M Plot

100

120

140

Submittal Date: September 2018

Revision: 0

64/129

Part III

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 6/23/98
Time of Run: 3
Run By: JOS
Input Data Filename: kmsw24.in
Output Filename: kmsw24.out
Unit: ENGLISH

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

[Slope Stability Analysis (4:1 slope)]
Landfill (with Cover) Slope Stability Analysis

BOUNDARY COORDINATES

3 Top Boundaries 12 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
	.00	90.00	100.00	90.00	1
1	100.00	90.00	360.00	155.00	3
2	360.00	155.00	460.00	157.00	3
3	100.00	90.00	360.00	153.00	4
4	360.00	153.00	460.00	155.00	4
5 6	100.00	90.00	120.00	85.00	1
7	.00	85.00	120.00	85.00	2
	120.00	85.00	170.00	72.50	2
8 9	170.00	72.50	178.00	70.50	2
10	178.00	70.50	182.00	70.50	2
11	182.00	70.50	190.00	72.50	2
12	190.00	72.50	460.00	72.50	2

Revision: 0

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

,	Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)		Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
	4	86.8	99.6	. 0	.0	.00	.0	1 .
	1		112.1	200.0	24.0	.00	.0	1
	2	94.5	105.0	200.0	21.0	.00	.0	1
	3	90.0		1000.0	20.0	.00	.0	1
	4	30.0	32.0	1000.0	20.0	30367		

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)
1 2	.00 460.00	71.00 71.00

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

Janbus Empirical Coef. is being used for the case of c & phi both > 0 900 Trial Surfaces Have Been Generated.

30 Surfaces Initiate From Each Of 30 Points Equally Spaced Along The Ground Surface Between X = .00 ft. and X = 150.00 ft.

Each Surface Terminates Between X = 200.00 ft.and X = 460.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

5.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Janbu Method * *

Failure Surface Specified By 72 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
140.	,,	
1	103.45	90.86
2	107.60	88.07
3	111.81	85.37
4 .	116.08	82.77
5	120.41	80.28
6	124.80	77.88
7	129.24	75.59
8	133.74	73.40
9	138.28	71.31
10	142.87	69.33
11	147.51	67.46
12	152.19	65.70
13	156.91	64.05
14	161.66	62.50
15	166.45	61.07
16	171.28	59.75
17	176.13	58.54
18	181.01	57.45
19	185.91	56.47
20	190.83	55.60
21	195.78	54.85
22	200.74	54.21
23	205.71	53.69
24	210.69	53.29
25	215.68	53.00
26	220.68	52.83
27	225.68	52.77
28	230.68	52.83
29	235.68	53.00
30	240.67	53.30
31	245.65	53.70
32	250.63	54.23
33	255.58	54.87
34	260.53	55.62
35	265.45	56.49
36	270.35	57.47
37	275.23	58.57
38	280.08	59.78
39	284.90	61.10
40	289.69	62.54
12,073		

42 29 43 30 44 30 45 31 46 31	4.45 64.09 19.17 65.74 13.85 67.51 18.48 69.38 3.07 71.36 7.62 73.45 22.11 75.64 26.55 77.94
43 30 44 30 45 31 46 31	3.85 67.51 18.48 69.38 3.07 71.36 7.62 73.45 12.11 75.64
44 30 45 31 46 31	3.07 71.36 7.62 73.45 22.11 75.64
45 31 46 31	3.07 71.36 7.62 73.45 22.11 75.64
46 31	73.45 22.11 75.64
10	22.11 75.64
47 32	
•	
	30.94 80.33
1 2	85.27 82.83
	39.54 85.43
and the same of th	13.75 88.13
	17.89 90.93
1000	51.97 93.82
	55.98 96.81
	59.92 99.88
	63.79 103.05
	67.58 106.31
	71.30 109.66
	74.94 113.09
	78.49 116.60
	81.97 120.20
	85.36 123.87
	88.66 127.63
	91.87 131.46
	95.00 135.36
	98.03 139.34
	00.97 143.38
	03.82 147.49
	06.56 151.67
	09.21 155.91
	09.26 155.99

*** 4.769 ***

Individual data on the 86 slices

			Water	Water	Tie	Tie	Earthq	uake	
	70		Force	Force	Force	Force	For	ce Sur	charge
Slice	Width	Weight (lbs)	Top	Bot (lbs)	Norm (lbs)	Tan	Hor	Ver	Load (lbs)
No.	(ft)	(201)	.0	.0	.0	.0	.0	.0	.0
1 2	4.0	239.7	.0	.0	.0	.0	.0	.0	.0
3	. 1	9.1	.0	. 0	.0	.0	.0	. 0	.0
4	4.2	943.8	.0	.0	.0	.0	.0	.0	.0
5	. 6	209.5	.0	.0	.0	.0	.0	.0	.0
6	3.7	1648.1	. 0	.0	.0	.0	.0	.0	.0
7	3.9	2504.5	.0	.0	.0	.0	.0	.0	.0
8	. 4 4. 4	3719.4	.0	.0	.0	.0	.0	.0	.0
10	4.4	4590.0	.0	.0	.0	.0	.0	.0	.0
11	4.5	5432.1	.0	.0	.0	.0	.0	.0	.0
12 13	4.5	6242.3	.0	.0	.0	.0	.0	.0	.0

2000	2 0	6010.8	.0	218.8		. 0	.0	.0	.0	.0
14	3.9	7966.7	.0	811.5		.0	.0	.0	.0	.0
15	4.6	8814.3	.0	1378.4		.0	.0	. 0	.0	. 0
16		9611.6	.0	1911.2		.0	.0	.0	.0	.0
17	4.7	10355.4	.0	2409.8		.0	. 0	.0	.0	.0
18	4.8	11043.0	.0	2874.0		.0	.0	.0	.0	.0
19	4.8		.0	2388.9		.0	. 0	.0	.0	.0
20	3.5	8531.1	.0	914.5		.0	.0	. 0	.0	.0
21	1.3	3140.4	.0	3594.9		. 0	.0	. 0	.0	.0
22	4.7	11908.5	.0	102.8		. 0	.0	.0	.0	. 0
23	.1	330.0	.0	1515.9		.0	.0	.0	.0	.0
24	1.9	4832.3	.0	2540.9		.0	.0	.0	.0	0
25	3.0	7951.2	.0	862.3		.0	. 0	. 0	.0	. 0
26	1.0	2689.5		1775.3		.0	.0	.0	.0	.0
27	2.0	5548.8	.0	1743.0		.0	. 0	.0	.0	.0
28	1.9	5480.4	.0	3858.6		.0	.0	. 0	.0	.0
29	4.1	12283.2		810.1		.0	.0	.0	.0	.0
30	. 8	2590.3	0	4921.2		.0	.0	. 0	.0	. 0
31	4.9	15708.2	. 0	5137.8		.0	.0	. 0	.0	. 0
32	5.0	16340.9	.0			.0	0	.0	.0	.0
33	5.0	16904.5	.0	5318.3		.0	.0	.0	.0	.0
34	5.0	17397.4	.0	5462.8 5571.2		.0	.0	.0	.0	.0
35	5.0	17818.1	.0	5643.3		.0	.0	.0	.0	.0
36	5.0	18165.5	. 0	5679.1		.0	.0	. 0	.0	.0
37	5.0	18438.6	.0	5678.7		.0	.0	.0	.0	. 0
38	5.0	18636.7	.0	5642.0		.0	.0	. 0	.0	.0
39	5.0	18759.4	.0	5569.0		.0	.0	.0	.0	.0
40	5.0	18806.6	.0	5459.8		.0	.0	.0	.0	. 0
41	5.0	18778.3	.0	5314.5		.0	.0	.0	.0	.0
42	5.0	18674.9		5133.1		.0	.0	.0	.0	. 0
43	5.0	18496.9	.0	4915.7		.0	.0	.0	.0	.0
44	4.9	18245.2	.0	4662.4		.0	.0	.0	.0	. 0
45	4.9	17920.8	.0	4373.4		.0	.0	.0	.0	. 0
46	4.9	17525.0	.0	4048.8		. 0	.0	.0	.0	. 0
47	4.9	17059.6	.0	3688.8		.0	.0	.0	.0	.0
48	4.9	16526.1 15926.8	.0	3293.6		.0	.0	. 0	.0	.0
49	4.8	15263.9	.0	2863.5		.0	.0	.0	.0	.0
50	4.8	14539.7	.0	2398.5		.0	.0	.0	.0	.0
51	4.8	13757.2	.0	1899.1		.0	.0	.0	.0	.0
52	4.7	12919.2	.0	1365.4		.0	.0	.0	.0	.0
53	4.7	12028.7	.0	797.8		.0	.0	.0	.0	.0
54	3.8	9135.2	.0	206.8	*	.0	.0	.0	.0	.0
55		1956.8	.0	.0		.0	.0	.0	.0	.0
56	.8	5669.7	.0	.0		.0	.0	.0	.0	.0
57	2.5	4609.9	.0	.0		.0	.0	.0	.0	.0
58	2.1	9950.1	.0	.0		. 0	. 0	.0	. 0	.0
59	4.4	9693.4	.0	.0		.0	. 0	.0	.0	.0
60	4.4	9419.5	.0	.0		.0	.0	.0	.0	.0
61	4.3	9129.3	.0	.0		.0	.0	.0	.0	. 0
62	4.3	8823.7	.0	.0		.0	. 0	.0	.0	.0
63	4.2		.0	.0		.0	.0	.0	.0	.0
64	4.2	8171.0	.0	.0		.0	.0	.0	.0	.0
65	4.1		.0	.0		. 0	.0	.0	.0	.0
66	4.1		.0	.0		.0	.0	.0	.0	. 0
67	3.9		.0	.0		.0	.0	. 0	.0	.0
68	.1		.0			.0	.0	. 0	.0	.0
69	3.8	-	.0			.0	.0	. 0	.0	.0
70	5.0	00.10.1	1868							

,	-/	
6	7/1	29
	4'	- 1

20	2 0	6193.4	.0	0	.0	. 0	.0	. 0	.0
71	3.8			.0	.0	.0	.0	.0	.0
72	3.7	5708.3	.0				.0	.0	.0
73	3.6	5225.6	.0	. 0	.0	.0			
74	3.6	4746.7	.0	. 0	.0		.0	.0	.0
	3.5	4273.1	.0	.0	.0	. 0	.0	.0	.0
75		3806.4	.0	- 0		.0	.0	.0	.0
76	3.4		. 0	.0	.0	.0	. 0	.0	.0
77	3.3	3347.8	.0	.0		.0	.0	.0	.0
78	3.2	2899.0		.0	.0				
79	3.1	2461.4	. 0	.0	. 0	. 0	.0	.0	.0
80	3.0	2036.4	. 0	.0	.0	. 0	.0	.0	.0
		1625.4	. 0	.0	.0	.0	.0	. 0	
81	2.9			. 0	.0	. 0	.0	.0	. 0
82	2.8	1229.9	.0	.0			.0	0	.0
83	2.7	851.1	.0		. 0	.0		. 0	
84	1.4	306.3	. 0	.0	.0	.0	.0	. 0	.0
85	1.2	113.8	.0	.0	. 0	.0	.0	.0	.0
		.2	.0	.0	.0	. 0	.0	. 0	.0
86	. 0	. 2	. 0		150700				

Failure Surface Specified By 77 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.45	90.86
2	107.49	87.92
3	111.60	85.08
4	115.77	82.32
5	120.01	79.65
6	124.29	77.08
7	128.64	74.61
8	133.03	72.23
9	137.48	69.94
10	141.98	67.76
11	146.52	65.67
12	151.11	63.69
13	155.75	61.81
14	160.42	60.02
15	165.13	58.35
16	169.87	56.77
17	174.65	55.30
18	179.46	53.94
19	184.30	52.68
20	189.17	51.53
21	194.06	50.49
22	198.97	49.55
23	203.90	48.73
24	208.85	48.01
25	213.81	47.40
26	218.79	46.90
27	223.77	46.51
28	228.76	46.23
29	233.76	46.05
30	238.76	45.99
31	243.76	46.04
32	248.76	46.20
33	253.75	46.47
34	258.74	46.85

35	263.71	47.34
36	268.68	47.93
37	273.63	48.64
38	278.56	49.45
39	283.47	50.38
40	288.37	51.41
41	293.24	52.55
42	298.08	53.79
43	302.89	55.14
44	307.67	56.60
45	312.42	58.16
46	317.14	59.83
47	321.82	61.60
48	326.45	63.47
49	331.05	65.44
50	335.60	67.51
51	340.10	69.69
52	344.55	71.96
53	348.96	74.33
54	353.31	76.79
55	357.60	79.35
56	361.84	82.01
57	366.02	84.75
58	370.13	87.59
59	374.19	90.52
60	378.17	93.54
61	382.09	96.64
62	385.95	99.83
63	389.73	103.10
64	393.43	106.45
65	397.07	109.89
66	400.62	113.41
67	404.10	117.00
68	407.50	120.67
69	410.82	124.41
70	414.05	128.22
71	417.20	132.10
72	420.26	136.06
73	423.24	140.07
74	426.12	144.16
75	428.92	148.30 152.51
76	431.62	156.48
77	434.05	136.48

Failure Surface Specified By 82 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft).
1	103.45	90.86
2	107.65	88.15
3	111.90	85.52
4	116.20	82.97
5	120.55	80.50
6	124.95	78.12
7	129.39	75.82
8	133.87	73.61
9	138.40	71.48
10	142.96	69.45
11	147.57	67.49
12	152.21	65.63
13	156.88	63.86
14	161.59	62.17
15	166.33	60.58
16	171.10	59.07
17	175.89	57.66
18	180.72	56.34
19	185.56	55.12
20	190.43	53.98
21	195.32	52.94
22	200.23	51.99
23	205.16	51.14
24	210.10	50.38
25	215.06	49.72
26	220.02	49.15
27	225.00	48.68
28	229.99	48.30
29	234.98	48.02
30	239.98	47.83
31	244.98	47.74
32	249.98	47.74
33	254.97	47.84
34	259.97	48.04
35	264.96	48.33
36	269.95	48.71
37	274.92	49.20
38	279.89	49.77
39	284.85	50.45
40	289.79	51.21
41	294.71	52.07
42	299.62	53.03
43	304.51	54.08
44	309.38	55.22
45	314.22	56.45
46	319.04	57.78
47	323.84	59.20
48	328.60	60.71
49	333.34	62.31
50	338.04	64.01
51	342.72	65.79

H-71

Revision: 0

52	347.35	67.66
53	351.95	69.62
54	356.51	71.67
55	361.04	73.80
56	365.52	76.02
57	369.95	78.32
58	374.34	80.71
59	378.69	83.19
60	382.99	85.74
61	387.23	88.38
62	391.43	91.10
63	395.57	93.90
64	399.66	96.78
65	403.70	99.73
66	407.67	102.76
67	411.59	105.87
68	415.45	109.05
69	419.24	112.31
70	422.98	115.63
71	426.64	119.03
72	430.25	122.50
73	433.78	126.03
74	437.25	129.64
75	440.65	133.30
76	443.97	137.04
77	447.23	140.83
78	450.41	144.69
79	453.52	148.61
80	456.55	152.58
81	459.50	156.62
82	459.77	157.00

Failure Surface Specified By 68 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	113.79	93.45
2	118.23	91.13
3	122.71	88.91
4	127.23	86.79
5	131.80	84.76
6	136.41	82.82
7	141.06	80.99
8	145.75	79.25
9	150.47	77.61
10	155.23	76.07
11	160.02	74.63
12	164.84	73.29
13	169.68	72.05
14	174.55	70.91
15	179.44	69.88

4.942

16	184.35	68.95
17	189.28	68.12
18	194.23	67.40
19	199.19	66.78
20	204.17	66.26
21	209.15	65.85
22	214.14	65.54
23	219.14	65.34
24	224.14	65.25
25	229.14	65.25
26	234.13	65.37
27	239.13	65.58
28	244.12	65.91
29	249.10	66.33
30	254.07	66.86
31	259.03	67.50
32	263.98	68.24
33	268.91	69.08
34	273.81	70.03
35	278.70	71.08
36	283.57	72.23
37	288.41	73.48
38	293.22	74.84
39	298.01	76.29
40	302.76	77.85
41	307.48	79.50
42	312.16	81.26
43	316.80	83.11
44	321.41	85.06
45	325.97	87.10
46	330.49	89.24
47	334.96	91.48
48	339.39	93.80
49	343.76	96.22
50	348.09	98.73
51	352.36	101.34
52	356.57	104.03
53	360.73	106.80
54	364.83	109.67
55	368.86	112.62
56	372.84	115.65
57	376.75	118.77
58	380.59	121.97
59	384.37	125.25
60	388.07	128.60
61	391.71	132.04
62	395.27	135.55
63	398.75	139.13
64	402.17	142.78
65	405.50	146.51
66	408.75	150.31
67	411.93	154.17
68	413.42	156.07

Failure Surface Specified By 68 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
110.	V = - V	
1	118.97	94.74
2	122.55	91.25
3	126.23	87.87
4	130.02	84.60
5	133.90	81.45
6	137.87	78.42
7	141.94	75.51
8	146.09	72.73
9	150.33	70.07
10	154.64	67.54
11	159.03	65.14
12	163.49	62.88
13	168.01	60.76
14	172.60	58.77
15	177.25	56.92
16	181.95	55.21
17	186.70	53.65
18	191.49	52.23
19	196.33	50.96
20	201.20	49.83
21	206.10	48.85
22	211.03	48.02
	215.99	47.34
23 24	220.96	46.82
	225.94	46.44
25	230.94	46.21
26	235.94	46.14
27	240.94	46.21
28	245.93	46.44
29	250.92	46.82
30	255.89	47.35
31	260.84	48.03
32		48.86
33	265.77	49.84
34	270.68	
35	275.55	50.97 52.24
36	280.38	
37	285.18	53.66
38	289.93	55.23
39	294.62	56.94
40	299.27	58.79
41	303.86	60.77
42	308.38	62.90
43	312.84	65.17
44	317.23	67.56
45	321.54	70.09
46	325.77	72.75
47	329.93	75.54
48	333.99	78.45
49	337.97	81.48
50	341.85	84.63

345.63	87.90
349.32	91.28
352.90	94.77
356.37	98.37
359.73	102.07
362.98	105.88
366.11	109.77
369.12	109.77 113.77
372.01	117.85
374.77	122.01
	126.26
379.92	130.59
382.29	134.99
384.53	139.46
386.63	143.99
388.60	148.59
390.42	153.25
391.28	155.63
1 051	***
	349.32 352.90 356.37 359.73 362.98 366.11 369.12 372.01 374.77 377.41 379.92 382.29 384.53 386.63 388.60 390.42

Failure Surface Specified By 80 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	93.10	90.00
2 .	97.42	87.48
3	101.79	85.05
4	106.20	82.69
5	110.65	80.42
6	115.15	78.23
7	119.68	76.12
8	124.25	74.10
9	128.86	72.16
10	133.51	70.31
11	138.19	68.54
12	142.90	66.86
13	147.64	65.27
14	152.41	63.77
15	157.20	62.35
16	162.02	61.03
17	166.87	59.79
18	171.73	58.65
19	176.62	57.59
20	181.53	56.63
21	186.45	55.76
22	191.39	54.97
23	196.34	54.28
24	201.31	53.69
25	206.28	53.18
26	211.26	52.77

Failure Surface Specified By 68 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
_	100 60	00 16
1	108.62	92.16
2	112.40	88.88
3	116.26	85.71
4	120.22	82.65
5	124.26	79.71
6	128.39	76.89
7	132.60	74.18
8	136.88	71.60
9	141.23	69.15
10	145.66	66.82
11	150.15	64.61
12	154.70	62.54
13	159.31	60.60
14	163.97	58.80
15	168.68	57.13
16	173.44	55.59
17	178.24	54.20
18	183.08	52.94
19	187.95	51.82
20	192.86	50.85
21	197.79	50.01
22	202.74	49.32
23	207.71	48.77
24	212.69	48.36
25	217.69	48.10
26	222.69	47.98
27	227.69	48.01
28	232.68	48.18
29	237.67	48.49
30	242.65	48.95
31	247.62	49.55
32	252.56	50.29
33	257.48	51.18
34	262.37	52.21
35	267.24	53.37
36	272.06	54.68
37	276.85	30.13
38	281.59	57.71
39	286.29	59.43
40	290.93	61.28
41	295.52	63.27
42	300.05	65.39
43	304.51	67.64
44	308.91	70.01
45	313.24	72.51
46	317.50	75.14
47	321.68	77.88
48	325.77	80.75
49	329.79	83.13

50	333.71	86 83
50	227 55	86.83 90.04
51		
52	341.29	93.36
53	344.93	96.78
54	348.47	96.78 100.31
55	351.91	103.94
	355.25	107.66
	358.47	111.48 115.40
58	361.59	115.40
	364.59	119.40
60	367.47	123.48
61	370.23	127.65
62	372.88	131.89
	375.40	136.21
	377.79	140.60 145.06
65	380.06	145.06
	382.20	149.58
	384.20	154.16
68	384.74	155.49
	1 222	

Failure Surface Specified By 67 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	129.31	97.33
2	132.90	93.85
3	136.60	90.48
4	140.39	87.23
5	144.29	84.09
6	148.28	81.08
7	152.36	78.18
8	156.52	75.42
9	160.77	72.78
10	165.09	70.27
11	169.50	67.90
12	173.97	65.66
13	178.50	63.56
14	183.10	61.60
15	 187.76	59.78
16	192.47	58.10
17	197.23	56.57
18	202.03	55.19
19	206.88	53.95
20	211.76	52.86
21	216.67	51.92
22	221.61	51.13
23	226.57	50.49
24	231.54	50.00
25	236.53	49.67

26	241.53	49.49
27	246.53	49.46
28	251.53	49.58
29	256.52	49.86
	261.50	50.29
30 31	266.47	50.87
32	271.41	51.60
33	276.33	52.48
34	281.23	53.51
35	286.08	54.69
36	290.90	56.02
37	295.68	57.50
38	300.41	59.12
39	305.09	60.89
40	309.71	62.79
41	314.27	64.84
42	318.77	67.02
43	323.20	69.35
44	327.55	71.80
45	331.83	74.39
46	336.03	77.11
47	340.14	79.95
48	344.17	82.92
49	348.10	86.01
50	351.93	89.22
51		92.54
52	355.67 359.30	95.98
53	362.82	99.53
54	366.24	103.18
55	369.54	106.93
56	372.73	110.79
57		114.74
58	378.74	118.78
59	381.56	122.91
60	384.25	127.12
61	386.81	131.41
62	389.24	135.78
63	391.54	140.22
64	393.69	144.73
65	395.71	149.31
66	397.59	153.94
67	398.27	155.77

Failure Surface Specified By 76 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	112 70	93.45
1	113.79	91.13
2	118.22	88.90
3	122.70	
4	127.21	86.74
5	131.76	84.67
6	136.35	82.68
7	140.97	80.78
8	145.63	78.96
9	150.32	77.22 75.57
10	155.04	
.11	159.79	74.01
12	164.56	72.53
13	169.36	71.14
14	174.19	69.83
15	179.04	68.62
16	183.91	67.49
17	188.80	66.45
18	193.71	65.50
19	198.64	64.64
20	203.58	63.87
21	208.53	63.18
22	213.50	62.59
23	218.47	62.09
24	223.45	61.68
25	228.44	61.36
26	233.44	61.13
27	238.44	60.99
28	243.44	60.94 60.98
29	248.44	61.11
30	253.43	61.34
31	258.43 263.42	61.65
32	268.40	62.06
33		62.55
34	273.38	63.14
35	278.34	63.81
36	283.30	64.57
37	293.17	65.43
38	298.08	66.37
39	302.97	67.40
40	307.84	68.53
41	312.69	69.74
	317.52	71.03
43	322.33	72.42
45	327.10	73.89
45	331.86	75.45
47	336.58	77.09
48	341.27	78.82
49	345.93	80.63
50	350.55	82.53
51	355.14	84.51
31	555.11	

52	359.70	86.58
53	364.21	88.73
54	364.21 368.69	90.95
55	373.12	93.26
56	377.52	95.65
57	381.86	98.12
58	386.17	100.67
59	390.42	103.30
60	394.63	106.00
61	398.79	108.78
62	402.89	111.63
63	406.95	114.56
64	410.95	117.56
65	414.89	120.63
66	418.78	123.77
67	422.61	126.98
68	426.38	130.27
69	430.09	133.62
70	433.74	137.03
71	437.33	140.52
72	440.86	144.06
73	444.31	147.67
74	447.71	151.35
75	451.03	155.08
76	452.56	156.85

4.966

Failure Surface Specified By 67 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	118.97	94.74
2	123.27	92.20
3	127.64	89.77
4	132.06	87.43
5	136.54	85.20
6	141.06	83.07
7	145.63	81.05
8	150.25	79.13
9	154.91	77.33
10	159.61	75.62
11	164.35	74.03
12	169.13	72.55
13	173.94	71.18
14	178.78	69.92
15	183.64	68.77
16	188.54	67.74
17	193.45	66.82
18	198.38	66.01
19	203.34	65.32
20	208.30	64.74

21	213.28	64.27
22	218.27	63.93
23	223.26	63.69
24	228.26	63.58
25	233.26	63.58
26	238.26	63.69
27	243.26	63.92
	248.24	64.26
28	253.22	64.72
30	258.19	65.30
31	263.14	65.99
32	268.08	66.79
33	272.99	67.71
34	277.88	68.74
35	282.75	69.89
36	287.59	71.14
37	292.40	72.51
38	297.18	73.99
39	301.92	75.58
40	306.62	77.28
41	311.28	79.08
42	315.90	81.00
43	320.48	83.02
44	325.00	85.14
45	329.48	87.37
46	333.90	89.70
47	338.27	92.14
48	342.58	94.67
49	346.83	97.30
50	351.02	100.03
51	355.14	102.86
52	359.20	105.78
53	363.19	108.79
54	367.11	111.90
55	370.95	115.10
56	374.72	118.38
57	378.42	121.75
58	382.03	125.20
59	385.57	128.74
60	389.02	132.36
61	392.39	136.05
62	395.67	139.83
63	398.86	143.68
64	401.96	147.60
65	404.97	151.59
66	407.89	155.65
67	408.10	155.96

	Υ	′	A	х	I	S		F	T
		.00	57.50	115.	00	172.50	230).00	287.50
X	.00	+	+-W	**+				-+	+
		-							
		-	* * *						
		_							
		-							
	57.50	_		*0.5 5-50					
	37.30								
		-							
		-						65	
		-							
	220.000 (200.000)	-	6						
A	115.00		61						
			2154						
			1548						
			2184.						
. X	172.50		154*.						
		0.70	218*						
	52		2194*.						
			21.894						
			21.4						
I	230.00		21.4						363
-			21.4						
			21.94						
			26194						
			25194						
	287.50	_	22194						
S	207.50	±3	25104.						
		-	325104			e e			
		_	25114						
		-	32511						
		-	2261						
	345.00	+	3326						
		_	322	201147.	7	*			
		_	32	226.11	4577	50 . 50. 20			
		-		3.26					
		_		.3.22.	.1118	355			
F	402.50	+		3.62					
		-		339				9	
		-			3.6222				
					339				
		=				339			
T	460.00	+	W*			. *			000
(27)									

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: 6/22/98 3 JOS

Run By: Input Data Filename:

kmsw23.in kmsw23f.out

Output Filename:

ENGLISH

Unit:

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

[Slope Stability Analysis (4:1 slope) ϕ = 10°] Landfill (with Cover) Slope Stability Analysis

BOUNDARY COORDINATES

3 Top Boundaries 12 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	90.00	100.00	90.00	1
2	100.00	90.00	360.00	155.00	3
	360.00	155.00	460.00	157.00	3
3	100.00	90.00	360.00	153.00	4
5	360.00	153.00	460.00	155.00	4
6	100.00	90.00	120.00	85.00	1
7	.00	85.00	120.00	85.00	2
ρ	120.00	85.00	170.50	72.50	2
8	170.50	72.50	178.00	70.50	2
10	178.00	70.50	182.00	70.50	2
11	182.00	70.50	190.00	72.50	2
12	190.00	72.50	460.00	72.50	2

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.		Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)		Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	86.8	99.6	. 0	.0	.00	.0	1
1	94.5	112.1	200.0	21.0	.00	. 0	1
2	90.0	105.0	200.0	10.0	.00	. 0	1
4	30.0	32.0	1000.0	20.0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	71.00
2	460.00	71.00

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

Janbus Empirical Coef. is being used for the case of c & phi both > 0 900 Trial Surfaces Have Been Generated.

30 Surfaces Initiate From Each Of 30 Points Equally Spaced Along The Ground Surface Between $\, \text{X} = 0.00 \, \text{ft.} \,$ and $\, \text{X} = 150.00 \, \text{ft.} \,$

Each Surface Terminates Between X = 200.00 ft. and X = 460.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is $\,\mathrm{Y}=\,$.00 ft.

5.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Janbu Method * *

Failure Surface Specified By 72 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.45	90.86
2	107.60	88.07
3	111.81	85.37
4	116.08	82.77
5	120.41	80.28
6	124.80	77.88
7	129.24	75.59
8	133.74	73.40
9	138.28	71.31
10	142.87	69.33
11	147.51	67.46
12	152.19	65.70
13	156.91	64.05
14	161.66	62.50
15	166.45	61.07
16	171.28	59.75
17	176.13	58.54
18	181.01	57.45
19	185.91	56.47
	190.83	55.60
20	195.78	54.85
21	200.74	54.21
22	205.71	53.69
23	210.69	53.29
24	215.68	53.00
25	220.68	52.83
26	225.68	52.77
27	230.68	52.83
28	235.68	53.00
29	240.67	53.30
30		53.70
31	245.65	54.23
32	250.63	54.87
33	255.58	55.62
34	260.53	56.49
35	265.45	57.47
36	270.35	58.57
37	275.23	59.78
38	280.08	61.10
39	284.90	62.54
40	289.69	64.09
41	294.45	65.74
42	299.17	
43	303.85	67.51
44	308.48	69.38
45	313.07	71.36
46	317.62	
47	322.11	75.64

48	326.55	77.94
49	330.94	80.33
50	335.27	82.83
51	339.54	85.43
52	343.75	88.13
53	347.89	90.93
54	351.97	93.82
55	355.98	96.81
56	359.92	99.88
57	363.79	103.05
58	367.58	106.31
59	371.30	109.66
60	374.94	113.09
61	378.49	116.60
62	381.97	120.20
63	385.36	123.87
64	388.66	127.63
65	391.87	131.46
66	395.00	135.36
67	398.03	139.34
68	400.97	143.38
69	403.82	147.49
70	406.56	151.67
71	409.21	155.91
72	409.26	155.99

*** 4.490 ***

Individual data on the 86 slices

			Water	Water	Tie Force	Tie Force	Earthq For		charge
	*** 11.1	Mai wht	Top	Bot	Norm	Tan	Hor	Ver	Load
Slice	Width	Weight	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
No.	(ft)	(lbs)		.0	.0	.0	.0	.0	. 0
1	.0	.0	.0	.0	.0	.0	.0	.0	. 0
2	4.0	239.7	. 0	.0	.0	.0	.0	.0	. 0
3	.1	9.1	.0	.0	.0	.0	.0	.0	. 0
4	4.2	943.8	.0	.0	.0	.0	.0	.0	.0
5	. 6	209.5	.0		.0	.0	.0	.0	.0
6	3.7	1648.1	.0	.0		.0	.0	.0	.0
7	3.9	2504.5	.0	.0	.0	.0	.0	.0	.0
8	. 4	304.4	.0	.0	.0		0	.0	.0
9	4.4	3721.2	.0	.0	. 0	.0		.0	.0
10	4.4	4595.0	.0	.0	.0	.0	.0	.0	.0
11	4.5	5440.3	. 0	.0	. 0	.0	.0		.0
12	4.5	6253.9	.0	.0	.0	.0	.0	.0	.0
13	.7	1065.4	.0	.0	.0	.0	.0	.0	
14	3.9	6023.8	.0	218.8	.0	.0	.0	.0	.0
15	4.6	7985.4	.0	811.5	.0	.0	.0	.0	.0
16	4.7	8836.6	.0	1378.4	.0	.0	. 0	.0	.0
17	4.7	9637.6	.0	1911.2	.0	.0	.0	.0	.0
	4.8	10385.3	.0	2409.8	.0	.0	.0	.0	.0
18	4.8	11076.7	.0	2874.0	.0	.0	.0	.0	. 0
19		9788.1	.0	2743.6	.0	.0	.0	.0	.0
20	4.0	1920.6	.0	559.7	.0	.0	.0	.0	.0

					7050		0	0	.0
22	4.8	12252.0	.0	3694.9	. 0	. 0	.0	.0	.0
23	.0	8.9	.0	2.8	.0	.0	.0	.0	.0
24	1.9	4834.7	.0	1515.9	.0	.0	.0	.0	.0
25	3.0	7951.2	.0	2540.9	.0	.0	.0	.0	.0
26	1.0	2689.5	.0	862.3	.0	.0	.0	.0	.0
27	2.0	5548.8	.0	1775.3	.0	.0	.0	.0	.0
28	1.9	5480.4	. 0	1743.0	.0	.0	.0	.0	.0
29	4.1	12283.2	.0	3858.6	.0	.0	.0	.0	.0
30	. 8	2590.3	.0	810.1 4921.2	.0	.0	.0	.0	.0
31	4.9	15708.2	.0	5137.8	.0	.0	.0	. 0	.0
32	5.0	16340.9	.0	5318.3	.0	.0	.0	.0	.0
33	5.0	16904.5	.0	5462.8	.0	.0	.0	.0	.0
34	5.0	17397.4	.0	5571.2	.0	.0	.0	.0	.0
35	5.0	17818.1	.0	5643.3	.0	.0	.0	.0	.0
36	5.0	18165.5 18438.6	.0	5679.1	.0	.0	.0	.0	.0
37	5.0		.0	5678.7	.0	.0	.0	.0	.0
38	5.0	18636.7	.0	5642.0	.0	.0	.0	.0	.0
39	5.0	18759.4 18806.6	.0	5569.0	.0	.0	.0	.0	.0
40	5.0	18778.3	.0	5459.8	.0	.0	.0	.0	.0
41	5.0	18674.9	.0	5314.5	. 0	.0	.0	.0	.0
42	5.0	18496.9	.0	5133.1	.0	.0	.0	. 0	.0
43	5.0	18245.2	.0	4915.7	.0	.0	.0	.0	.0
44	4.9	17920.8	.0	4662.4	.0	.0	.0	.0	.0
45	4.9	17525.0	.0	4373.4	.0	.0	.0	.0	.0 .
46	4.9	17059.6	.0	4048.8	.0	.0	.0	.0	.0
47	4.9	16526.1	.0	3688.8	.0	.0	.0	. 0	.0
48	4.9	15926.8	.0	3293.6	.0	. 0	.0	.0	.0
49	4.8	15263.9	.0	2863.5	. 0	.0	.0	.0	.0
50	4.8	14539.7	.0	2398.5	.0	.0	.0	.0	.0
51	4.7	13757.2	.0	1899.1	.0	. 0	. 0	.0	.0
52 53	4.7	12919.2	.0	1365.4	.0	.0	.0	.0	.0
54	4.6	12028.7	.0	797.8	.0	.0	.0	.0	. 0
55	3.8	9135.2	.0	206.8	.0	.0	.0	.0	.0
56	.8	1956.8	.0	.0	. 0	.0	.0	. 0	.0
57	2.5	5669.7	.0	.0	.0	.0	.0	.0	.0
58	2.1	4609.9	.0	.0	.0	.0	. 0	. 0	.0
59	4.5	9950.1	. 0	.0	.0	.0	.0	.0	.0
60	4.4	9693.4	.0	.0	. 0	.0	. 0	.0	.0
61	4.4	9419.5	.0	.0	.0	.0	. 0	.0	.0
62	4.3	9129.3	.0	.0	.0	.0	.0	.0	.0
63	4.3	8823.7	.0	.0	.0	.0	.0	.0	.0
64	4.2	8503.9	.0	.0	.0	.0	.0	.0	.0
65	4.1	8171.0	.0	.0	.0	.0	.0	.0	.0
66	4.1		.0	.0	.0	.0	.0		.0
67	4.0		.0	.0	. 0	.0	.0	.0	.0
68	3.9	7105.6	.0		.0	.0	.0		.0
69	. 1		.0		.0	.0	.0	. 0	.0
70	3.8		.0	.0	.0	.0	.0	. 0	.0
71	3.8	6193.4	.0		. 0	.0	.0	.0	.0
72	3.7	5708.3	.0		.0	.0	.0	.0	.0
73	3.6		.0		.0	.0	.0	.0	.0
74	3.6		.0		.0	.0	.0	.0	.0
75	3.5	4273.1	.0		.0	.0	.0	.0	.0
76	3.4	3806.4	.0		.0	.0	.0	.0	.0
77	3.3		.0		.0	.0	.0	.0	.0
78	3.2	2899.0	.0	.0	.0	.0	. 0		

7.0	2 1	2461.4	0	. 0	.0	.0	.0	.0	.0
79	3.1	2036.4	.0	. 0	.0	.0	. 0	.0	.0
80	3.0	1625.4	.0	. 0	.0	. 0	.0	.0	.0
81	2.9	1229.9	.0	. 0	. 0	. 0	.0	.0	.0
82	2.8	851.1	0	. 0	. 0	.0	.0	. 0	.0
83	2.7	306.3	. 0	. 0	. 0	.0	.0	. 0	.0
84	1.4	113.8	. 0	0	. 0	.0	. 0.	. 0	.0
85	1.2	113.0	. 0	. 0	. 0	.0	.0	.0	.0

Failure Surface Specified By 77 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.45	90.86
2	107.49	87.92
3	111.60	85.08
4	115.77	82.32
5	120.01	79.65
6	124.29	77.08
7	128.64	74.61
8	133.03	72.23
9	137.48	69.94
10	141.98	67.76
11	146.52	65.67
12	151.11	63.69
13	155.75	61.81
14	160.42	60.02
15	165.13	58.35
16	169.87	56.77
17	174.65	55.30
18	179.46	53.94
19	184.30	52.68
20	189.17	51.53
21	194.06	50.49
22	198.97	49.55
23	203.90	48.73
24	208.85	48.01
25	213.81	47.40
26	218.79	46.90
27	223.77	46.51
28	228.76	46.23
29	233.76	46.05
30	238.76	45.99
31	243.76	46.04
32	248.76	46.20
33	253.75	46.47
34	258.74	46.85
35	263.71	47.34
36	268.68	47.93
37	273.63	48.64
38	278.56	49.45
39	283.47	50.38
40	288.37	51.41
41	293.24	52.55
42	298.08	53.79

43	302.89	55.14
44	307.67	56.60
45	312.42	58.16
46	317.14	59.83
47	321.82	61.60
48	326.45	63.47
49	331.05	65.44
50	335.60	67.51
51	340.10	69.69
52	344.55	71.96
53	348.96	74.33
	353.31	76.79
54 55	357.60	79.35
100	361.84	82.01
56	366.02	84.75
57	370.13	87.59
58	374.19	90.52
59	378.17	93.54
60	382.09	96.64
61	385.95	99.83
62		103.10
63	393.43	106.45
64		109.89
65	331.01	113.41
66	400.62	117.00
67	404.10	120.67
68	407.50	124.41
69	410.82	128.22
70	414.05	132.10
71		136.06
72		
73		140.07 144.16
74		144.10
75	428.92	152.51
76	431.62	
77	434.05	156.48

Failure Surface Specified By 82 Coordinate Points

Point	X-Surf (ft)	Y-Surf (ft)
No.	(ILL)	(10)
1	103.45	90.86
2	107.65	88.15
	111.90	85.52
3	116.20	82.97
5	120.55	80.50
6	124.95	78.12
7	129.39	75.82
8	133.87	73.61
9	138.40	71.48
10	142.96	69.45
11	147.57	67.49

4.568

12		150 01	65.63
14 161.59 62.17 15 166.33 60.58 16 171.10 59.07 17 175.89 57.66 18 180.72 56.34 19 185.56 55.12 20 190.43 53.98 21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 <	12	152.21	
15 166.33 60.58 16 171.10 59.07 17 175.89 57.66 18 180.72 56.34 19 185.56 55.12 20 190.43 53.98 21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 <			
16 171.10 59.07 17 175.89 57.66 18 180.72 56.34 19 185.56 55.12 20 190.43 53.98 21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.78 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 <			
17 175.89 57.66 18 180.72 56.34 19 185.56 55.12 20 190.43 53.98 21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 <			
18 180.72 56.34 19 185.56 55.12 20 190.43 53.98 21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 32 249.98 47.74 33 254.97 47.84 44.98 47.74 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 34 304.51 54.08 44		175.89	57.66
20 190.43 53.98 21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 <		180.72	
21 195.32 52.94 22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.74 31 244.98 47.74 32 249.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 <			
22 200.23 51.99 23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.74 31 244.98 47.74 32 249.98 47.74 33 254.97 48.04 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 <			
23 205.16 51.14 24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.27 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 <			
24 210.10 50.38 25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 <			
25 215.06 49.72 26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 <			
26 220.02 49.15 27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.77 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 <			
27 225.00 48.68 28 229.99 48.30 29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 <			
29 234.98 48.02 30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 <		225.00	
30 239.98 47.83 31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 <	28		
31 244.98 47.74 32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 <			
32 249.98 47.74 33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 <			
33 254.97 47.84 34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 <			
34 259.97 48.04 35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.76 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 <			
35 264.96 48.33 36 269.95 48.71 37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 <			
37 274.92 49.20 38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 <			48.33
38 279.89 49.77 39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 <			
39 284.85 50.45 40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 <			
40 289.79 51.21 41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.66 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 <			
41 294.71 52.07 42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 <			
42 299.62 53.03 43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67			
43 304.51 54.08 44 309.38 55.22 45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
45 314.22 56.45 46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87		304.51	
46 319.04 57.78 47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
47 323.84 59.20 48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
48 328.60 60.71 49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
49 333.34 62.31 50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
50 338.04 64.01 51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
51 342.72 65.79 52 347.35 67.66 53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
53 351.95 69.62 54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			65.79
54 356.51 71.67 55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87	52	347.35	
55 361.04 73.80 56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
56 365.52 76.02 57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
57 369.95 78.32 58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
58 374.34 80.71 59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
59 378.69 83.19 60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
60 382.99 85.74 61 387.23 88.38 62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
62 391.43 91.10 63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87		382.99	
63 395.57 93.90 64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87	61		
64 399.66 96.78 65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
65 403.70 99.73 66 407.67 102.76 67 411.59 105.87			
66 407.67 102.76 67 411.59 105.87			
67 411.59 105.87			
100 05			
			109.05

69	419.24	112.31
70	422.98	115.63
71	426.64	119.03
72	430.25	122.50
73	433.78	126.03
74	437.25	129.64
75	440.65	133.30
76	443.97	137.04
77	447.23	140.83
78	450.41	144.69
79	453.52	148.61
80		152.58
81	459.50	156.62
82	459.77	157.00
***	4 610	***
***	4.610	***

Failure Surface Specified By 80 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	115	
1	93.10	90.00
2	97.42	87.48
-	101.79	85.05
4	106.20	82.69
5	110.65	80.42
6	115.15	78.23
7	119.68	76.12
8	124.25	74.10
9	128.86	72.16
10	133.51	70.31
11	138.19	68.54
12	142.90	66.86
13	147.64	65.27
14	152.41	63.77
15	157.20	62.35
16	162.02	61.03
17	166.87	59.79
18	171.73	58.65
19	176.62	57.59
20	181.53	56.63
21	186.45	55.76
22	191.39	54.97
23	196.34	54.28
24	201.31	53.69
25	206.28	53.18
26	211.26	52.77
27	216.25	52.44
28	221.25	52.21
29	226.25	52.08
30	231.25	52.03
31	236.24	52.08
32	241.24	52.22

155.0		
79 80	443.89 444.45	155.95 156.69
78	440.78	
77	437.59	148.17
76	434.34	
75		140.64
74	427.62	136.97
73	424.16	133.36
72	420.64	129.81
71	417.05	126.34
70		122.92
69		119.58
68	405.90	116.31
67	402.06	113.10
66	398.16	109.97
65	394.20	106.91
64	390.19	103.92
63		101.01
62	382.01	
61	377.84	95.42
60	373.62	92.74
59	369.35	
58	365.03	87.62
57	360.67	85.18
56	356.26	82.82
55	351.81	80.54
54	347.32	78.34
53	342.78	76.23
52	338.21	74.20
51	333.61	72.26
50	328.96	70.40
49	324.29	68.63
48	319.58	66.95
47	314.84	
46	310.07	322-11 120-24
45	305.28	
44	300.46	
43	295.62	59.86
42	290.75	58.71
41	285.86	
40	280.96	
39	276.04	55.80
38	271.10	
37	266.15	
36	261.18	53.72
35	256.21	53.20
34	251.23	
33	246.24	52.46
10000		F6 12

Failure Surface Specified By 77 Coordinate Points

4.646

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
:57		02.45
1	113.79	93.45
2	117.51	90.11
3	121.32	86.86
4	125.20	83.71
5	129.16	80.66
6	133.19	77.71
7	137.30	74.85
8	141.48	72.11
9	145.72	69.46
10	150.03	66.92
11	154.40	64.50
12	158.83	62.18
13	163.32	59.97
14	167.86	57.87
15	172.45	55.89
16	177.09	54.02
17	181.77	52.27 50.64
18	186.49	
19	191.26	49.13
20	196.06 200.90	46.45
21	200.90	45.30
22	210.65	44.27
23	215.57	43.36
24 25	220.51	42.57
26	225.46	41.90
27	230.43	41.36
28	235.42	40.94
29	240.41	40.65
30	245.40	40.48
31	250.40	40.44
32	255.40	40.52
33	260.40	40.73
34	265.39	41.06
35	270.37	41.51
36	275.33	42.09
37	280.28	42.79
38	285.22	43.62
39	290.12	44.56
40	295.01	45.63
41	299.87	46.82
42	304.69	48.14
43	309.48	49.57
44	314.23	51.12
45	318.95	52.79
46	323.62	54.57
47	328.24	56.47
48	332.82	58.49
49	337.34	60.62
50	341.81	62.86
51	346.22	65.21
52	350.58	67.67
53	354.87	70.24
54	359.09	72.92

55	363.25	75.70
56	363.25 367.33	78.58
57	371.34	81.56 84.64
58	375.28	84.64
59	379.14	87.82
60	200 00	91.10
61	386.61	94.46
62	390.23	94.46 97.92
63	393.75	101.47
64	397.18	105.11
65	400.52	108.82
66	403.77	112.63
67	406.93	116.51
68	409.98	120.46
69	412.94	124.50
70	415.79	128.60
71	418.54	132.78
72	421.19	137.02
73	423.73	141.33
74	426.16	145.70
75	428.48	150.13
76	430.69	154.61
77	431.53	156.43

4.655

Failure Surface Specified By 68 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	118.97	94.74
2	122.55	91.25
3	126.23	87.87
4	130.02	84.60
5	133.90	81.45
6	137.87	78.42
7	141.94	75.51
8	146.09	72.73
9	150.33	70.07
10	154.64	67.54
11	159.03	65.14
12	163.49	62.88
13	168.01	60.76
14	172.60	58.77
15	177.25	56.92
16	181.95	55.21
17	186.70	53.65
18	191.49	52.23
19	196.33	50.96
20	201.20	49.83
21	206.10	48.85
22	211.03	48.02

23	215.99	47.34
24	220.96	46.82
25	225.94	46.44
26	230.94	46.21
	235.94	46.14
27	240.94	46.21
28		46.44
29	245.93	46.82
30	250.92	
31	255.89	47.35
32	260.84	48.03
33	265.77	48.86
34	270.68	49.84
35	275.55	50.97
36	280.38	52.24
37	285.18	53.66
38	289.93	55.23
39	294.62	56.94
40	299.27	58.79
41	303.86	60.77
42	308.38	62.90
43	312.84	65.17
44	317.23	67.56
45	321.54	70.09
46	325.77	72.75
	329.93	75.54
	333.99	78.45
48		81.48
49	337.97	84.63
50	341.85	
51	345.63	87.90
52	349.32	91.28
53	352.90	94.77
54	356.37	98.37
55	359.73	102.07
56	362.98	105.88
57	366.11	109.77
58	369.12	113.77
59	372.01	117.85
60	374.77	122.01
61	377.41	126.26
62	379.92	130.59
63	382.29	134.99
64	384.53	139.46
65	386.63	143.99
66	388.60	148.59
	390.42	153.25
67	391.28	155.63
68	391.20	100.00

4.657

Failure Surface Specified By 68 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	108.62	92.16
2	112.40	88.88
3	116.26	85.71
4	120.22	82.65
5	124.26	79.71
6	128.39	76.89
7	132.60	74.18
8	136.88	71.60
9	141.23	69.15
10	145.66	66.82
11	150.15	64.61
12	154.70	62.54
13	159.31	60.60
14	163.97	58.80
15	168.68	57.13
16	173.44	55.59
17	178.24	54.20
18	183.08	52.94
19	187.95	51.82
20	192.86	50.85
21	197.79	50.01
22	202.74	49.32
23	207.71	48.77
24	212.69	48.36
25	217.69	48.10
26	222.69	47.98
27	227.69	48.01
28	232.68	48.18
29	237.67	48.49
30	242.65	48.95
31	247.62	49.55
32	252.56	50.29
33	257.48	51.18
34	262.37	52.21
35	267.24	53.37
36	272.06	54.68
37	276.85	56.13
38	281.59	57.71
39	286.29	59.43
40	290.93	61.28
41	295.52	63.27
42	300.05	65.39
43	304.51	67.64
44	308.91	70.01
45	313.24	72.51
46	317.50	75.14
47	321.68	77.88
48	325.77	80.75
49	329.79	83.73
50	333.71	86.83
51	337.55	90.04

52	341.29	93.36
53	341.29 344.93	96.78
54	348.47	100.31
55	351.91	103.94
56	355.25	107.66
57	358.47	111.48
	361.59	115.40
59	364.59	119.40
60	367.47	119.40 123.48 127.65
61	370.23	127.65
62	372.88	131.89
63	375.40	136.21
		140.60
65	380.06	145.06
66	382.20	149.58
67	384.20	154.16
68	384.74	155.49
***	4.658	***
	1.000	

Failure Surface Specified By 82 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	108.62	92.16
2	112.63	89.17
3	116.70	86.26
4	120.83	83.44
5	125.01	80.70
6	129.25	78.06
7	133.55	75.50
8	137.90	73.03
9	142.30	70.65
10	146.74	68.37
11	151.24	66.18
12	155.78	64.08
13	160.36	62.07
14	164.98	60.16
15	169.64	58.35
16	174.34	56.64
17	179.07	55.02
18	183.83	53.50
19	188.63	52.08
20	193.45	50.77
21	198.30	49.55
22	203.17	48.43
23	208.07	47.42
24	212.98	46.50
25	217.92	45.69
26	222.87	44.98
27	227.83	44.38
28	232.80	43.87
29	237.79	43.48

30	242.78	43.18
31	247.78	42.99
32	252.77	42.90
33	257.77	42.92
34	262.77	43.04
35	267.77	43.26
36	272.76	43.59
37	277.74	44.02
38	282.71	44.56
39	287.67	45.20
40	292.61	45.94
41	297.54	46.78
42	302.45	47.73
43	307.34	48.78
44	312.21	49.92
45	317.05	51.17
46	321.86	52.53
47	326.65	53.98
48	331.40	55.52
49	336.12	57.17
50	340.81	58.92
51	345.46	60.76
	350.06	62.70
52		64.73
53	354.63	66.86
54	359.16	
55	363.63	69.08
56	368.07	71.40
57	372.45	73.81
58	376.78	76.30
59	381.06	78.89
60	385.28	81.56
61	389.45	84.33
62	393.56	87.17
63	397.61	90.11
64	401.60	93.12
65	405.52	96.22
66	409.38	99.40
67	413.17	102.66
68	416.90	106.00
69	420.55	109.41
70	424.13	112.90
71	427.64	116.46
72	431.07	120.10
73	434.43	123.80
74	437.71	127.58
75	440.91	131.42
76	444.03	135.33
77	447.07	139.30
78	450.02	143.33
79	452.89	147.43
80	455.68	151.58
81	458.38	155.79
82	459.11	156.98
02	100.11	100.00
tractica vitar i		2-7-2-V

4.667

Failure Surface Specified By 67 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
NO.	(10)	(/
1	129.31	97.33
2	132.90	93.85
3	136.60	90.48
4	140.39	87.23
5	144.29	84.09
6	148.28	81.08
7	152.36	78.18
8	156.52	75.42
9	160.77	72.78
10	165.09	70.27
11	169.50	67.90
12	173.97	65.66
13	178.50	63.56
14	183.10	61.60
15	187.76	59.78
16	192.47	58.10
17	197.23	56.57
18	202.03	55.19
19	206.88	53.95
20	211.76	52.86
21	216.67	51.92
22	221.61	51.13
23	226.57	50.49
24	231.54	50.00
25	236.53	49.67
26	241.53	49.49
27	246.53	49.46
28	251.53	49.58
29	256.52	49.86
30	261.50	50.29
31	266.47	50.87
32	271.41	51.60
33	276.33	52.48
34	281.23	53.51
35	286.08	54.69
36	290.90	56.02
37	295.68	57.50
38	300.41	59.12
39	305.09	60.89
40	309.71	62.79
41	314.27	64.84
42	318.77	67.02
43	323.20	69.35
44	327.55	71.80
45	331.83	74.39
46	336.03	77.11
47	340.14	79.95
48	344.17	82.92
49	348.10	86.01
50	351.93	89.22
51	355.67	92.54
52	359.30	95.98
32	337.30	55.50

53	362.82	99.53
54	366.24	103.18
55	369.54	106.93
56	372.73	110.79
57	375.79	114.74
58	378.74	118.78
59	381.56	122.91
60	384.25	127.12
61	386.81	131.41
62	389.24	135.78
63	391.54	140.22
64	393.69	144.73
65	395.71	149.31
66	397.59	153.94
67	398.27	155.77
***	4.695	***

Failure Surface Specified By 80 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	118.97	94.74
2	122.87	91.62
3	126.84	88.58
4	130.88	85.63
5	134.98	82.77
6	139.14	80.00
7	143.36	77.32
8	147.64	74.74
9	151.98	72.25
10	156.37	69.86
11	160.82	67.57
12	165.31	65.37
13	169.85	63.28
14	174.43	61.28
15	179.06	59.39
16	183.73	57.60
17	188.44	55.92
18	193.18	54.34
19	197.96	52.86
20	202.77	51.49
21	207.61	50.23
22	212.47	49.07
23	217.36	48.03
24	222.27	47.09
25	227.20	46.26
26	232.15	45.53
27	237.11	44.92
28	242.09	44.42
29	247.07	44.03
30	252.06	43.75
31	257.06	43.57
32	262.06	43.51

33	267.06	43.56
34	272.06	43.72
35	277.05	43.99
36	282.04	44.38
37	287.01	44.87
38	291.97	45.47
39	296.92	46.18
40	301.86	47.00
41	306.77	47.93
42	311.66	48.96
43	316.53	50.11
44	321.37	51.36
45	326.18	52.72
46	330.96	54.19
47	335.71	55.76
48	340.42	57.43
49	345.09	59.21
50	349.72	61.09
51	354.31	63.07
52	358.86	65.16
53	363.36	67.34
54	367.80	69.63
	372.20	72.01
55	376.54	74.49
56	380.83	77.06
57	385.06	79.73
58	389.23	82.49
59	393.34	85.34
60	397.38	88.28
61		91.31
62	401.36	94.43
63	405.27	
64	409.11	97.63
65	412.87	100.92
66	416.57	104.29
67	420.18	107.74
68	423.73	111.27
69	427.19	114.87
70	430.57	118.56
71	433.87	122.31
72	437.09	126.14
73	440.22	130.04
74	443.26	134.01
75	446.21	138.04
76	449.08	142.14
77	451.85	146.30
78	454.53	150.52
79	457.12	154.80
80	458.37	156.97

4.699

84

X .00 57.50 115.00 172.50 230.00 287.50 X .00 ++W-**-+		Υ	А	x I	S	F	T
57.50 +		.00	57.50	115.00	172.50	230.00	287.50
57.50 +	X	.00 +	+-W	**+	+	+	+
57.50 +		-	200				
57.50 +		-	***	*			
57.50 +		_		• •			
57.50 +		-					
		57.50 +					
		-					
		= 3					
A 115.00 +		_					
		-	4	11			
11569215992199 X 172.50 +5169*219*21221	A	115.00 +	41	15			
The state of the s							
X 172.50 +							
			2199.				
	X						
I 230.00 +						60	
521							
521	I						
5241							
S 287.50 +							
S 287.50 +5241			5241				
5241		340					
53241	S	287.50 +					
52411		_					
05224117		-					
345.00 +83324117 8322.1177* 83224.116677 033524.1166677 083522.111966 F 402.50 +83.421119 833.221 833.4222 833.4422 833.4422		-					
8322.1177*8322.11677*83224.116677033524116667708352211196683.421119833.221833.4222833.4422833.44833.44							
8322.11677*83224.116677033524116667708352211196683.421119833.221833.4222833.4422833.44833.44		345.00 +					
83224.1166770335241166677083522111966 F 402.50 +83.421119833.221833.4222833.4422833.44833.44		_					
083522111966 F 402.50 +83.4221833.4222833.4422833.44833.44		8-	83	3224.11667	7		
F 402.50 +83.421119833.221883.4222833.4422833.44833.44		-	03	33524116	6677		
833.221 883.4222 833.4422 833.44	2018	-				196	
883.4222 833.4422 833.44 333.	F'	402.50 +	• •				
833.44 333.		_		883.422	22		
333.		-					
0.*		-					
I 400.00 T "	m	460 00 ±	1 √1 *	• •			
	T	400.00 +	*4				

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date:

6/23/98

Time of Run:

3

Run By:

JOS

Input Data Filename:

kmsw24b.in kmsw24b.out

Output Filename:

Unit:

ENGLISH

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

[Slope Stability Analysis (4:1 slope)] Landfill (with Cover) Sliding Block Analysis

BOUNDARY COORDINATES

3 Top Boundaries 12 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	90.00	100.00	90.00	1
2	100.00	90.00	360.00	155.00	3
3	360.00	155.00	460.00	157.00	3
4	100.00	90.00	360.00	153.00	4
5	360.00	153.00	460.00	155.00	4
6	100.00	90.00	120.00	85.00	1
7	.00	85.00	120.00	85.00	2 2
8	120.00	85.00	170.00	72.50	2
9	170.00	72.50	178.00	70.50	2 2
10	178.00	70.50	182.00	70.50	2
11	182.00	70.50	190.00	72.50	2
12	190.00	72.50	460.00	72.50	2

Revision: 0

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Unit Wt.		Cohesion Intercept (psf)		Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	86.8	99.6	.0	.0	.00	.0	1
2	94.5	112.1	200.0	24.0	.00	.0	1
3	90.0	105.0	200.0	21.0	.00	.0	1
4	30.0	32.0	1000.0	20.0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Wate	
No.	(ft)	(ft)	
1	.00	71.00	
2	460.00	71.00	

Janbus Empirical Coef is being used for the case of c & phi both > 0

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

17 Trial Surfaces Have Been Generated.

6 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is $20.0\,$

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	107.60	88.07	152.19	65.70	2.00
2	195.78	54.85	260.53	55.62	2.00
3	289.69	62.54	299.17	65.74	2.00
4	303.85	67.51	351.97	93.82	2.00
5	378.49	116.60	395.00	135.36	2.00
6	403 82	147.49	409.26	155.99	2.00

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Janbu Method * *

Failure Surface Specified By 10 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	92.25	90.00
2	94.46	87.80
3	113.67	82.22
4	132.72	76.14
5	228.81	55.88
6	294.28	63.15
7	343.77	90.21
8	389.05	129.13
9	407.94	153.90
10	409.93	156.00
***	4.626	***

Individual data on the 23 slices

			Water	Water	Tie Force	Tie Force	Earthq For		charge
Slice No.	Width (ft)	Weight (lbs)	Top	Bot (lbs)	Norm (1bs)	Tan	Hor	Ver (1bs)	Load (1bs)
1	2.2	211.7	.0	.0	.0	.0	.0	.0	.0
2	5.5	1446.9	.0	.0	.0	.0	.0	.0	.0
3	4.1	1509.4	.0	.0	.0	.0	.0	.0	.0
4	9.6	4890.6	.0	. 0	.0	. 0	.0	.0	.0
5	6.3	4354.1	.0	. 0	.0	.0	.0	.0	.0
6	12.7	11485.6	.0	.0	.0	.0	.0	.0	.0

7	24.4	28918.6	.0	.0	.0	. 0	.0	.0	.0
8	12.9	18421.4	.0	1117.3	.0	. 0	.0	. 0	.0
9	6.0	9451.3	.0	1282.2	.0	. 0	. 0	. 0	.0
10	2.0	3266.4	.0	535.0	.0	. 0	. 0	. 0	.0
10	4.0	6832.0	.0	1231.3	.0	. 0	.0	. 0	.0
12	2.0	3645.6	.0	696.4	.0	. 0	.0	. 0	.0
13	6.0	12105.7	.0		.0	. 0	.0	. 0	.0
14	38.8		.0	27299.0	.0	.0	. 0	. 0	. 0
15	65.5	212152.0	.0	47214.3	.0	. 0	. 0	.0	.0
16	14.4	38925.3	.0	4010.1	.0	. 0	. 0	. 0	.0
17	2.7	6220.1	.0	.0	.0	.0	.0	. 0	.0
18	32.4	67072.8	. 0	.0	.0	. 0	. 0	. 0	.0
19	16.2	29053.4	.0	.0	.0	.0	.0	. 0	.0
20	29.0		.0	.0	.0	.0	.0	.0	.0
21	18.9	10349.2	.0	.0	. 0	.0	.0	.0	.0
22	10.5	11.0	.0	.0	.0	.0	. 0	.0	.0
23	1.9	172.9	.0	.0	.0	.0	.0	.0	.0

Failure Surface Specified By 8 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	107.74	91.93
2	117.84	82.70
	215.93	55.94
3	291.45	62.44
	343.40	89.46
5 6	393.99	134.78
7	403.84	147.78
8	412.09	156.04
***	4 631	***

Failure Surface Specified By 9 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.31	90.83
2	107.81	90.06
3	124.83	79.55
4	257.70	54.74
4 5	295.38	65.33
	329.70	82.60
6 7	390.64	130.99
8	408.80	155.73
9	408.86	155.98
***	4.660	***

Failure Surface Specified By 9 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	104.41	91.10
2	107.71	87.80
3	125.54	78.75
	242.16	56.08
4 5 6	292.01	62.35
6	343.91	90.05
7	379.68	118.92
8	405.50	151.05
9	406.28	155.93
***	4.704	***
	1.704	

Failure Surface Specified By 10 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	101.61	90.40
2	105.77	87.26
3	125.63	84.88
4	141.03	72.12
5	234.68	54.48
6	297.05	65.71
7	327.64	79.60
8	390.45	129.72
9	404.83	149.78
10	410.28	156.01
***	4.715	***

Failure Surface Specified By 9 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	109.48	92.37
2	117.11	86.01
3	134.23	75.67
4	259.58	56.25
5	297.34	64.48
6	335.43	85.30
7	392.96	132.14
8	406.87	151.76
9	409.93	156.00
***	4.720	***

Failure Surface Specified By 9 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	110.43	92.61
2	115.75	87.32
3	131.91	75.53
4	231.80	55.69
5	290.15	63.11
6	327.38	80.22
7	380.11	118.83
8	408.41	153.91
9	410.09	156.00

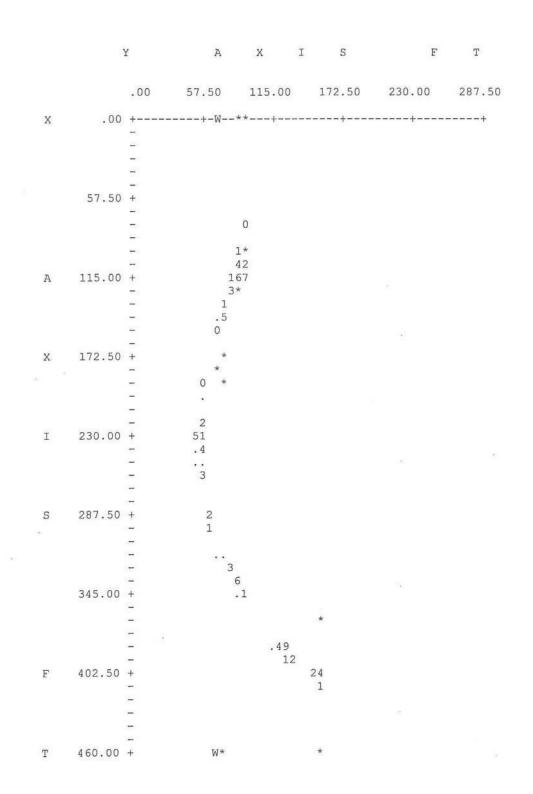
*** 4.756 ***

Failure Surface Specified By 9 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	114.82	93.70
2	120.03	88.84
3	134.65	75.19
4	237.30	54.90
5	295.32	63.49
6	324.70	79.25
7	392.99	133.20
8	405.98	151.45
9	409.99	156.00

4.798

Failure Surface Specified By 8 Coordinate Points


Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	106.40	91.60
2	116.16	82.90
3	255.74	56.49
4	297.24	64.12
5	329.00	81.39
6	387.95	127.76
7	404.72	148.45
8	406.12	155.92
444	1 020	***

Failure Surface Specified By 11 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	80.15	90.00
2	91.75	85.91
3	110.22	78.24
4	129.98	75.13
5	148.73	68.16
6	196.16	55.85
7	297.61	65.62
8	328.14	80.19
9	392.65	132.62
10	406.48	151.05
11	411.05	156.02

4.843

Æ

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: 6/23/98 3

Run By:

JOS

Input Data Filename:

kmsw24nc.in kmsw24nc.out

Output Filename:

Unit:

ENGLISH

City of Kingsville, Texas Municipal Solid Waste Landfill Permit Application 235-B

[Slope Stability Analysis (4:1 slope)] Landfill without Cover

BOUNDARY COORDINATES

3 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	90.00	100.00	90.00	1
2	100.00	90.00	360.00	153.00	3
3	360.00	153.00	460.00	155.00	3
3	100.00	90.00	120.00	85.00	1
5	.00	85.00	120.00	85.00	2
6	120.00	85.00	170.00	72.50	2
7	170.00	72.50	178.00	70.50	2
8	178.00	70.50	182.00	70.50	2
9	182.00	70.50	190.00	72.50	2
10	190.00	72.50	460.00	72.50	2

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Type No.	Unit Wt.	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)		Pressure Constant (psf)	
-	86.8	99.6	. 0	.0	.00	.0	1
1	94.5	112.1	200.0	21.0	.00	.0	1
3	30.0	32.0	1000.0	20.0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)		
1	.00	71.00		
2	460.00	71.00		

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

Janbus Empirical Coef. is being used for the case of c & phi both > 0 900 Trial Surfaces Have Been Generated.

30 Surfaces Initiate From Each Of 30 Points Equally Spaced Along The Ground Surface Between X = .00 ft. and X = 150.00 ft.

Each Surface Terminates Between X = 200.00 ft. and X = 460.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

5.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Janbu Method * * Failure Surface Specified By 71 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.45	90.84
2	107.59	88.04
3	111.80	85.33
4	116.07	82.73
5	120.39	80.22
6	124.78	77.82
7	129.22	75.52
8	133.71	73.32
9	138.25	71.23
10	142.84	69.24
11	147.47	67.36
12	152.14	65.58
13	156.86	63.92
14	161.61	62.37
15	166.40	60.92
16	171.22	59.59
17	176.07	58.37
18	180.94	57.26
19	185.84	56.27
20	190.76	55.39
21	195.71	54.63
22	200.66	53.97
23	205.63	53.44
24	210.62	53.02
25	215.61	52.71
26	220.60	52.53 52.45
27	225.60	52.43
28	230.60	52.65
29	235.60	52.63
30	240.59	53.32
31	245.58	53.83
32	250.55	54.45
33	255.51	55.18
34	260.46 265.39	56.03
35		57.00
36	270.29 275.17	58.08
37		59.27
38	280.0 ⁶ 3 284.86	60.57
39		61.99
40	289.65 294.41	63.51
41	299.14	65.15
42	303.82	66.89
43		68.75
44	308.47	00.73

45	313.07	70.71
46	317.62	72.77
47	322.13	74.94
48	326.58	77.22
49	330.98	79.60
50	335.32	82.08
51	339.60	84.66
52	343.82	87.33
53	347.98	90.11
54	352.08	92.98
55	356.10	95.94
56	360.06	99.00
57	363.94	102.15
58	367.75	105.39
59	371.49	108.71
60	375.14	112.12
61	378.72	115.62
62	382.21	119.19
63	385.62	122.85
64	388.95	126.59
65	392.18	130.40
66	395.33	134.28
67	398.39	138.24
68	401.35	142.27
69	404.22	146.36
70	407.00	150.52
71	409.19	153.98

*** 5.046 ***

Individual data on the 83 slices

		Water	Water	Tie	Tie Force			charge
www.complex	ra d white					Hor	Ver	Load
						(lbs)	(lbs)	(lbs)
100000000000000000000000000000000000000		5.30	A COLUMN TO THE PARTY OF THE PA	The state of the s	S1000000000000000000000000000000000000	. 0	.0	.0
						.0	.0	.0
					.0	.0	.0	. 0
					.0	.0	.0	.0
					.0	0	.0	.0
					.0	.0	.0	.0
					.0	.0	.0	.0
					.0	. 0	.0	.0
					.0	.0	.0	.0
						.0	.0	.0
						.0	.0	.0
						.0	.0	.0
						.0	.0	.0
								.0
							.0	`.0
	man and the second second						.0	.0
			7.1				.0	.0
								.0
4.8	10901.9	.0	2910.0	. 0				
	Width (ft) 4.0 .2 4.2 .5 3.7 3.9 .4 4.4 4.5 4.5 4.5 4.7 4.6 4.7 4.8 4.8	(ft) (lbs) 4.0 218.9 .2 17.7 4.2 927.9 .5 183.2 3.7 1648.6 3.9 2483.7 .4 288.6 4.4 3671.7 4.4 4530.9 4.5 5361.4 4.5 6160.0 .5 752.9 4.1 6233.6 4.6 7869.0 4.7 8705.7 4.7 9492.0 4.8 10225.1	Width Weight Top (ft) (lbs) (lbs) 4.0 218.9 .2 17.7 .0 4.2 927.9 .0 .5 183.2 .0 3.7 1648.6 .0 3.9 2483.7 .0 .4 288.6 .0 4.4 3671.7 .0 4.4 4530.9 .0 4.5 5361.4 .0 4.5 6160.0 .0 .5 752.9 .0 4.1 6233.6 .0 4.6 7869.0 .0 4.7 8705.7 .0 4.8 10225.1 .0	Width Weight Top Bot (ft) (lbs) (lbs) (lbs) 4.0 218.9 .0 .0 .2 17.7 .0 .0 4.2 927.9 .0 .0 .5 183.2 .0 .0 3.7 1648.6 .0 .0 3.9 2483.7 .0 .0 4 288.6 .0 .0 4.4 3671.7 .0 .0 4.5 5361.4 .0 .0 4.5 6160.0 .0 .0 5 752.9 .0 .0 4.1 6233.6 .0 243.6 4.6 7869.0 .0 843.0 4.7 8705.7 .0 1412.9 4.7 9492.0 .0 1949.0 4.8 10225.1 .0 2451.0	Width Weight Top Bot Norm (ft) (lbs) (lbs) (lbs) (lbs) 4.0 218.9 .0 .0 .0 .2 17.7 .0 .0 .0 4.2 927.9 .0 .0 .0 .5 183.2 .0 .0 .0 3.7 1648.6 .0 .0 .0 3.9 2483.7 .0 .0 .0 4 288.6 .0 .0 .0 4.4 3671.7 .0 .0 .0 4.4 4530.9 .0 .0 .0 4.5 5361.4 .0 .0 .0 4.5 6160.0 .0 .0 .0 4.1 6233.6 .0 243.6 .0 4.6 7869.0 .0 843.0 .0 4.7 8705.7 .0 1412.9 .0 4.7 949	Width Weight Top Bot Norm Tan (ft) (lbs) (lbs) (lbs) (lbs) (lbs) 4.0 218.9 .0 .0 .0 .0 .2 17.7 .0 .0 .0 .0 4.2 927.9 .0 .0 .0 .0 .5 183.2 .0 .0 .0 .0 3.7 1648.6 .0 .0 .0 .0 3.9 2483.7 .0 .0 .0 .0 4 288.6 .0 .0 .0 .0 4.4 3671.7 .0 .0 .0 .0 4.4 4530.9 .0 .0 .0 .0 4.5 5361.4 .0 .0 .0 .0 4.5 6160.0 .0 .0 .0 .0 4.1 6233.6 .0 243.6 .0 .0	Width Weight Top Bot Norm Tan Hor (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 4.0 218.9 .0 .0 .0 .0 .0 .2 17.7 .0 .0 .0 .0 .0 4.2 927.9 .0 .0 .0 .0 .0 .5 183.2 .0 .0 .0 .0 .0 3.7 1648.6 .0 .0 .0 .0 .0 3.9 2483.7 .0 .0 .0 .0 .0 4 288.6 .0 .0 .0 .0 .0 4.4 3671.7 .0 .0 .0 .0 .0 4.4 4530.9 .0 .0 .0 .0 .0 4.5 5361.4 .0 .0 .0 .0 .0 4.5 <t< td=""><td>Width Weight (ft) Top Bot Norm Tan Hor Ver (ft) (lbs) (lbs)</td></t<>	Width Weight (ft) Top Bot Norm Tan Hor Ver (ft) (lbs) (lbs)

H-1 i5

								0	0
19	3.6	8561.7	.0	2465.8	.0	. 0	. 0	. 0	.0
20	1.2	2958.2	.0	885.8	.0	. 0	.0	.0	.0
21	4.8	11908.8	.0	3696.0	.0	. 0	.0	.0	
22	.1	167.8	.0	53.7	.0	.0	.0	.0	.0
23	1.9	4930.4	.0	1589.8	.0	.0	.0	.0	. 0
24	2.9	7678.6	.0	2522.9	.0	.0	.0	.0	.0
25	1.1	2828.9	.0	932.5	.0	.0	. 0	.0	.0
	2.0	5479.7	.0	1802.2	.0	.0	.0	.0	.0
26	1.8	5218.0	.0	1705.8	.0	. 0	.0	.0	.0
27	4.2	12328.3	.0	3979.9	. 0	. 0	. 0	.0	.0
28	.8	2343.1	.0	752.9	. 0	. 0	. 0	.0	.0
29	4.9	15501.0	.0	4989.5	. 0	.0	. 0	0	.0
30	5.0	16124.5	.0	5210.4	.0	.0	. 0	.0	.0
31		16679.1	.0	5395.5	. 0	. 0	.0	.0	. 0
32	5.0		.0	5544.6	.0	.0	.0	.0	.0
33	5.0	17163.5	.0	5657.7	.0	.0	. 0	.0	. 0
34	5.0	17576.1	.0	5734.6	.0	.0	. 0	.0	.0
35	5.0	17915.8	.0	5775.5	.0	.0	.0	. 0	.0
36	5.0	18181.6		5780.1	.0	.0	.0	.0	.0
37	5.0	18372.9	.0		.0 .	.0	. 0	.0	.0
38	5.0	18489.2	.0	5748.6	.0	.0	.0	.0	.0
39	5.0	18530.5	.0	5680.9	.0	.0	.0	. 0	.0
40	5.0	18496.7	. 0	5577.1	.0	.0	.0	.0	.0
41	5.0	18388.2	.0	5437.2		.0	.0	.0	.0
42	5.0	18205.6	.0	5261.3	.0	.0	.0	.0	.0
43	4.9	17949.7	.0	5049.6	.0	.0	.0	.0	.0
44	4.9	17621.5	.0	4802.1	. 0		.0	.0	.0
45	4.9	17222.3	.0	4518.9	. 0	.0	.0	.0	.0
46	4.9	16753.9	.0	4200.2	.0	.0	.0	.0	.0
47	4.9	16217.8	.0	3846.2	.0	.0		.0	.0
48	4.8	15616.2	.0	3457.1	.0	.0	.0	.0	.0
49	4.8	14951.3	.0	3033.0	. 0	.0	.0		.0
50	4.8	14225.5	.0	2574.3	. 0	.0	.0	.0	.0
51	4.7	13441.7	.0	2081.1	. 0	.0	.0	.0	
52	4.7	12602.6	.0	1553.7	.0	.0	.0	.0	.0
53	4.6	11711.3	.0	992.4	. 0	.0	.0	.0	. 0
54	4.6	10771.2	.0	397.5	.0	.0	0	.0	.0
55	. 6	1447.6	.0	6.5	.0	.0	.0	.0	.0
56	3.3	7143.7	.0	.0	.0	.0	.0	.0	.0
57	.6	1260.6	.0	.0	.0	.0	.0	.0	.0
58	4.5	9379.6	.0	.0	.0	.0	.0	.0	.0
59	4.5	9120.3	.0	.0	.0	.0	.0	.0	.0
60	4.4	8844.2	.0	.0	.0	.0	.0	.0	.0
	4.3	8552.5	.0	.0	.0	.0	.0	.0	.0
61	4.3	8246.3	.0	.0	.0	.0	.0	.0	.0
62		7926.5	.0		.0	.0	.0	.0	.0
63	4.2	7594.3	.0	.0	.0	.0	.0	.0	.0
64	4.2		.0	.0	.0	.0	.0	. 0	.0
65	4.1		.0	.0	.0	.0	.0	.0	.0
66	4.0		.0	.0	.0	.0	.0	.0	.0
67	3.9		.0	.0	.0	.0	.0	.0	.0
68	.1	96.1		.0	.0	.0	.0	.0	.0
69	3.9		.0		.0	.0	.0	.0	.0
70	3.8	5640.8	.0	.0	.0	.0	.0	.0	.0
71	3.7		.0	.0	.0	.0	.0	.0	.0
72	3.7		. 0	.0	.0	.0	0	.0	.0
73	3.6		.0	.0		.0	.0	.0	.0
74	3.5		.0	.0	.0		.0	.0	.0
75	3.4	3320.2	.0	.0	.0	.0	. 0	. 0	

76	3.3	2874.9	. 0	.0	.0	. 0	.0	.0	.0
77	3.2	2439.2	. 0	.0	.0	. 0	.0	.0	.0
78	3.1	2014.7	. 0	.0	. 0	. 0	.0	.0	.0
79	3.1	1602.6	. 0	.0	.0	. 0	.0	. 0	.0
80	3.0	1204.5	. 0	.0	.0	.0	.0	. 0	.0
81	2.9	821.6	. 0	.0	.0	. 0	. 0	. 0	.0
82	2.8	455.4	.0	.0	.0	. 0	.0	. 0	.0
83	2.2	112.6	.0	. 0	.0	.0	.0	.0	.0

Failure Surface Specified By 77 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.45	90.84
2	107.49	87.89
3	111.60	85.04
4	115.76	82.28
5	119.99	79.61
6	124.28	77.03
7	128.62	74.54
8	133.01	72.16
9	137.45	69.87
10	141.95	67.68
11	146.49	65.58
12	151.07	63.59
13	155.70	61.70
14	160.37	59.91
15	165.08	58.22
16	169.82	56.64
17	174.60	55.16
18	179.40	53.78
19	184.24	52.51
20	189.10	51.35
21	193.99	50.30
22	198.90	49.35
23	203.83	48.51
24	208.77	47.78
25	213.74	47.15
26	218.71	46.64
27	223.69	46.23
28	228.68	45.94
29	233.68	45.75
30	238.68	45.68
31	243.68	45.71
32	248.68	45.85
33	253.67	46.11
34	258.66	46.47
35	263.64	46.94
36	268.60	47.52
37	273.55	48.21.
38	278.49	49.01
39	283.41	49.91
40	288.30	50.92
41	293.18	52.04
42	298.02	53.27

43	302.84	54.60
44	307.63	56.04
45	312.39	57.58
46	317.11	59.23
47	321.79	60.98
48	326.44	62.83
49	331.04	64.79
50	335.60	66.84
51	340.11	68.99
52	344.57	71.25
53	348.99	73.59
54	353.35	76.04
55	357.66	78.58
56	361.91	81.22
57	366.10	83.94
58	370.23	86.76
59	374.29	89.67
60	378.30	92.66
61	382.23	95.75
62	386.10	98.92
63	389.90	102.17
64	393.62	105.51
65	397.27	108.92
66	400.85	112.42
67	404.35	115.99
68	407.76	119.64
69	411.10	123.36
70	414.36	127.16
71	417.53	131.03
72	420.61	134.96
73	423.61	138.96
74	426.52	143.03
75	429.34	147.16
76	432.07	151.35
77	434.01	154.48

Failure Surface Specified By 81 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	103.45	90.84
2	107.65	88.12
3	111.89	85.48
4	116.19	82.92
5	120.53	80.45
6	124.93	78.06
7	129.36	75.75
8	133.84	73.53
9	138.36	71.39
10	142.92	69.35
11	147.52	67.38

5.110

12	152.16	65.51
13	156.83	63.73
	161.53	62.03
14		60.42
15	166.27	
16	171.03	58.91
17	175.83	57.49
18	180.65	56.16
19	185.49	54.92
20	190.36	53.77
21	195.24	52.71
22	200.15	51.75
23	205.08	50.89
24	210.02	50.12
25	214.97	49.44
26	219.93	48.85
	224.91	48.37
27	229.90	47.97
28		47.67
29	234.89	
30	239.88	47.47
31	244.88	47.36
32	249.88	47.35
33	254.88	47.43
34	259.88	47.61
35	264.87	47.88
36	269.86	48.25
37	274.83	48.72
38	279.80	49.28
39	284.76	49.93
40	289.70	50.68
41	294.63	51.52
	299.54	52.46
42	304.44	53.49
43		54.61
44	309.31	55.82
45	314.16	
46	318.99	57.13
47	323.79	58.53
48	328.56	60.02
49	333.30	61.60
50	338.01	63.27
51	342.69	65.04
52	347.34	66.89
53	351.95	68.83
54	356.52	70.85
55	361.05	72.96
56	365.54	75.16
57	369.99	77.45
58	374.39	79.82
59	378.75	82.27
	383.06	84.81
60	387.32	87.42
61		
62	391.53	90.12
63	395.69	92.90
64	399.79	95.75
65	403.84	98.69
66	407.83	101.70
67	411.76	104.78
68	415.64	107.95

69	419.45	111.18
70	423.20	114.49
71	426.89	117.86
72	430.51	121.31
73	434.07	124.83
74	437.55	128.41
75	440.97	132.06
76	444.32	135.77
77	447.60	139.55
	450.80	143.39
79	453.93	147.28
80	456.99	151.24
81	459.77	155.00
	5 141	***
***	5.141	CONTROL PRODUCTION

Failure Surface Specified By 77 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	8 3	
1	113.79	93.34
2	117.51	90.00
3	.121.31	86.75
4	125.19	83.60
5	129.15	80.54
6	133.19	77.59
7	137.29	74.73
8	141.46	71.98
9	145.71	69.33
10	150.01	66.79
11	154.38	64.36
12	158.81	62.04
13	163.29	59.82
14	167.83	57.72
15	172.42	55.73
16	177.05	53.86
17	181.73	52.10
18	186.46	50.46
19'	191.22	48.94
20	196.02	47.54
21	200.85	46.25
22	205.71	45.09
23	210.60	44.05
24	215.52	43.13
25	220.45	42.33
26	225.41	41.65
27	230.38	41.10
28	235.36	40.68
29	240.35	40.37
30	245.35	40.19
31	250.35	40.14

255.35 260.34 265.33 270.31	40.20
265.33	
	40 000
270 31	40.71
	41.16
275.28	41.72
280.23	42.41
285.17	43.22
290.08	44.15
294.97	45.21
299.83	46.38
304.66	47.68
309.45	49.10
314.21	50.63
318.93	52.28
323.60	54.05
328.24	55.94
332.82	57.94
	60.05
337.35	62.27
341.83	64.61
346.25	
350.61	67.05
354.91	69.61
359.14	72.27
363.31	75.03
367.41	77.89
371.43	80.86
375.38	83.93
379.26	87.09
383.05	90.35
386.76	93.70
390.39	97.14
393.93	100.67
397.38	104.29
400.74	107.99
404.00	111.78
407.17	115.64
410.25	119.59
413.22	123.61
416.10	127.70
418.87	131.86
421.54	136.09
	140.38
	144.74
	149.15
	153.63
431.51	154.43
	424.10 426.56 428.90 431.14 431.51

Failure Surface Specified By 82 Coordinate Points

Point X-Surf Y-Surf No. (ft) (ft)

5.174

7 8 9 10 11	129.24 133.53 137.87 142.27 146.71 151.20 155.74	92.09 89.09 86.18 83.36 80.62 77.97 75.40 72.93 70.54 68.25 66.05 63.94 61.93
13 14	160.31	60.01
15	169.59	58.19
	174.28	56.47
17	179.01	54.84
18 19		51.89
20		50.56
21	198.23	49.33
22	203.10	48.20
23	207.99	47.17
		46.25
25	217.84 222.79	45.42 44.70
26 27	227.75	44.08
28		43.57
29	237.70	43.16
	242.70	42.85
31	247.69	42.64
	252.69	42.54
33 34	257.69 262.69	42.54
35		42.86
36	272.67	43.17
37	277.66	43.58
	282.63	44.10
	287.59	44.72
40	292.54 297.47	45.45
41 42	302.38	47.20
43	307.28	48.23
44	312.15	49.37
45	316.99	50.60
46	321.81	51.93
47	326.60	53.36
48	331.36 336.09	56.52
49 50	340.78	58.25
51	345.44	60.07
52	350.05	61.99
53	354.63	64.01
54	359.16	66.12
55 56	363.65	68.32
57	368.09 372.49	73.00
× '	5 A D 1 R 5	

58	376.83	75.48
59	381.12	78.05
60	385.36	80.70
61	389.54	83.45
62	389.54 393.66	86.27
63	397.72	89.19
64	401.73	92.19
65	405.67	95.26
66	409.54	98.42
67	413.35	101.66
68	417.09	104.98
69	420.76	108.38
70	424.36	111.85
71	427.89	115.39
72	431.34	119.01
73	434.72	122.70
74	438.02	126.45
75	441.24	130.28
76	444.38	134.17
77	447.44	138.12
78	450.42	142.14
79	453.31	146.21
80	456.12	150.35
81	458.84	154.55
82	459.11	154.98
***	5.188	***

Failure Surface Specified By 68 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	118.97	94.60
2	122.55	91.11
3	126.23	87.72
4	130.01	84.46
5	133.90	81.30
6	137.87	78.27
7	141.94	75.36
8	146.09	72.57
9	150.32	69.91
10	154.63	67.38
11	159.02	64.98
12	163.47	62.71
13	168.00	60.58
14	172.58	58.59
15	177.23	56.74
16	181.93	55.02
17	186.67	53.45
18	191.46	52.03
19	196.30	50.75
20	201.17	49.62
21	206.07	48.63
22	211.00	47.79
23	215.95	47.11
24	220.92	46.57
25	225.91	46.18

	***	5.195	***
68		391.25	153.63
67		390.82	152.44
66		388.97	147.80
65		386.99	143.21
64		384.86	138.69
63		382.60	134.23
62		380.20	129.84
61		377.68	125.52
60		375.02	121.29
59		372.24	117.13
58		369.33	113.07
		366.30	109.09
56		363.15	105.20
55		359.89	101.42
53 54		356.51	97.73
52		349.43 353.02	94.14
51		345.73	87.30 90.67
50		341.94	84.05
49		338.04	80.91
48		334.06	77.89
47		329.98	75.00
46		325.82	72.23
45		321.58	69.58
44		317.25	67.07
43		312.86	64.68
42		308.39	62.43
41		303.86	60.32
40		299.27	58.35
39		294.62	56.51
38		289.91	54.82
37		285.16	53.27
36		280.36	51.86
35		275.52	50.60
34		270.65	49.48
32		265.74	48.52
31		260.81	47.70
30		250.88 255.86	47.03
29		245.90	46.14
28		240.90	45.93
27		235.90	45.86
26		230.90	45.95
			1000001 - 1000000

Failure Surface Specified By 77 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	124.14	95.85
2	127.99	92.66
3	131.91	89.56
4	135.90	86.55
5	139.97	83.63

6	144.10	80.82
7	148.29	78.10
		75.47
8	152.55	
9	156.87	72.95
10	161.24	70.54
11	165.68	68.22
12	170.16	66.01
13	174.70	63.91
14	179.28	61.91
15	183.91	60.02
16	188.58	58.24
17	193.29	56.57
18	198.04	55.01
19	202.83	53.56
20	207.65	52.22
21	212.50	51.00
22	217.37	49.89
23	222.27	48.90
24	227.19	48.02
25	232.14	47.26
		46.61
26	237.09	
27	242.07	46.08
28	247.05	45.67
29	252.04	45.37
30	257.04	45.19
31	262.04	45.13
	267.04	45.18
33	272.03	45.35
34	277.02	45.64
35	282.01	46.05
36	286.98	46.57
37	291.94	47.21
38	296.88	47.97
39	301.81	48.84
40	306.71	49.83
41	311.58	50.93
42	316.43	52.14
43	321.25	53.47
44	326.04	54.91
45	330.80	56.46
		58.13
46	335.51	
47	340.18	59.90
48	344.82	61.78
49	349.40	63.78
50	353.94	65.87
51	358.43	68.08
52	362.86	70.39
53	367.24	72.80
54	371.57	75.31
55	375.83	77.93
56	380.03	80.64
57	384.16	83.45
		86.36
58	388.23	
59	392.23	89.36
60	396.15	92.46
61	400.01	95.65
62	403.78	98.92

63	407.48	102.28
64	411.10	105.73
65	414.64	105.73 109.27
66		112.88
67	421.46	116.58
68		120.35
	427.94	
70	431.04	128.12
71	434.04	132.12
72	436.96	136.18
73	439.77	140.31
74		144.51
75	445.11	148.77
76	447.63	153.09
77	448.56	154.77
***	5.201	***

Failure Surface Specified By 80 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
		21 52
1	118.97	94.60
2	122.87	91.47
3	126.83	88.42
4	130.87	85.47
5	134.96	82.60
6	139.12	79.83
7	143.35	77.15
8	147.62	74.56
9	151.96	72.07
10	156.35	69.67
11	160.79	67.37
12	165.28	65.17
13	169.81	63.07
14	174.39	61.07
15	179.02	59.17
16	183.69	57.37
17	188.39	55.68
18	193.13	54.09
19	197.90	52.60
20	202.71	51.23
21	207.55	49.95
22	212.41	48.79
23	217.30	47.73
24	222.20	46.78
25	227.13	45.94
26	232.08	45.20
27	237.04	44.58
28	242.01	44.06
29	247.00	43.66
30	251.99	43.37
	256.98	43.37
31	230.30	43.10

22	261.98	43.11
32		43.14
33	266.98	
34	271.98	43.29
35	276.98	43.54
36	281.96	43.91
37	286.94	44.39
38	291.90	44.97
39	296.86	45.67
40	301.79	46.47
41	306.71	47.38
42	311.60	48.40
43	316.47	49.53
44	321.32	50.77
45	326.13	52.11
46	330.92	53.56
47	335.67	55.11
48	340.39	56.77
49	345.07	58.53
50	349.71	60.39
51	354.31	62.36
52	358.86	64.42
	363.37	66.59
53		68.85
54	367.82	71.22
55	372.23	73.68
56	376.58	73.68
57	380.88	76.23
58	385.12	78.88
59	389.30	81.62
60	393.42	84.45
61	397.48	87.38
62	401.47	90.39
63	405.40	93.49
64	409.25	96.67
65	413.03	99.94
66	416.74	103.29
67	420.38	106.73
68	423.94	110.24
69	427.42	113.83
70	430.82	117.49
71	434.14	121.23
72	437.37	125.05
73	440.52	128.93
74	443.59	132.88
75	446.57	136.90
76	449.45	140.98
	452.25	145.12
77	454.96	149.33
78		153.59
79	457.57	154.97
80	458.37	134.97

5.202

Failure Surface Specified By 77 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	104 14	95.85
1	124.14	92.59
2	127.93	
3	131.79	89.41
4	135.73	86.34
5	139.75	83.35
6	143.83	80.47
7	147.98	77.68
8	152.19	74.99
9	156.47	72.40
10	160.81	69.92
11	165.21	67.54
12	169.66	65.27
13	174.17	63.10
14	178.73	61.05
15	183.33	59.10
16	187.98	57.26
17	192.68	55.54
18	197.41	53.92
19	202.18	52.42
20	206.98	51.04
21	211.82	49.77
22	216.68	48.62
23	221.58	47.58
24	226.49	46.66
25	231.43	45.86
26	236.38	45.17
27	241.35	44.61
28	246.33	44.16
29	251.32	43.84
30	256.31	43.63
31	261.31	43.54
32	266.31	43.57
33	271.31	43.72
34	276.30	43.99
35	281.29	44.38
36	286.26	44.89
37	291.22	45.52
38	296.17	46.27
39	301.09	47.13
40	305.99	48.11
41	310.87	49.21
42	315.72	50.42
43	320.54	51.75
44	325.33	53.20
45	330.08	54.76
46	334.79	56.43
47	339.46	58.22
48	344.09	60.11
49	348.67	62.12
50	353.20	64.23
51	357.68	66.46

***	5.208	***
77	447.26	154.75
76	445.96	127.11 131.15 135.25 139.42 143.66 147.95 152.31
75	443.51	147.95
74	440.96	143.66
73	438.30 440.96 443.51	139.42
72	435.54	135.25
71	432.69	131.15
70	429.73	127.11
69	426.68	123.15
68	423.54 426.68 429.73 432.69 435.54	119.26
67	420.30	115.45
66	416.98	111.71
65	413.57	108.06
64	410.07	104.49
63	406.48	101.01
62	402.81	97.61
61	399.07 402.81	94.30
60	395.24	91.08
59	391.34	87.95
58	375.02 379.20 383.32 387.37 391.34	76.40 79.14 81.98 84.91 87.95 91.08 94.30 97.61 101.01 104.49 108.06 111.71 115.45
57	383.32	81.98
56	379.20	79.14
55	375.02	76.40
54	370.78	73.76
53	366.47	68.78 71.22 73.76 76.40
52	362.10 366.47 370.78 375.02	68.78

Failure Surface Specified By 67 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	129.31	97.10
2	132.90	93.62
3	136.60	90.25
4	140.39	87.00
5	144.29	83.86
6	148.27	80.85
7	152.35	77.95
8	156.51	75.18
9	160.76	72.54
10	165.08	70.03
11	169.48	67.65
12	173.95	65.41
13	178.49	63.31
14	183.08	61.34
15	187.74	59.52
16	192.45	57.84
17	197.21	56.30
18	202.01	54.91
19	206.85	53.66
20	211.73	52.56

21	216.64	51.61
22	221.57	50.82
23	226.53	50.17
24	231.51	49.67
25	236.50	49.33
26	241.49	49.14
27	246.49	49.10
28	251.49	49.21
29	256.48	49.48
30	261.47	49.89
31	266.43	50.46
32	271.38	51.18
33	276.30	52.05
34	281.20	53.07
35	286.06	54.24
36	290.89	55.55
37	295.67	57.02
38	300.40	58.62
39	305.08	60.37
40	309.71	62.27
41	314.28	64.30
42	318.78	66.47
43	323.22	68.78
44	327.58	71.22
45	331.87	73.79
46	336.08	76.49
47	340.20	79.32
48	344.24	82.28
49	348.18	85.35
50	352.02	88.55
51	355.77	91.86
52	359.42	95.28
53	362.96	98.81
54	366.39	102.45
55	369.71	106.19
56	372.91	110.03
57	375.99	113.96
58	378.95	117.99
59	381.79	122.11
60	384.50	126.31
61	387.09	130.59
62	389.54	134.95
63	391.85	139.38
64	394.03	143.88
65	396.08	148.44
66	397.98	153.07
67	398.24	153.76
0.7	330.24	133.70

5.217

	2	ď	А	Х	I	S	F	T
		.00	57.50	115.0	0	172.50	230.00	287.50
Х	.00	+	+-W ³	k ii + _		+	+	+
***	12-3-170-17-0.	=	***					
		-						
		=						
	57.50	+						
		_						
		-						
		_						
A	115.00	+	13	14				
			11'					
			1470					
			2170.					
X	172.50		4160*.					
			217*					
		0.0000000000000000000000000000000000000	421*.					
			21					
			421					
I	230.00		421					
			421					
			4211					¥.
			4261					
			4221					
S	287.50		4261					
			4261					
			842611.					
		-	43261.					
	1550 March 11450 Sept.	-	8422013					
	345.00	+	53220				40.00	
				2.116				
				22.0166				
		-		34211				
	1121724Waz 111324 - 2 710	-		53422				
F	402.50	+		.53942.				
		E.	H	533.2				
		_		33	3792	22		
		-			3337			
	100 00	-	7.74		.33	37 3*		
\mathbf{T}	460.00	-	W*			3		

RECEIVED SEP 2 9 1997

September 25, 1997

Finch Energy & Environmental Services P.O. Box 73 Kingsville, Texas 78364

> Subsurface Exploration and Re:

Laboratory Analysis

Proposed Landfill Expansion

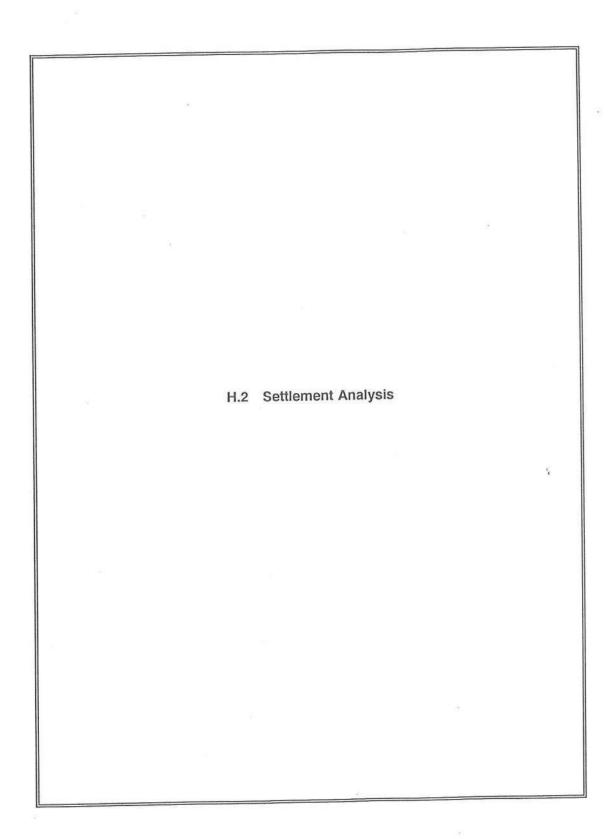
Kingsville, Texas

PSI File Number: 326-72026

Addendum

Gentlemen:

It was requested that PSI provide ϕ' and c' values for the samples on which we performed unconsolidated undrained triaxial tests. These values are provided in the following table.


Soil Identification	Effective Cohesion, c' (psf)	Effective Angle of internal Friction, φ'		
SB-12, 7' - 8'	200	26		
SB-12, 47' - 48'	200	26		
SB-14, 10' - 11'	200	26		
SB-14, 34' - 35'	200	24		
SB-15, 12' - 13'	200	21		
SB-15, 24' - 25'	200	24		
SB-16, 3' - 5'	200	26		
SB-17, 32' - 33'	200	24		
SB-18, 9' - 10'	200	21		
SB-18, 17' - 18'	200	24		
SB-18, 40' - 42'	200	24		

GEOTECHNICAL DATA P.S.I. Laboratory, ASTM D-3080 Light Olive Green Clay (Aquiclude)

	Lt. C	live Green Clay	Geotechnical Prop	perties	,
Soil Boring	Depth,	C',Cohesion Coefficient	Psi, Angle of Int. Friction	W _m R	
Number	ft (bgs)	Lbf/ft ²	degrees	wt %	Lbm/ft ³
21	64' - 66'	1100	26.3	20	108
23	82' - 84'	700	19.4	28	90
24	52' - 54'	560	35.0	28	89.6
25	58' - 60'	940	26.6	30	85.3
Avg.	65'	825	26.8	26.5	93.2
Max.	84'	1100	35.0	30	108
Min.	52'	560	19.4	20	85.3

November 1997 Revision 1- June 1998

Revision: 0

APPENDIX H.2

SETTLEMENT ANALYSIS

THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES 1 THROUGH 2.

In primation To Build On

SETTLEMENT ANALYSIS Kingsville Landfill

1. Design Section and Loading

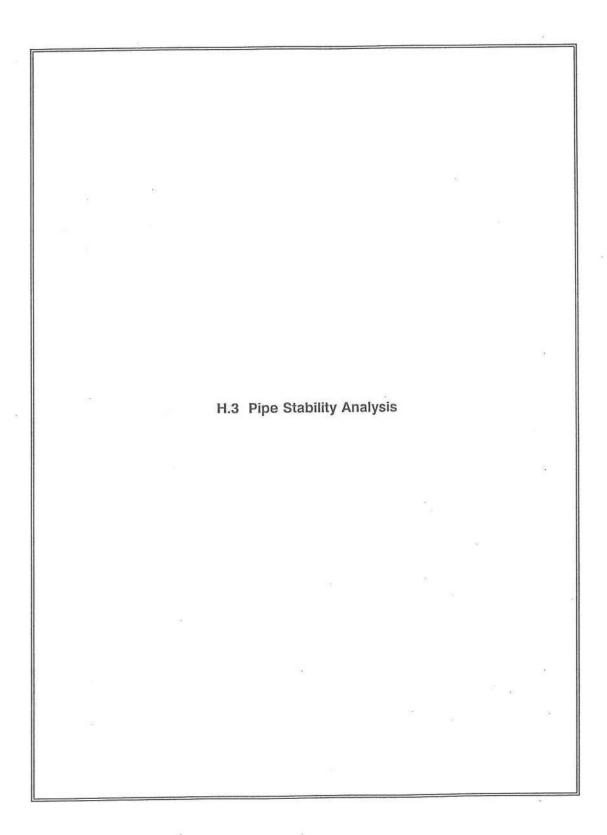
- a. Surface Grade EL 50
- b. Bottom of Landfill EL 30
- c. Groundwater EL 25
- d. Maximum Waste Height EL 125
- e. Waste Density as defined by H.E.L.P. 3.1 model for EPA $\delta = 33.3 \text{ pcf}$
- f. Excavation Stress = $20 \times 120 = 2400 \text{ psf}$
- g. Fill Stress = $95 \times 33.3 = 3163.5$
- h. Net Stress increase = 763.5 psf
- I. Depth of Stress $\Delta P \le 0.1 P_o = 80 \text{ ft}$, EL -30 (2.5 x 120 + x 57.6) .10 = 763.5 x = 80 ft.

2. Settlement Estimate

- a. Average Natural Moisture Content of Soils 22.3 %, e_o = 0.602
- b. Coefficient of Consolidation Cc = 0.30 (eo - .27) = 0.100

$$Cr = 0.15 \times Cc = 0.015$$

- c. Depth to Center of Compressible Zone = EL -0
- d. Overburden Pressure = $25 \times 120 + 30 \times 57.6$ P_o = 4828 psf
- e. Stress Increase = 763.5 psf
- f. Strength and Plasticity Data Indicate Soils are Preconsolidated Therefore use Cr = 0.015
- g. Assume Clay is Continuous from EL 30 to EL -44
 H = 74 ft
- h. Settlement Preconsolidated Clay $p = (H Cr / 1 + eo) Log (Po+\Delta P / Po)$


$$p = (60 \times 12 \times 0.015 / 1 + 0.602) \text{ Log} (4728 + 763.5 / 4728)$$

$$p = 0.44$$
 inch

I. Settlement - Normally Consolidated $p = 0.44 \times 0.10 / 0.015 = 2.9$ inches

Use maximum potential settlement = 3.0 inches at center of landfill and 1.50 inches along edge of landfill.

1/19

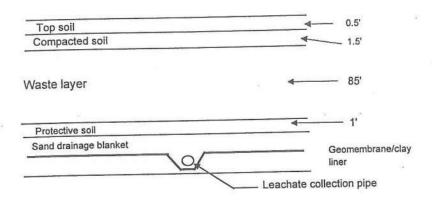
APPENDIX H.3

LEACHATE PIPE DESIGN AND STABILITY ANALYSIS

THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES // THROUGH /9.

Pipe Stability Analysis

Objective


Perform structural stability analysis for the leachate collection pipes under maximum cover loads at the City of Kingsville, Texas (COK) Municipal Solid Waste Landfill.

Approach

Spangler's Equation was used to determine the deflection of the rigid PVC Pipes

Assumptions:

- 1. Weight of geonet and geomembrane are negligible
- 2. Granular bedding with little or no fines, with relative density (D_r) of 40-70% (Class D)
- 3. All loads are applied perpendicular to pipes.
- 4. Six-inch PVC perforated pipe with total open area of 0.55 in²/ft of pipe
- 5. Maximum allowable deflection of PVC pipe = 0.33 inches (Ref 2)
- 6. Water table at elevation of 30 ft above mean sea level
- 7. Total unit weight of top soil $(\gamma_{ts}) = 110$ pcf
- 8. Total unit weight of protective soil $(\gamma_{PS}) = 110 \text{ pcf}$
- 9. Total unit weight of compacted soil (γ_{cs}) = 115 pcf
- 10. Total unit weight of waste $(\gamma_w) = 27.5$ pcf

Ton	Soil	Protective	Soil	Compacted		Waste	
	Depth (ft)		Depth (ft)	γ _{cs} (pcf)	Depth (ft)	γ _w (pcf)	Depth (ft)
110	0.50	110	1	115	1.5	27.5	85

Calculation of Total Pressure above Pipes

$$P_T = P_s + P_L + P_i$$

I	P _s (psf)	P _s (psi)	P _L (psi)	111111111111111111111111111111111111111	
l	2675.0	18.58	6.25	0	(No vacuum in perforated pipe)

$$P_s > P_L > P_I$$

Hence $P_T = P_s$
 $P_T = 2.675.0 \text{ psf} = 18.6 \text{ psi}$

Wall Crushing Factor of Safety (F.S)

$$S_A = \frac{(SDR - 1)}{2} P_T$$

where:

S_A = actual compressive stress (psi)

SDR = standard dimension ratio (SDR=15.3) From Table 3.4

P_T = external total pressure above pipe (psi)

$$S_A = 132.8 \text{ psi}$$

 $S_y = 1,500.0 \text{ psi}$ (From Discopipe manual - Ref.1)

$$F.S = \frac{s_y}{s_A}$$

Deflection of PVC pipe using Spanglers Method

$$Y_{\nu} = \frac{D_L K W_c}{\frac{2E}{3(DR-1)^3} + 0.061 E'}$$

where:

Y_v = vertical deflection (in)

D_L = deflection lag factor = 1.0 for Prism Load Method

K = bedding constant = 0.110 for Class D (Table A.3)

DR = dimension Ratio = O.D./wall thickness

E = modulus of elasticity (psi)

E_{PVC} = 4 x 10⁵ psi for Class 12454-A or Class 12454-B materials

E' = modulus of soil reaction (3,000 psi) for coarse grained soilwith no fines (from Table A.4)

O.D	Thickness	DL	Κ.	W _{c (lb/in)}	E (psi)	DR	E'	Y _v	Strain (%)
6.625	0.432	1.0	0.11	123.1	400,000	15.34	2,000	0.064	0.96

Allowable deflection = 5% (Reference 2, allowable strain due to external loads) Allowable deflection= $OD \times \frac{5}{100}$

Allowable deflection 0.33

$$F.S. = \frac{allowable\ deflection}{vertical\ deflection} = \frac{0.33}{0.064} = 5.2$$
 O.K.

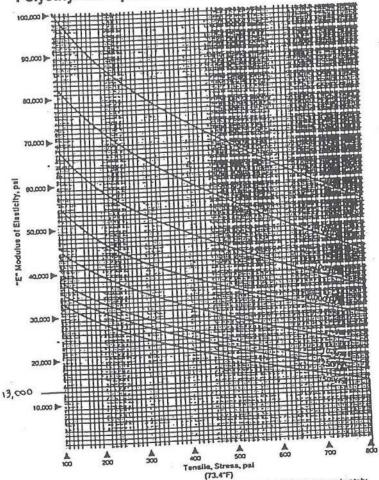
Conclusion:

The calculated deflection is less than the allowable deflection stated in AAWA C900-89. A six-inch, Schedule 80 PVC will be adequate.

Attachments

- Driscopipe Charts
- 2. PVC Table
- 3. Soil.Modulus of Elasticity Table

References


- 1. Driscopipe Manual, 1993
- 2. American Water Works Assoc. (AWWA), C900-89

Part III

5/19

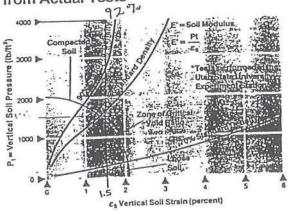
ATTACH MENT 1

Chart 25
Time Dependent Modulus of Elasticity for Polyethylene Pipe vs. Stress Intensity (73.4°F)

NOTE: The short term modulus of elasticity of Driscopips per ASTM D 638 is approximately 100,000 pst. Due to the cold flow (creep) characteristic of the pipe material, this modulus is dependent upon the stress intensity and the time duration of the applied stress.

Revision: 0

TYPICAL PHYSICAL PROPERTIES* — DRISCOPIPE 8600 PIPE MATERIAL


PROPERTY	TEST METHOD	UNIT	VALUE
Density	ASTM D 1505	gms/cc	0.957
Melt Flow	ASTM D 1238 (cond. F)	gms/10 min.	1.5
Environmental Stress Cracking Resistance	ASTM D 1693 (cond. C)	hrs.	>1500**
Tensile Strength, Yield	ASTM D 638 (2"/min.)	psi	3500
Elongation at Break	ASTM D 638 (2"/min.)	%	>600
Impact Strength, 25" thickness .125" thickness	ASTM D 256	ft.lbs/in.notch	7 12
Vicat Softening Temperature	ASTM D 1525	°F	257
Brittleness Temperature	ASTM D 746	°F	<-180
Flexural Modulus	ASTM D 3350	psi . ·	125.000
Modulus of Elasticity	ASTM D 638	psi	110,000
Hardness	ASTM D 2240	Shore D	65
Coefficient of Linear Thermal Expansion; Molded Specimen Extruded Pipe	ASTM D 696	in./in./°F in./in./°F	.778 x 10 ⁻¹ 1.2 x 10 ⁻¹
Thermal Conductivity	Dynatech-Colora Thermoconductor	BTU, in/ft²/hrs/°F	2.7
Long Term Strength 73°F 120°F 140°F	ASTM D 2837	psi psi psi	1600 1000 800
Material Cell Classification	ASTM D 3350		355434C
Material Designation	PPI Recommendation	*	PE3408

Driscopipe 8600 is listed by the National Sanitation Foundation.

*This list of typical physical properties is intended for basic characterization of the material and does not represent specific determinations or specifications. The physical properties values reported herein were determined on compression molded specimens prepared in accordance with Procedure C of ASTM D 1928 and may differ from specimens taken from pipe.

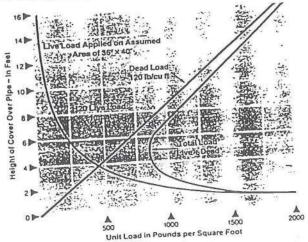

**Tests discontinued because of no failures and no indication of stress crack initiation.

Chart 26 Plot of Vertical Stress-Strain Data for Typical Trench Backfill (Except Clay) from Actual Tests*

Chart 27	Allowable
SDR	Ring Deflection
32.5	8.1%
26.0	6.5%
21.0	5.2%
	4.7%
19.0	4.2%
-17.0	3.9%
15.5	3.4%
13.5	2.7%
11.0	2.1 70

Chart 30 H20 Highway Loading

Note: The H20 live load assumes two 16,000 lb. concentrated loads applied to two 18" × 20" areas, one located over the point in question, and the other located at a distance of 72" away. In this manner, a truckload of 20 simulated.

Source: American Iron and Steel Institute, Washington, D.C.

	3	* .* *		The proper	+,3*es*.
		* 7.50		-000	
Δ	TA	CHME	101	24	

				i	1		0	6 5 6	78	78	29 99	10	1	
		77	13c	15 B	Sch 80		0.02					1.10		
	SNO	Internal	Transverse Area (sq. ft.)	(cu. ft./ft.)	Sch 40		0.023	0.033	0.087	0.198	0.543	0.932		
	MENSIC		Er Br	rea 1.)	Sch		1 48.	3.02	4.41	8.40	18.92	31.22	-	
	ULE DI		Minimum	Wall Area (sq. in.)	Sch	2	t	1.70	3.17	5.58	11.91	15.74	24.30	
	SCHED		· E -		Sch	. 08		1.86 2.26 2.78	3.23	4.62	7.34	10.96	13.78	
.•	M.ST	,	Minimum	Dlameter	Sch	40		2.37	3.41	4.86	7.70	11.53	14.49	
	SPECIP			Ratio	Sch	80		10.9	12.8	14.8	172	18.6	19.0	
	ASING '			Dlameter Ratio	Sch Sch	40		15.4	16.2	19.0,	23.7	31.4	32.0	
	ABLE 3.			,	(B)	80		0.218	0.300	0.337	0.432	0.593	0.750	
	TONA			Minimum Wall	(Inches)	Sch 40		0.154	0.216	0.237	0.280	0.365	0.437	1:
		SISTICS OF A			fe Dlameter Inches)	Average		2.375	3.500	4.500	5,563 6,625	10.750	14.000	16,000
		HARACTE			Outside Diameter (inches)	lanlmon		61	21/2	31/2	n 0	10 8	12	16
	TABLE 3.4 TABLE 3.4 SPECIALS" IN SCHEDULE DIMENSIONS	CECMETRIC C				Reference	Standards	ASTM D1527 for ABS + ASTM					: (2	None:
										0.0	1. *			

The ratio of average outside pipe diameter to minimum wall thickness in a given SDR series is a set and constant value regardless of actual pipe diameter.

9/19

Part III

American Water Works Association ANSI/AWWA C900-89 (Revision of ANSI/AWWA C900-81)

AWWA STANDARD

FOR

POLYVINYL CHLORIDE (PVC) PRESSURE PIPE, 4 IN. THROUGH 12 IN., FOR WATER DISTRIBUTION

Effective date: July 1, 1989.

First edition approved by AWWA Board of Directors June 8, 1975.

This edition approved Jan. 29, 1989.

Approved by American National Standards Institute, Inc., May 4, 1989.

AMERICAN WATER WORKS ASSOCIATION

6666 West Quincy Avenue, Denver, Colorado 80235

PVC WATER DISTRIBUTION PIPE

Where:

pressure rise, in pounds per square inch

wave velocity, in feet per second α

velocity change, in feet per second, occurring within the critical

time 2L/a, where L is the length of the pipeline, in feet

gravitational acceleration = 32.2 ft/s2. g

A.3.3.3 Cyclic surge pressure. The cyclic application of surge pressure in water mains can result in product failure if it is not accommodated in product or system design. The design stress given in C900-89 is derived using a safety factor of 2.5 plus a surge-pressure allowance and accommodates the cyclic surge conditions customarily anticipated for municipal water distribution systems.

Sec. A.3.4 Hydrostatic Design Basis (HDB)

The HDB of PVC pipe (class 12454-A and class 12454-B materials) for water service at 73.4°F (23°C) is 4000 psi. The HDB will be less than 4000 psi for pipe used at temperatures greater than 73.4°F (23°C) (Sec. A.3.5). The HDB will be greater than 4000 psi for pipe used at temperatures less than 73.4°F (23°C); however, the 4000 psi should be used as a maximum in normal design. HDB is defined in accordance with ASTM D2837.

Sec. A.3.5 Design Stress

The allowable design stress HDB/F (where F is a safety factor) for use of PVC pressure pipe at 73.4°F (23°C) and lower temperatures is 1600 psi (11.03 MPa). For pipe used at higher operating temperatures, the allowable design stress shall be determined by use of an HDB rating recommended by the Plastics Pipe Institute Hydrostatic Design Stress Committee for the operating temperature or by applying the appropriate temperature coefficient from Table A.1 to the design stress allowed for pipe service at 73.4°F (23°C) (Sec. A.7.4). The temperature coefficients are derating factors that may be applied also to pressure-class ratings for pipe used at temperatures greater than 73.4°F (23°C).

Sec. A.3.6 Factor of Safety

The safety factor F of 2.5 specified for use in the pressure-class and total-pres-

Table A.1 Temperature Coefficients

Maximum Service Temperature °F (°C)		Allowable Design Stress or Pressure-Class Rating at 73.4°F (23°C) %
		88
80	(27)	75
90	(32)	
100	(38)	62
110	(43)	50
120	(49)	40
130	(54)	30
140	(60)	22

11/19

14 AWWA C900-89

sure equations (Eq A.1, Eq A.2, Eq A.3, and Eq A.4) is only a portion of that provided for working pressure and for total system pressure.

There are two pressure conditions, and a different factor of safety applies to each. The conditions are (1) sustained working pressure, which is a long-term pressure condition and relates to the long-term hydrostatic strength HDB of the pipe, and (2) total system pressure, which is a short-term, peak-pressure condition and relates to the short-term hydrostatic strength of the pipe. The long- and short-term hydrostatic strengths of PVC pressure pipe at 73.4°F (23°C) are 4000 and 6400 psi (27.58 and 44.13 MPa), respectively. The latter is the minimum hoop-stress specified in Table 3 of AWWA C900-89 for the quick-burst strength of the pipe.

The factor of safety provided for sustained working pressure in the pressureclass ratings (Table 1, AWWA C900-89) is 3.0 or greater, depending on the dimension ratio of the pipe. The factor of safety for working pressure is a function of the surge-pressure allowance as well as the allowable design stress HDB/2.5.

A safety factor of 4.0 is provided for total system pressure. It is the ratio of 6400 psi (44.13 MPa) (minimum short-term strength) to 1600 psi (11.03 MPa) (allowable design stress, HDB/2.5).

Sec. A.3.7 Pressure-Class Selection-Example

A municipal system with buried water main temperatures below 70°F operates with a maximum sustained working pressure of 85 psi. System designers determine the maximum surge pressure input to be the result of an instantaneous velocity change (ΔV) of 2 ft/s. What pressure class or corresponding dimension ratio is required?

First, solve the pressure surge term using Eq A.5.

$$a = \frac{4700}{(1 + KD_i/Et)^{1/2}}$$

Assume nominal 8-in. pipe and anticipate a DR 18 wall thickness.

$$a = \frac{4700}{[1 + (300,000) (8.044) / (400,000) (.503)]^{1/2}}$$

= 1304

Calculate pressure rise using Eq A.6

$$P_s = \frac{aV}{2.31g}$$

$$= \frac{(1304) (2)}{(2.31) (32.2)}$$

$$= 35 \text{ psi}$$

Total pressure is sustained pressure plus surge pressure

$$P_t = 85 + 35$$

= 120 psi

12/19

PVC WATER DISTRIBUTION PIPE 15

and

$$P_t = \frac{2}{DR - 1} \times \frac{HDB}{F}$$

Solving for DR

$$DR = \left(\frac{2}{P_t} \times \frac{HDB}{F}\right) + 1$$

$$= \left(\frac{2}{120} \times \frac{4000}{2.5}\right) + 1$$

$$= 27.7$$

Select available dimension ratio that is equal to or lower than

Recalculating Ps with actual t gives

$$\alpha = 1100$$

$$P_s = 30 \text{ psi}$$

then

$$P_t = 115$$

$$DR = 28.8$$

Proper design requires selection of DR 25, PC 100 C900-89 pipe.

SECTION A.4: EXTERNAL LOADS

Sec. A.4.1 Dead Loads

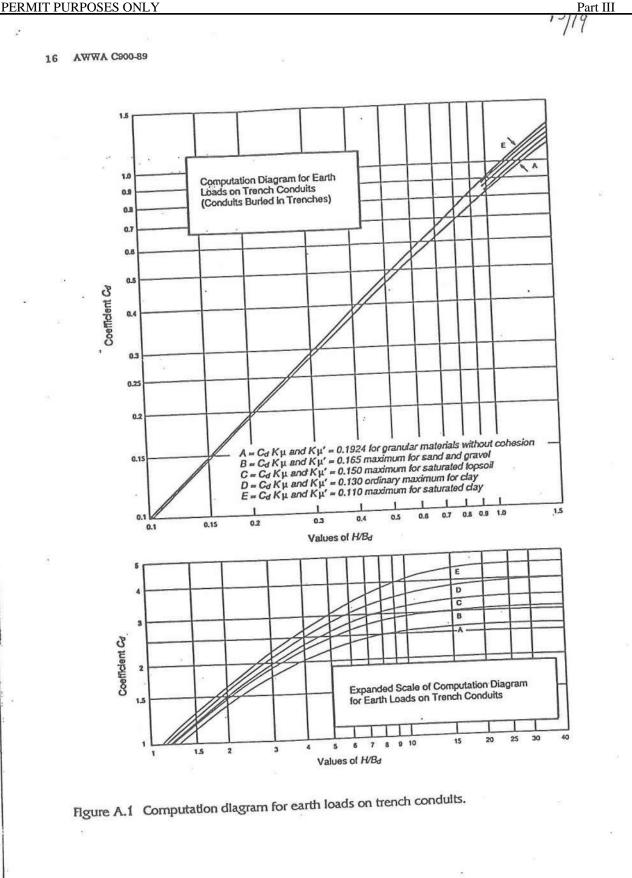
The earth load shall be determined using the modified Marston formula for loads imparted to a flexible pipe, as follows:

$$W_c = C_d w B_d B_c$$

(Eq A.7)

Where:

Wc = earth load, in pounds per linear foot


 C_d = a coefficient based on type of backfill soil and on the ratio of H

(depth of fill to top of pipe, in feet) to Bd (Figure A.1)

w = unit weight of soil, in pounds per cubic feet

 B_d = ditch width at top of pipe, in feet B_c = outside diameter of pipe, in feet

Revision: 0

(Eq A.8)

PVC WATER DISTRIBUTION PIPE 17

Table A.2 Highway Live Loads*

	NAME OF TAXABLE PARTY.				
3.5 5	Depth of 6	Cover—ft 12	16	20	24
	W_{l} — U_{b}	/lin ft			
162 81 324 189 486 297 621 378	54 94 148 189 243	40 68 94 108 122	27 40 54 68 81	18 26 36 45 53	20 28 35 41
	156 459	156 459 243	756 459 243 122	756 459 243 122 81	040 199 81 . 03

^oExtracted from Table 1-8, ANSI/AWWA C101/A21.1-67 (R77), American National Standard for Thickness Design of Cast-Iron Pipe.

Sec. A.4.2 Live Loads

The live load W: shall be determined using the modified AASHO H-20 loading as described in ANSI/AWWA C101/A21.1, and listed in Table A.2. Table A.2 is based on two passing trucks with adjacent wheels 3 ft (0.9 m) apart, having a 9000-lb wheel load on unpaved road or flexible pavement, and having a 50 percent impact factor.

Sec. A.4.3 Total Load

The total load W on buried flexible pipe is as follows:

Where:

We = earth load and superimposed dead load

Wi = superimposed live load

SECTION A.5: DEFLECTION

Sec. A.5.1 General

The stresses that result from internal pressure and external load are not additive in the design of a flexible conduit such as PVC pipe. Although a maximum deflection of 5 percent is specified in Sec. A.1.1.3 for a design limit, PVC pressure pipe can be deflected up to 7 ½ percent without reducing its ability to resist internal pressure. Failure modes are discussed in Sec. A.7.

Sec. A.5.2 Design Theory—Earth Loads

Currently, the best-documented and best-known design theory for the deflection of a cylindrical horizontal tube under earth load is Spangler's modified formula 3,4 for the deflection of a buried unpressurized tube. The formula for PVC pipe is as follows:

$$y_v = \frac{D_L KW_c}{2E / [3 (DR - 1)^3] + 0.061 E'}$$
 (Eq A.9)

AWWA C900-89 18

Where:

vertical deflection of pipe, in inches yo deflection lag factor (approximately 1.5) DL

bedding constant (see Table A.3, Sec. A.5.4) K

earth load on pipe = Wc/12, in pounds per linear inch We

dimension ratio DR

modulus of elasticity of pipe material (for PVC class 12454-A or E

class 12454-B materials, E = 400,000 psi)

modulus of soil reaction (Table A.4). E

Sec. A.5.3 Earth Load Plus Live Load

For inclusion of live loads, Spangler's formula must be further modified because the deflection lag factor is not applicable to live loads. The formula is as follows:

$$y_v = \frac{D_L K W_c + K W_d}{2E / [3 (DR - 1)^8] + 0.061 E'}$$
 (Eq A.10)

Where:

 W_d = live load on pipe = $W_l/12$, in pounds per linear inch Other factors are the same as in Eq A.9.

Sec. A.5.4 Deflection Formula Factors DL, K, and E'

The values for DL, K, and E' corresponding to different pipe embedment conditions for use in Eq A.9 and Eq A.10 are listed in Tables A.3 and A.4.

SECTION A.6: INSTALLATION

Sec. A.6.1 Pipe Embedment

The embedment of pipe shall conform with the recommended practices given in ASTM D2774, Recommended Practice for Underground Installation of Thermoplastic Pressure Piping and PVC Pipe. Flexible pipe, unlike a rigid pipe, tends to bed itself. For flexible pipe, the most important parameters are stability of the bedding and density of the sidefills. Installation precautions are also given in ASTM 2774

Table A.3 Values for Deflection-Formula Factors

	Comparable Bedding		10"	
Class®	Laying Condition*	Field Condition	Bedding Angle	Α.
J18.88*		A . D	0°	0.110
D	Types 1 & 2	A & B	60°±	0.1025
	Type 3		90°	0.096
25123	_	E&F	96°	0.095
_		-		0.083
C	Турев 4 & 5	S	180°	100.000.000

*As described in Design and Construction of Sanitary and Storm Sewers, ASCE Manual No. 37 (WPCF Manual of Practice No. 9), WPCF, ASCE, Washington, D.C. (1967).5

Attachment 3

PVC WATER DISTRIBUTION PIPE 19

Table A.4 Typical Values of Modulus of Soll Reaction E' for Average Initial Flexible Pine Deflection

pe Deflection*	' for Degree of	Compaction o	of Pipe Zone E	Backfill
Soil type—pipe zone material (Unified Classification System†)	Loose (2)	Slight, <85% Proctor, <40% relative density (3)	Moderate, 85–85% Proctor, 40–70% relative density · (4)	High, >95% Proctor, >70% relative density (5)
(1) Fine-grained soils (LL>50)‡ Soils with medium to high plasticity; CH, MH, CH–MH	No da soils e	ta available: c engineer; othe	consult a comprwise use E'	petent = 0
Fine-grained soils (LL<50) Soils with medium to no plasticity; CL, ML, ML-CL, with less than 25% coarse-grained particles	Б0	200	400	1000
Fine-grained soils (LL<50) Soils with medium to no plasticity; CL, ML, ML-CL, with more than 25% coarse-grained particles	100	400	1000	2000
Coarse-grained soils with fines; GM, GC, SM, SC;§ contains more than 12% fines	100	400	1000	2000
a legith little or no fines; GW,	200	1000	2000	3000
GP, SW, SP;§ contains less than 22.	1000	3000	3000	300
Crushed rock Accuracy in terms of percentage deflection**	±2	±2	±1 .	±0.

Norz. Values applicable only for fills less than 50 ft (15 m). Table does not include any safety factor. For use in predicting initial deflections only, appropriate Deflection Lag Factor must be applied for long-term deflections. If bedding falls on the borderline between two compaction categories, select lower E value or average the two values. Percentage Proctor based on laboratory maximum dry density from test standards using about 12,500 ft-lb/ft (598,000 J/m²) (ASTM D698, AASHTO T-99, USBR Designation E-11). 1 psi = 6.9 kN/m².

Reprinted with permission of ASCE from Journal Geotechnical Engineering, January 1977, p. 34, with modifications.

The pipe-zone embedment conditions included in this table are not intended as installation recommendations and are provided for information only. For installation recommendations, see Sec. A.6.

[†]ASTM Designation D2487. USBR Designation E-3.

[§]Or any borderline soil beginning with one of these symbols (for example, GM-GC, GC-SC).

yor any noncernine son negiming with one of these sympols (for example, this—to, to—to).

*For±1% accuracy and predicted deflection of 3%, actual deflection would be between 2% and 4%.

20 AWWA C900-89

and PVC Pipe. Embedment and backfill procedures should be in accordance with the applicable manufacturer's instructions.

SECTION A.7: FAILURE MODES

Sec. A.7.1 General

Flexible conduits can fail by buckling or can collapse because of an excessive external load, a negative or vacuum pressure, excessive bending stresses in the walls, excessive deflection, or a combination of these forces. Plastic conduits can also fail by reduction of ring stiffness (strength) caused by excessive temperature of the fluid that is being transported or of the environment in which they are installed.

Sec. A.7.2 Buckling

Experiments performed at Utah State University indicate that plastic pipe does not fail by buckling in the same manner as steel pipe. Steel pipe dimples inward, the dimple reverses curvature, and then it folds in on the lower portion. Steel conforms to Timoshenko's formula in a free environment, but the formula must be modified if the pipe is confined in an earth envelope. However, plastic pipe tends to deform (flatten) during vertical deflection and then folds inward on the lower portion. Therefore, if deflection is controlled, buckling will not occur under normal embedment conditions.

Sec. A.7.3 Negative or Vacuum Pressure

According to the experiments conducted at Utah State University, negative (vacuum) pressure cannot collapse an underground plastic pipe that is properly encased in a soil envelope and exposed to normal service temperatures. However, if the temperature of a plastic pipe becomes excessive because of the temperature of the fluid it is conveying, then the application of a negative pressure can cause the pipe to collapse.

Sec. A.7.4 Excessive Temperature

If PVC pipe is used to convey fluids of excessive temperature or if it is installed in an environment where excessive temperatures can influence the conduit, then the allowable design stress or the AWWA pressure-class ratings should be appropriately reduced in accordance with Table A.1.

Sec. A.7.5 Bending Stresses in Walls

Plastic pipe embedded in soil reacts similarly to steel pipe in that it tends t bed itself and thereby readjusts wall stresses. The pipe will not fail from excessive wall stresses (caused by deformation under external load) if deflection is controlled by proper installation.

H-153

EXTERNAL LOAD

$$\Delta x = D_I \left(\frac{K W r^3}{EI + 0.061 E' r^3} \right)$$
 (6-5)

Where:

 Δx = horizontal deflection of pipe (in.)

 D_I = deflection lag factor (1.0-1.5)

K = bedding constant (0.1)

W = load per unit of pipe length (lb/lin in. of pipe)

r = radius (in.)

EI = pipe wall stiffness (in.-lb)

where E = modulus of elasticity (30 000 000 psi for steel and 4 000 000 psi for

cement mortar) I = transverse moment of inertia per unit length of pipe wall*

 $E' = \text{modulus of soil reaction (lb/in.}^2)$ (Tables 6-1 and 6-2).

Table 6-1 Average Values* of Modulus of Soil Reaction (E') (For initial flexible pipe deflection)

able o-1 Arreidge re			:(!(D.)
	E' for Degree of	f Compaction of Bed	lding, ps (MPa)
Soil Type/Primary Pipe Zone Backfill Material (Unified Classification System)†	Slight <85% Proctor <40% rel. den.	Moderate 85-95% Proctor 40-70% rel. den.	High >95% Proctor >70% rel. den.
Fine-grained soils (LL>50)‡/Soils with medium to high plasticity CH, MH, CH-MH	Soils in this categ to determine rec compactive effor	ory require special e quired density, moist rt.	ture content,
Fine-grained soils (LL<50)/Soils with medium to no plasticity CL, ML, ML-CL, CL-CH, ML-MH, with less than 25% coarse-grained particles	200 (1.4)	400 (2.8)	(6.9)
Fine-grained soils (LL<50)/Soils with medium to no plasticity CL, ML, ML-CL, CL-CH, ML-MH, with more than 25% coarse-grained particles Coarse-grained soils with fines/GM, GC, SM, SCs containing more than 12% fines	400 (2.8)	(6.9)	(13.8)
Coarse-grained soils with little or no fines/GW, GP, SW, SP§ containing less than 12% fines	· 1000 (6.9)	2000 (13.8) 3000	3000 (20.7)
Crushed rock		(20.7)	
Accuracy in terms of difference between predicted and actual average percent deflection	±2%	±1%	±0.5%

^{*}As determined by the US Bureau of Reclamation.

(Method D698, AASHTO T-99).

^{*}Under load, the individual elements—i.e., mortar lining, steel shell, and mortar coating—work together as laminated rings ($E_sI_s + E_lI_l + E_cI_c$ - shell, lining, and coating). Structurally, the combined action of these elements increases the moment of inertia of the pipe section, above that of the shell alone, thus increasing its ability to resist loads. The pipe wall stiffness EI of these individual elements is additive.

[†]Refer to Table 6-2.

ILL = Liquid limit.

[§]Or any borderline soil beginning with one of these symbols (i.e., GM-GC, GC-SC).

^{2.} For use in predicting initial deflections only, appropriate Deflection Lag Factor must be applied for long-term deflections. 3. Percent Proctor based on laboratory maximum dry density from test standards using about 12 500 ft-lbf/ft3 (598 000 J/m²)

STEEL PIPE 60

Allowable deflection for various lining and coating systems that are often accepted are:

Mortar-lined and coated = 2 percent of pipe diameter Mortar-lined and flexible coated = 3 percent of pipe diameter Flexible lining and coated = 5 percent of pipe diameter

Live-load effect, added to dead load when applicable, is generally based on AASHTO HS-20 truck loads or Cooper E-80 railroad loads as indicated in Table 6-3. These values are given in pounds per square foot and include 50-percent impact factor. It is noted that there is no live-load effect for HS-20 loads when the earth cover exceeds 8 ft or for E-80 loads

when the earth cover exceeds 30 ft. Modulus of soil reaction E' is a measure of stiffness of the embedment material, which surrounds the pipe. This modulus is required for the calculation of deflection and critical buckling stress. E' is actually a hybrid modulus that has been introduced to eliminate the spring constant used in the original Iowa formula. It is the product of the modulus of passive resistance of the soil used in Spangler's early derivation and the radius of the pipe. It is not a pure material property.

Table 6-2 Unified Soil Classification

AND DESCRIPTION OF THE PARTY OF	. Description
Symbol	issue or no fines
GW	Well-graded gravels, gravel-sand mixtures, little or no fines Poorly graded gravels, gravel-sand mixtures, little or no fines
	Poorly graded gravels, gravel-sand initial sile mixtures
GP	Poorly graded gravel-sand-silt mixtures Silty gravels, poorly graded gravel-sand-clay mixtures
GM	Silty gravels, poorly graded gravel-sand-clay mixtures Clayey gravels, poorly graded gravel-sand-clay mixtures
GC	Clayey gravers, poors, g.
sw	Well-graded sands, gravelly sands, little or no fines Poorly graded sands, gravelly sands, little or no fines
SP	Poorly graded saids, glad cond-silt mixtures
SM	Poorly graded sands, gravery successful mixtures Silty sands, poorly graded sand-silt mixtures Clayey sands, poorly graded sand-clay mixtures
SC	Clavey sands, poorly graded said
30	c and cites or clavey fine sands
ML	Inorganic silts and very fine sand, silty or clayey fine sands Inorganic clays of low to medium plasticity Inorganic silts, micaccous or diatomaccous fine sandy or silty soils, elastic silts Inorganic silts, micaccous fine sandy or silty soils, elastic silts
CL	inorganic clays or diatomaccous fine sandy of sinty sons,
MH	Inorganic suits, include alteriory, fat clays
CH	Inorganic clays of high plantation,
CII	t sit-clays of low plasticity
OL	Organic silts and organic silt unit of high plasticity Organic clays of medium to high plasticity
OH	Organic clays of medium to high plastery
Pt	Peat and other highly organic soils

Source: Classification of Soils for Engineering Purposes. ASTM Standard D2487-69, ASTM, Philadelphia, Pa. (1969).

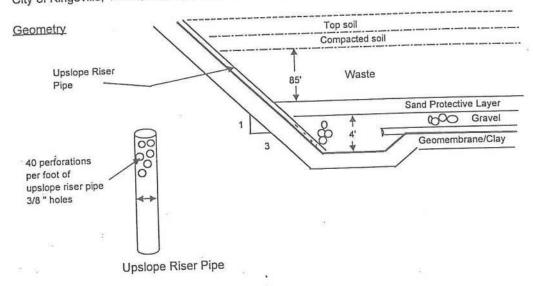
Table 6-3 Live-Load Effect

the state of the s	ewo tale	Railroad E-80 L	
Highway HS-20	Loading*	Height of Cover	Load
Height of Cover	Load	ft ft	psf
ft	psJ		3800
	1800	2	2400
1	800	2	1600
2	600	8	1100
3	400	10	800
4	250	12	600
5	200	15	300
6	176	20	100
, 7	100	30	
8	100		

^{*}Neglect live load when less than 100 psf; use dead load only.

APPENDIX H.3 (cont'd)

UPSLOPE RISER PIPE DESIGN AND STABILITY ANALYSIS



THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES ___ THROUGH _3_.

Upslope Pipe Design & Stability Analysis

Objective

Peform a structural stability analysis for the upslope riser pipe under maximum loads at the City of Kingsville, Texas, Municipal Solid Waste Landfill.

Assumptions:

- 1. Weight of geonet and geomembrane are negligible
- 2. SDR-17, 18-inch HDPE pipe will be used
- 3. Total unit weight of top soil $(\gamma_{ts}) = 110$ pcf
- 4. Total unit weight of protective soil $(\gamma_{PS}) = 110$ pcf
- 5. Total unit weight of compacted soil (γ_{cs}) = 115 pcf
- 6. Total unit weight of waste $(\gamma_w) = 27.5$ pcf
- 7. Total unit weight of gravel $(\gamma_w) = 100 \text{ pcf}$

		Protective	a Soil	Compacte	d Soil	Waste	Layer	Gravel	
Top	Soil		Depth (ft)		Depth (ft)	Ϋ́w	Depth (ft)	Ϋ́G	Depth (f
Yts	Depth (ft)	Yps	Deptil (it)		1.5	27.5	85	100	4
110	0.50	110	1	115	1.5	21.5	00	100	

(psi) (iii) 1 254.57 442 312	P _T	Pipe diam.	Hole diam	# of Perf	A _{18" pipe} (in ²)	A _{perf} (in ²)	P _{TC} (psf)
3075 18 0.375 40 254.57 4.42 0.5	(psi)		0.375	40	254.57	4.42	3129

Deflection Calculation

$$\Delta_X = \frac{D_L K W_c}{\frac{2E}{3(DR-1)^3} + 0.061E'}$$

Where:

 $\Delta_{\rm X}$ = allowable deflection (2/100 x (diam. A₁₈+ diam. hole)

D_L = deflection lag factor, 1.0 for Prism load method (Ref. 1)

K = bedding constant, 0.110 (Ref. 1, Class D, table A.3)

W = design vertical load, P_{Tc} (ft)/12

DR = dimension rate, O.D./thickness of wall, 18"/1.059" = 17

 $E_{HDPE} = 30 \times 10^6$

E' = modulus of soil resistance = 0

	Thislenge	Dı	К	W _{c (lb/in)}	E (psi)	DR	E'	Δ_{X}
O.D	Thickness		.,		2 5 - 07	170	0	0.01
18	1.059	1.0	0.11	260.8	3.E+07	17.0		

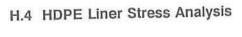
Allowable deflection = 2% x (diam of pipe + diam. Of hole)

Allowable deflection=

0.37 in

Hence actual deflection (0.01 in) < allowable deflection (0.37 in)

O.K.


Conclusion

The upslope riser pipe of the leachate collection system shall be SDR-17, 18-inch HDPE with a wall thickness (t) = 1.059 inches to support a 2 % deflection.

References

1. Steel Pipe Design and Installation. AAWA M11

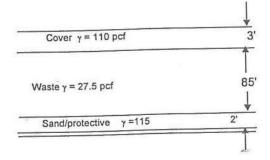
Revision: 0

H-159

APPENDIX H.4

HDPE LINER STRESS ANALYSIS

THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES THROUGH 8.


HDPE Liner Stress Analysis

Objective

Determine the suitability of a 60-mil HDPE with respect to puncture resistance

The factor of Safety for the 60-mil HDPE liner against puncture was determined

Configuration

Failure Mode

Puncture of liner due to penetration of soil particles. Analyze factor of safety for various particle sizes.

Analyses

$$R_p = Pd^2$$
 (Ref. 1)

where,

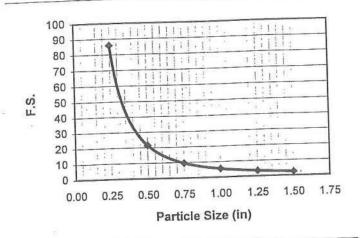
R_p = required puncture resistance (Ibs)

P = overburden pressure (psf)

d = particle size (ft)

Rp = 108 lb for 60 mil double sided textured HDPE liner (Ref. 2)

$$P_T = (\gamma_s t_s) + (\gamma_w t_w) + (\gamma_{pc} t_{pc})$$


Soil	Cover	Waste		Protective		Desky West 2000
	depth (ft)	γw (pcf)	depth (ft)	γpc (pcf)	depth (ft)	P _T (psf)
110	3	27.5	85	115	2	2898

$$R_{p} = 2897 \quad d^{2}$$

Calculate Rp for different particle sizes

$$F.S. = \frac{\text{allowable puncture resist.}}{\text{required puncture resist.}}$$

P	article	Size	R_p	
(in)		(ft)	(lb)	F.S
1	0.25	0.0208	1.26	85.88
	0.50	0.0417	5.03	21.47
	0.75	0.0625	11.32	9.54
	1.00	0.0833	20.12	5.37
	1.25	0.1042	31.44	3.44
	1.50	0.1250	45.27	2.39

Conclusion

For 8 oz/yd² geotextile fabric, the maximum average roll puncture strength is 130-155 lbs (Ref. 3) This value is greater than the 108 lbs for textured HDPE liner. The factor of safety against failure would therefore be slightly higher for the corresponding particle size. The above analysis is the limiting case.

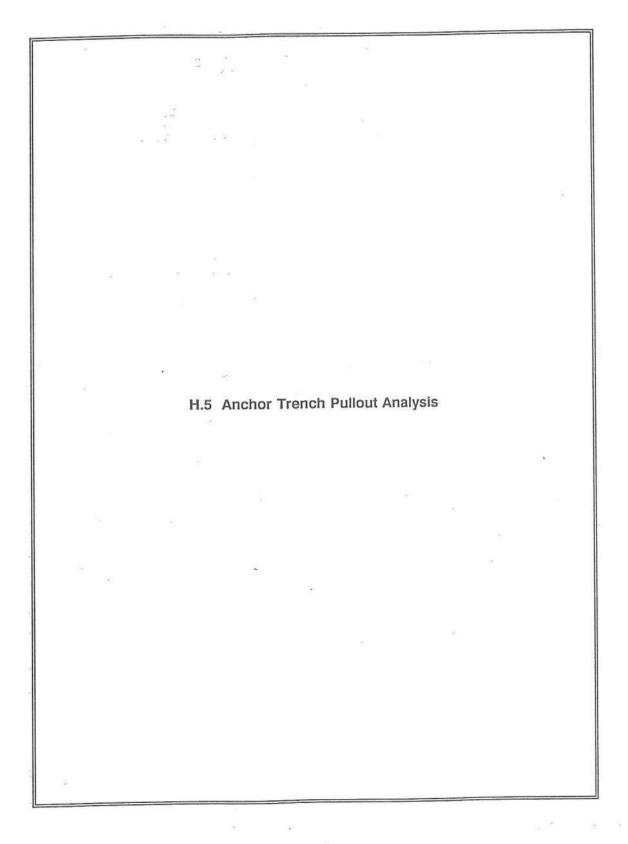
References

- 1. Koerner, Robert, M. "Designing with Geosynthetics" 1990
- 2. NSC Specification Guide
- 3. Synthetic Industries, Nonwoven Polypropylene Geotextiles, Specifications, and Samples.

3.0	•	34				ند									
DAWNINE. 6	SENTEXTILES - ENGLISH VAL	- ENGLI	SH VALUES	\$ 73	2	47	4					Z			
	TEST METHOD	UNITS	VALÜE	311	351	401	451	501	601	701	801		1201	LUGIL	The second second
All Ale											The Party	Action Control	1	-	
	A Service Service Commencer of the Party Service Servi	dentity of the state of the sta	TABLE A	100	105	115	135	155	170	205	230	275	340	425	
irah Tensile Strenoth	ASTM D-4632	sq	MABV	80	. 06	100	120	135	150	180	200	250	300	380	
			TYPICAL	22	56	56	56	56	26	09	09 .	09	09 5	60	
irab Elongalion	ASTM D-4632	%	MARV	45	20	20	20	20	20	20	20	200	000	290	
0			TYPICAL	65	70	80	90	105	120	135	133	007	180	240	NOTES
uncture Strength	ASTM D-4833	lbs	MARV	20	55.	65	02	82	95	110	130	200	680	950	
			TYPICAL	220	240	265	290	325	385	425	47.0	510	009	800	■ Values reported in various reported in
Wullen Burst	ASTM D-3786	psi	MARV	165	185	225	240	275	325	000	90	115	130	165	direction.
	0000	- di	TYPICAL	40	45	55	09	68	0 09	75	85		115	145	Solenitori "VOAA"
Trapezoidal Tear	ASIM U-4333	IUS	MARV	30	35	45	ne	10	THE REAL PROPERTY.			1	5		minimum averag
The fill of the state of the st				Ž.					A LANGE		10000000000000000000000000000000000000	Second Second	The state of the s	The same	roll value
10日でから日本日本日本	3-1	CANADA TANADA	TVPICAL	100	100	100	100	100	100	100	100	140	140	140	typical minus
Apparent Opening Size (AOS)	S) ASTM D-4751	US Sieve	MARV	70	70	70	7.0	70	70	02	80	001	200	100	two standard
	+		TYPICAL	2.50	. 2.50	2.50	1.90	1.80	1.70	1.80	1.90	1.00	1.00	0.70	deviations.
Permittivity	ASTM D-4491	.sec.	MARV	2.00	2.00	2.00	1.50	1.40	1.30	06.1	0.48	0.40	0.43	0.39	yields a 97.7%
H-			TYPICAL	0.28	0.31	0.34	0.29	0.29	0.32	0.40	0.40	0.30	0.29	0.27	
Permerbility	ASTM D-4491	cm/sec	. MARV	0.22	0.25	0.22	0.22	0.23	420	130	130	100	90	65	confidence mat
33			TYPICAL	130	130	160	140	130	130	130	130	20.	75	50	during mality
Water How Rale	ASTM D-4491	gpm/ft²	MARV	110	110	140		T.	110	110	のは、		の対象を	1 3 6 7	assurance testing
CKINDANCE SERVICE														D. Newson	vill exceed the value reported.
ればしたからなるとなるというないので	LICE CARREST CONTROL C	% Retained		70	7.0	70	70	70	70	70	70	70	20	70	
UV Resistance	ASTM D-4355	@ 500 hrs	MAHV	0/	2		1000000	100	7.75	1.00	· · · · · · · · · · · · · · · · · · ·	米里米	をなる	41	
STAIDARD PACKAGING				のでは、大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大	77.	を持ちませる。				071 214				1012 144 012	
Boll Width	Measured	feet .	TYPICAL	12.5/15.0	12.5/15.0	12.5/15.0	12.5/15.0	12.5/15.0	12.5/15.0	12.5/15.0	15.0	15.0	15.0	15.0	
4	Measured	199	TYPICAL	360	360	360	360	360	300	300	300	300	300	300	
ноп селдил		1	IACIONT	200/800	500/600	500/600	-	200/600 500/600	416.67	416.67	200	200	200	200	
Roll Area	Calculated	yūs	ITPICAL	2000000	200	-	-201000								
												3			
											1				
											Í	S	YNTHI	ETICI	SYNTHETIC INDUSTRIES
į												Chal 423) 899	tanooga, -0444 ▲	Tenness (423) 8	Chatlanooga, Tennessee USA (423) 899-0444 ▲ (423) 899-7619 (Fax) (

F	OR P	ERM	/IT	PU.	RP	209	SES	S O	NL	Y	-		4. 87	- ·											711111		.1011	diffe		prica	TOIL IVE	Pa	ırt I	I I	No.
								NOTES		A Values reported life	direction.	- MARV indicates	minimum average	roll value	typical minus	tyro standard	deviations.	Statistically. II	degree of	confidence that	any sample taken	during quanty	vill exceed the	value reported.								INDUSTRIES	art II	Challanooga, Tennessee USA (423) 899-7619 (Fax)	
;	700	LNar		1890	1690	65	20	1290	1005	5510	730	645		or and the same	0.106	0.150	1.00	0.70	0.39	0.27	2645	2035		400000	20			4.5/	91.5	418.05		IETIC	1	, Tennes (423)	
		1201	is sellings	1510	1335	90	20	975	800	4980	575	510		- Kosaki	0.106	0.150	1.50	1.00	0.43	0.29	3665	3022		TANKS AND	70		A STANCE LIVE	4.57	91.5	418.05		TIVA		Hanooga 1-0444	
		1001	The state of the s	1220	1110	90	20	820	710	4060	510	445	A CONTRACTOR		0.106	0.150	1.60	1.20	0.40	0.30	4070	3460		K TABUETA	70			4.57	91.5	418.05	9			Cha 4221 RGC	450) 034
		891		1020	890	09	50	685	575	3270	7057	375	S	i de d	0.150	0.180	1.90	1.50	0.48	0.38	5295	4480		Section Section	20		DAMES OF SERVICE	4.57	91.5	418.05		Y		*	
		701	ANTAL PERSON	910	. 008	09	50	009	485	2920	2410	330	Section 1		0.150	0.212	1.80	1.50	0.40	0.34	5295	4480		Conservation of	20			3.81/4.57	91.5	348.37/					
		601)) · I	755	999	56	20	530	420	2650	2240	310	Percent Sec.		0.150	0.212	1.70	1.30	0.32	0.24	5295	4480		Wather C	70		See Line	3.81/4.57	31.5	348.37/ 418.05					
		501		685	009	56	20	465	375	2240	1890	300	630		0.150	0.212	1.80	1.40	0.29	0.23	5295	4685		17	70		frage altern	3.81/4.57	109.8	418.05/					
		451		009	530	56	20	400	310	1990	1650	265	077		0.150	0.212	1.90	1.50	0.29	0.22	5700	4885	J. C.		. 02		A. L. A. L. S.	3.81/4.57	109.8	418.05/					
)	ı	401		510	445	2, 25	202	355	285	1820	1550	240	500		0.150	0.212	2.50	2 00	0.34	0.22	6515	5700	14	1 1 2 4 1	70			3.81/4.57	109.8	418.05/					
	•	351		465	200	20,4	200	310	240	1650	1270	200	155		0.450	0.130	2.50	2000	0.31	0.25	5295	4480		200	70	2	30,000	3.81/4.57	109.8	418.05/					
		311	; [-	445	443	223	33	285	220	1510	1130	175	130		A SEC	0.130	250	2000	0.08	0.20	5205	AARD	0014		70	44 5		3.81/4.57	109.8	418.05/					
	VALUES	VALUE		TVDICAL	TRICAL	MAHV	ITPICAL	TVDICAL	MARV	TYPICAL	MARV	TYPICAL	MARV		A STATE OF THE PARTY OF THE PAR	INFICAL	MAHV	ITPICAL	MAHV	I TPICAL	- MANY	TFICAL	MARIA		MARV			TYPICAL	TYPICAL	TYPICAL					
	- METRIC	UNITS		Action Sections			%		z	3	kPa	. 2	Ξ.		All the second	шш		. sec.		cm/sec		Vmin/m²			% Retained	@ 500 hrs		meter	meter	m ²					
8/	OTEXTILES - METRIC VALUES	TEST METHOD		Land in the State of the State of State	ASTM D-4632		ASTM D-4632		ASTM D-4833		ASTM D-3786	Contract Contract	AS I M D-4333		Straight of the condition	ASTM D-4751		ASTM D-4491	1	ASTM D-4491		ASTM D-4491			ACTA D. A255	ASTM D-1555		Measured	Measured	Calculated					
	NWOVELOT	PROPERTY TE		and the stee	dionale Changit	irab lensile ouengui	notenation	alab Elonganon	Juncture Strength		Mullen Burst		Trapezoidal Tear		it dijit tulati	Apparant Opening Size (AOS)	Apparein Opening Otto (1907)	DozumiHindhy	Permining	Dormoonilly	64	Water Flow Bate	Water flow flate		Marchaellines Contrate to the Contrate the Contrate the Contrate to the Contra	UV Resistance		Roll Width	Hans I II of	DOII Área	3000				

		370ST		340	300	18	Allenda	160 NUTES	110	775 Valles	boo	150	100 A.WAHO. Indicates	minimum averag	70-100 calculated as IMB	70 typical minus	0.06 Heudalions	0.05 Statistically, It	9 Vields d 97.7% to	n eallean	Confidence make	And adding and a second a second and a second a second and a second and a second and a second and a second an	SO WILL EXCEED THE CALLED THE CAL			12.5/15/17.5	360/300/258	500/500/501.67			SYNTHETIC INDUSTRIE	Handog, Tennessee USA
		300ST		350	300	20	.15,	140	120	650	009	145	120		50-701	5 00		90.0	00.0	0	C		06		2	12.5/15/17.5	360/300/258	500/500/501.67	_	······································		Charles Charles
		ZUUST		240	200	25	15	120	100	200	450	95	75		. 02 03	01-00	40	0.13	0.07	1/	9		06			12.5/15/17.5	432/360/309	600/600/600.83				
		13551	•	155	135	20	15.	80	70	300	265	. 92	45			. 40-50	40	80.0	90.0	9	4		90 @ 150 hrs.			12.5	. 432	009	1			
	LUES	VALUE		TVDICAL	MARV	TYPICAL	MARV	TYPICAL	MARV	TYPICAL	MARV	TYPICAL	MARV	3		TYPICAL	MARV	TYPICAL	MARV	TYPICAL	MARV		MARV			TYPICAL	TYPICAL	TYPICAL				
	GLISH VA	UNITS			lbs		%		lbs		isd		sql.			IIS Sieve		. 1.200	2	mm//92	gpm/it-		% Retained			feet	feet	yd²				
	TILES - EN	test method onits Un			ASTM D-4632		ASTM D-4632		ASTM D-4833		ASTM D-3786		ASTM D-4533			ASTM D-4751	ST- DIMINIST	ASTM D-4401	ISPE O MILON	FORE G PATOR	ASIM D-4491		ASTM D-4355			Measured	Measured	Calculated				
3	TOVEN GE EXTILES - ENGLISH VALUES	PHUPEHTY +			Grab Tensile Strength		Grab Elongation		Puncture Strength		Mullen Burst		Trapezoidal Tear		HIDRAULIC	1908) originated frames	Apparent Opening Size (AUS)	December 1	Fermiuvity	-1 -1	Chora How Rate	ENDURANCE	UV Resistance	STANDADO DACKAGING	Supplied i dilibration	Roll Width	Roll Length	Boll Area				


		Sub-control of the sub-control o			2			AIT
ECHANICAL				Local	1065	1555	1510	el.
	CONT. C. STATE	2	TYPICAL	685	800	1335	1335	RI
ab Tensile Strength	AS I M D-4032	2	MARV	000	25	20	18	
	CCOL CLEATOR	76	TYPICAL	07	5 2	15	15	SE.
ab Elongation	ASIM D-4032	B/	MARV	. 61	530	620	710	THE STATE OF THE S
	ACT18 D 4022	2	TYPICAL	355	445	530	485	
uncture Strength	ASTM D-4033		MARV	310	3440	4480	5340	Y Salles
		503	TYPICAL	ZOPO	3400	4130	4480	Pepolled III Wear
Iullen Burst	ASTM D-3786	Kra -	MARV	1820	3100	645	665	principle direction
			TYPICAL	285	420	530	445	WINDER THE PROPERTY.
rapezoidal Tear	ASTM D-4533		MARV	2.00	330	000		
				20	2			foll value
IYDRAULIC					0,000,000,0	0.300-0.212	0.212-0.150	Ediculated as the
The state of the s		SWORD STATE	TYPICAL	0.425-0.300	0.300-0.212	0.425	0.212	Manual Control of the
Apparent Opening Size (AOS)	ASTM D-4751	EE	MARV	0.425	0.425	0.08	0.00	Hevlallors.
			TYPICAL	0.08	0.06	90.0	0.05	Stalls lie all
Permittivity	ASTM D-4491	.oes	MARV	90:0	90.00	0.00	80	C. Vields a 97.7-4
			TYPICAL	240	240	240	40	
Officer How Rate	ASTM D-4491	Vmin/m²	MARV	160	160	200	P	
ENDURANCE								
UV Resistance	ASTM D-4355	% Retained @ 500 hrs	MARV	90 @ 150 hrs	06	06	06	Saludi fuller
STANDARD PACKAGING								
tirun a-u	Measured	meter	TYPICAL	3.81	3.81/4.57/5.33	3.81/4.57/5.33	3.81/4.5//5.33	
Holl Widill			INDIGATE	131 70	131.70/109.75/94.20	109.75/91.46/78.66	109.75/91.46/78.66	
Roll Length	Measured	meter	IYPICAL			A Contract Contract	A18 05/419 05/419.44	
Doll Brea	Calculated	E III	TYPICAL	501.66∼	501.66/501.66/502.36	418.05/418.05/419.44		
noll Alea								
						<		
							EVALETIC	INFILISTER
							STATELL	art
							Chattagada, 1848	184 IISA
						(423	1880 0444 × (423)	
	The state of the s	では、10mmでは、10m	OF THE PARTY OF TH	COLUMN STREET, CANADAS THAT STATES AND				

MARIE VALUES	***	FOR INFO	INFO.	ATION	ATION ONLY	TON	FOR	PROM TON
	REFERENC	SE TABLE FOR STAND	OR MASS P	E TABLE FOR MASS PER UNIT AREA AND T OF STANDARD NONWOVEN GEOTEXTILES	REFERENCE TABLE FOR MASS PER UNIT AREA AND THICKNESS OF STANDARD NONWOVEN GEOTEXTILES	IICKNESS		
	MASS	MASS PER UNIT AREA (WEIGHT) ASTM D5261	REA (WEI	GIIT)		THICKNESS ASTM D5199		
			Cm) CLUDIC (Cm)	C (S/m3)	ENGLISH (mils)	H (mils)	METRIC (mm)) (mm)
	ENGLISH (oz/yd')	I (ozyd*) MARV	dAL	MARV	TYP	MARV	TYP	MARV
Nonwoven Style	100	2.7	105	06	40	30	1.0	0.7
351	3.5	3.0	115	100	45	35	=	8.0
381*	3.9	3.5	130	115	40	30	1.0); ; ;
	4.1	3.6	135	120	55	45	1.3	; : :
401	4.6	4.0	155	135	55	45	1.3	
501	5.3	4.7	175	155	65	55	1.6	1.3
109	6.0	5.6	200	185	70	09	1.7	S. 5
701	7.2	6.5	245	300	65	75	2.1	E. 6
801	8.1	7.3	270	245	90	80	2.2	2.5
1001	10.0	9.25	335	310	110	8	7.7	27
1201	12	11.2	405	375	130	110	5.5	1 24
1601	16.5	15.1	555	510	160	140	4.0	5

Notes:

Indicates product data sheets also contain mass per unit area and thickness values.
 "Min" indicates typical value minus three (3) standard deviations.
 "MARV" indicates typical value minus two (2) standard deviations.
 "Typ" indicates average value.

© 1995 Synthetic Industries

H-168

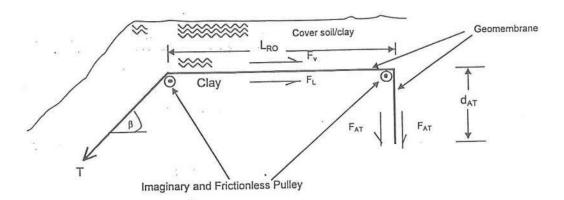
1/7

APPENDIX H.5

ANCHOR TRENCH PULLOUT ANALYSIS

THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES ____ THROUGH _______.

'H-169


Anchor Trench Pattern Analysis

Objective

Determine run-out lengths and their corresponding anchor trench depths.

Approach

The method suggested by Koerner (1990) was used to determine run-out lengths and anchor trench design depth. Static equilibrium was established by using an assumed system of imaginary pulleys as shown below. This system allowed the geomembrane to be considered in its continuous form.

Assumptions:

- 60 mil HDPE double textured liner with geomembrane/clay interface angle of 24°
- 2. Clay soil angle of internal friction $(\phi) = 0$
- 3. Factor of safety F.S. = 2

Calculation

$$T_{all} = \tau_{all} t$$

where:

$$\tau_{all} = \frac{\tau_{ult}}{F.S}$$

 $\begin{array}{l} t = 0.06 \text{ inches for a 60 mill HDPE} \\ \text{Strain} = 15 \% \qquad \text{(Ref 1, Table 5.5, pg. 438)} \\ \tau_{\text{ult}} = 2,300 \text{ psi (Fig. 5.3, pg. 439, using strain} = 15 \%) \end{array}$

$$T_{all} = F_u + F_L + 2F_{AT}$$
 (ref 1, pg. 500)

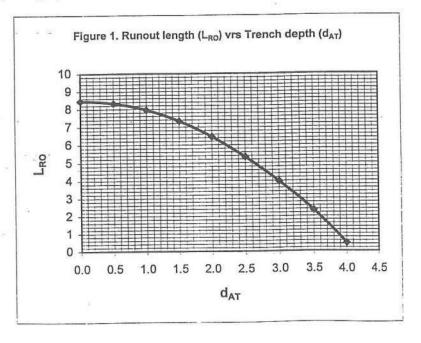
 $F_u = 0$ (friction above geomembrane = 0, i.e., cover moves along with geomembrane)

$$F_L = q \delta (L_{RO})$$

$$q = d_{cs} \gamma_{cs}$$

τ _{ult} (psi)	Thickness	T all (lb/in)	T all (lb/ft)	depth _{cs}	Ycs	δ	q (psf)	qδ
1150	0.06	69	828	.2	110	24	220	98.0

FL	ф	Havg	τ _{h(avg)} '	2F _{AT}
98.0 L _{RO}	0	$\frac{1}{2}d_{AT}$	55	49.0


$$F_L = 98 L_{RO}$$

$$2F_{AT} = 49 d_{AT}^{2}$$

$$T_{all} = 98L_{RO} + 49d_{AT} 2$$

$$828 = 98L_{RO} + 49d_{AT}^2$$

d _{AT}	L _{RO}
0.0	8.45
0.5	8.33
1.0	7.95
1.5	7.33
2.0	6.45
2.5	5.33
3.0	3.95
3.5	2.33
4.0	0.45

H-171

Conclusion

The design of the anchor trench and the corresponding run-out length shall follow the guidelines described in the table and /or graph (Figure 1) shown above. The geomembrane should not fail when the above guidelines are followed.

References

- Koerner, Robert, M. " Designing with Geosynthetics: 3rd Edition (Chapter 5, pg. 500-501)
 Prentice Hall, 1994
- Rust, E. "A database of geosynthetics/soils(and other interfaces) angles of friction (Attachment A)

Revision: 0

250

-002,001

300

48,000

330

(lb.fin.²) (MPa)

Modulus

(lb./in.³) (MPa) (%)

Corresponding strain

	ä	CSPE-R
	Fension Te. 5.5)	PVC
	Azi-Symmetric Tension Tests (Figure 5.5)	VLDPE
	Axl	HDPE
PE, 30-mil PVC, and 36-mil CSPE-H	Wide-Width Tension Tests (Figure 5.3)	HDPE VLDPE PVC CSPE-R
100 F. H. C.	Table 5.5 Tensile benavior properties of Index Tension Tests	THE NUMBER PLC CSPE-R HOPE VLOPE PVC CSPE-R HOPE VLOPE PVC CSPE-R

VLDPE PVC

HDPE

Units

Test Property Maximum stress

Note: + = did not fail; - = values felt to be high.

Ultimate stress (Ib.fin.²) (MPa) Corresponding strain (%)

H-173

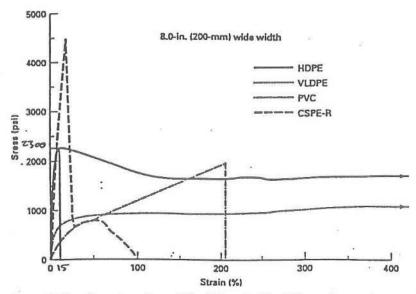


Figure 5.3 Tensile test results on 8.0-in. (200-mm) wide-width specimens of commonly used geomembranes using ASTM D4885 test method.

(200 mm) width. While the general shape of each material is the same, the results of the various points of interest are quite different. These results are tabulated in column 2 of Table 5.5. It is felt that the 8.0-in. (200-mm) wide-width type of test specimen results in much more design-oriented value than do test results from dumbbell or narrow-width specimens. This is particularly the case when plane-strain conditions are assumed in the design process (e.g., in side slope stability calculations).

5.1.3.3 Tensile Behavior (Axi-Symmetric) There are situations that call for a geomembrane's tensile behavior when mobilized by out-of-plane stresses. Localized deformation beneath a geomembrane is such a case. This type of behavior could well be anticipated for a geomembrane used in a landfill cover placed over subsiding solid waste material. The situation can be modeled by placing the geomembrane in an empty container, as shown in Figure 5.4. An appropriate seal is made with the cover section, and water is introduced above the geomembrane. Pressure is mobilized until failure of the test specimen occurs. Beginning with Steffen [5], a number of variations of this test can be made.

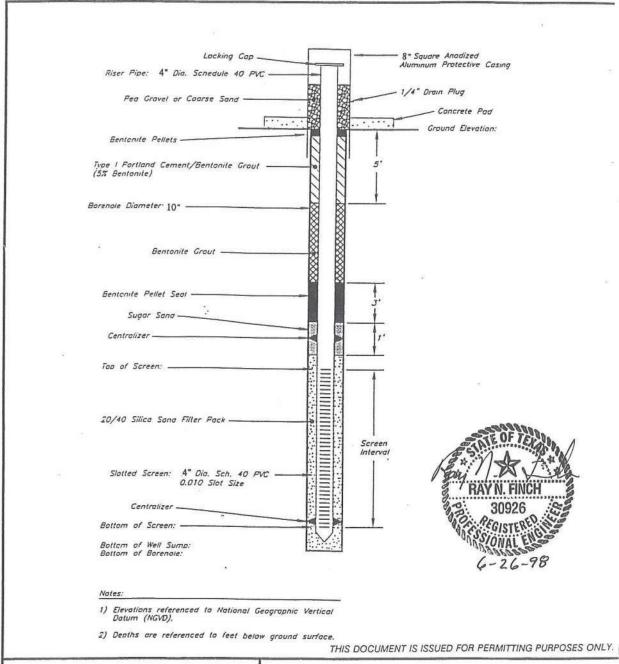
The following development for stress and strain calculations follows GRI Test Method GM4. In it, pressure versus centerpoint deformation readings are taken from which stress and strain can be calculated [6]. The following equations are based on a spheroidal shape being generated up to a deflection equal to the radius of the test specimen (i.e., for use with HDPE and CSPE-R geomembranes which fail within this region).

•	DATA BASE BEE.	1	2 2	-	A.		2	270	120	3.0	3.2	2	9	g	30	·//	Jumps 1	1		-	-		M.		
	DATE DATE CHOTE)	N=100	Aire	ALE-10	Asr-8	Non-10	Apr-9	AFF-9	ART-2	Apr-1	APK-1	Apr-1	Ne - 9	A20-21	100-0-0		1010		1000				Sex-17	Soft-10	Seal
뒫	STZS STZS STZS STZS	1711	21000	12.8	12 x 12	17212	12 1 1 2	12 # 12	11111	12 = 12	12 2 12	12 2 12	1 I I I	STIZ	12212			14214	1000		16 11 14		12 2 12	12 1 12	12 7 12
KENON A-W	TESTING	MEN	Dest los	abear bor	Shear how	phear box	abear bor	shear box	sher har	shear box	phear hor	shear box	Triedal	Thufel	ober bor			BALL MA	Deer box	BOGH BOT	BOCK BOIL		phear box	phoer has	spee box
÷	SHEARING EATE (INVMIN)	W (20 0	X 200	44	2	MC0.0	P.9	100	10.0	100	P.0	10.0	NA.	MA	Ma			8.01	100	0.00	100		9.04	100	2
DATE REVISED: FLB KAJÆ	HORNAL LOAD RANGE	100-500	8-18	201-07	W. 1-02	100-300	2,650-11,520	3350-11530	250-11570	2,00-11,00	2850-11520	3.880-11520	280-11520	2800-11520	20-17%			0000	8	804-80	86-88		\$76-1006	1001-915	\$16-1008
	TESTING	Dolder Amor	Ooklar Associ	U and Services	Omender	Ooklar Assoc	OerSented	Ossignation	Om Senter	ConState	OmSented		Non-Yes Assoc.	Bre-Yes Assoc.	O and year and			O sert it Tech	Oearyle Tech	O cory to Tech	Otoryla Tech		OenServices	OerServices	OunCaradons
	SAME BORIENT.	NA	MA	Y S	47	NA.	and house	machine	markha	on herbyte	mechine	mechoe	MA	NA	Y.Y			MA	MA	YY.	YY.		MA	NA	12
	TESTING COND.	MA	NA	47	2	NA	1	1	1	1	8	1	ande	and a	X			MA	MA	MA	MA		NA	NA.	200
D ATABASS RFACE	RESDUAL APPARENT ADHISSON	MA	13	NA	200	77	72	X	2	YN	XX	XX	MA	X	32				X			188	1	TA TA	
PRICTION TESTING DATABASS ALVE-SOL BITERFACE	RESDUAL PRICTION ANGLE	No.	32	MA	2	P. P	23	YZ	1	22	T X	72	YN	NA.	2		LANE - CONTEST	NA	YX	VX	PN 191	TO BOUND ON THE BOUND	77		5
AUST B A I PRE	PEAK APPARENT ADMESTON	0	99	8	3	\$	2 3	0 8	2 3	180	2 5	RS	2	200	180		PYCOLONEMBR	211	7	14	161	2 2 2 2 2	CAR UBOMEN		7
pack 2.0	PELCTION	77	in R	314	п	1	77		-	1	2 3	3	-	1	-	2	_	n	B	19	6	•		CK)	2
We shad-term peak		des W. Domber	dev 16 - Denhee	bean clay	Jeen thay	hen day	الماسال - الماسال	der Off-18	dirCNI7-12	dirCMT-149	dirCon-10	SATCOIL-134	31.25	200	Sec.	- Sin Car		الالمرابا	Out Cont Or	C	Sept-1% Ory			(the some soll	Typ sowe soll
7	PATEWACE TESTED	010	DIE WALLAND	DIS LET AND	HOR KATAON	DIS INTX OND	DOK TANK	HOLE SON TX OND	TOTAL TOTAL	HOLE WATE OND	HOTE WATE OND	HOPE KATAON	HOPE GOLTA GOO	HOR WATE OND	HORE MATA OND	HOPENSC		The state of the s		PH				HDPS ICH, ISSUE SLT	HOMENTART

FOR PERMIT PURPOSES ONLY	Part III
ATTACHMENT I	
ATTACHWENT I	

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

APPENDIX I


MONITOR WELL SCHEMATIC

Proposed Monitor Well SchematicI-1

November 1997

1-0

Revision: 0

Proposed Monitor Well Schematic

FINCH ENERGY & ENVIRONMENTAL SERVICES, Inc.

