# THE CITY OF KINGSVILLE LANDFILL TCEQ PERMIT MSW 235-C

# PERMIT AMENDMENT APPLICATION Volume 4 of 6



# CITY OF KINGSVILLE, TEXAS

September 2018 Revision 0

Prepared by





HANSON PROJECT NO. 16L0438-0003

# CITY OF KINGSVILLE LANDFILL PART III ATTACHMENT 5

ALTERNATIVE LINER AND OVERLINER
POINT OF COMPLIANCE DEMONSTRATIONS

Revision: 0

# ATTACHMENT 5 ALTERNATIVE LINER AND OVERLINER DESIGN AND POINT OF COMPLIANCE DEMONSTRATIONS



# CONTENTS

#### 1. INTRODUCTION

- 1.1 Purpose and Scope
- **Proposed Alternate Liner** 1.2
- **Proposed Overliner System** 1.3
- 1.4 Site Geology and Hydrogeology

#### 2. ALTERNATE LINER DEMONSTRATION METHODS

- 2.1 HELP Model
- 2.2 MULTIMED Model
- Landfill Configurations Analyzed 2.3
- 2.4 Slope Stability Analysis





#### POINT OF COMPLIANCE DEMONSTRATION RESULTS 4.

# APPENDIX A POINT OF COMPLIANCE FIGURES

- A.1 Permit Amendment Application MSW-235C Landfill Completion Site Plan
- Permit Amendment Application MSW-235C Landfill Completion A.2 **Excavation Plan**
- A.3 Permit Amendment Application MSW-235C Landfill Point of Compliance Locations
- A.4 Permit Amendment Application MSW-235C Landfill Groundwater Contour Map/Hydraulic Gradient
- Permit Amendment Application MSW-235C Landfill Typical Profile-Interim A.5. Landfill with Alternative Liner
- Permit Amendment Application MSW-235C Landfill Typical Profile-Closed A.6 Landfill with Alternative Liner
- A.7 Permit Amendment Application MSW-235C Landfill Typical Profile-Interim Landfill with Alternative Liner and Overliner
- 8.A Permit Amendment Application MSW-235C Landfill Typical Profile-Closed Landfill with Alternative Liner and Overliner

# **APPENDIX B**

# HELP MODEL ANALYSIS ALTERNATIVE LINER

- HELP Model/MULTIMED Model-Summary of Cases 1-8
- B.2 **HELP Model Case Summary**
- B.3 HELP Output for Alternative Liner Interim Case 1-Location 1

- B.4 HELP Output for Alternative Liner Interim Case 2-Location 2
- B.5 HELP Output for Alternative Liner Interim Case 3-Location 3
- B.6 HELP Output for Alternative Liner Interim Case 4-Location 4
- B.7 HELP Output for Alternative Liner Closed Case 5-Location 1
- B.8 HELP Output for Alternative Liner Closed Case 6-Location 2
- B.9 HELP Output for Alternative Liner Closed Case 7-Location 3
- B.10 HELP Output for Alternative Liner Closed Case 8-Location 4

### HELP MODEL ANALYSIS ALTERNATIVE LINER AND OVERLINER

- B.11 HELP Model/MULTIMED MODEL-Summary of Cases 10L-80L
- B.12 HELP Model Case Summary
- B.13 HELP Output for Alternative Liner Interim Case 1OL-Location 1
- B.14 HELP Output for Alternative Liner Interim Case 2OL-Location 2
- B.15 HELP Output for Alternative Liner Interim Case 3OL-Location 3
- B.16 HELP Output for Alternative Liner Interim Case 4OL-Location 4
- B.17 HELP Output for Alternative Liner Closed Case 5OL-Location 1
- B.18 HELP Output for Alternative Liner Closed Case 6OL-Location 2
- B.19 HELP Output for Alternative Liner Closed Case 7OL-Location 3
- B.20 HELP Output for Alternative Liner Closed Case 8OL-Location 4

### APPENDIX C

### **MULTIMED MODEL ANALYSIS**

- C.1 Contents
- C.2 MULTIMED Chemical-Specific Data
- C.3 MULTIMED Source-Specific Data
- C.4 MULTIMED Source-Specific Data-Overliner Demonstration
- C.5 Unsaturated Zone Data
- C.6 MULTIMED AQUIFER-Specific Data
- C.7 MULTIMED AQUIFER-Specific Data-Overliner Demonstration
  - C.7.1 'Appendix E Alternate Liner Design Report-City of Kingsville Municipal Solid Waste Disposal Facility Permit Amendment Application MSW 235-B', Pages 467-473 from Permit 235-B Amendment Volume V of V
  - C.7.2 'City of Kingsville MSWLF-Permit 235-B Attachment 4-Geology Report, 4.0 Regional Aquifers', Pages 36-39 from 235-B Amendment Volume II of V
  - C.7.3 City of Kingsville MSWLF-Permit 235-B 'Figure 5.16 Boring Plot Plan', Page 197 from Permit 235-B Amendment Volume II of V
  - C.7.4 City of Kingsville MSWLF-Permit 235-B 'Subsurface Exploration Record B/W No. 21', Page 371 from Permit 235-B Amendment Volume II of V
  - C.7.5 City of Kingsville MSWLF-Permit 235-B 'Subsurface Exploration Record B/W No. 18', Page 369 from Permit 235-B Amendment Volume II of V

- C.7.6 City of Kingsville MSWLF-Permit 235-B 'Subsurface Exploration Record B/W No. 25', Page 374 from Permit 235-B Amendment Volume II of V
- C.7.7 City of Kingsville MSWLF-Permit 235-B 'Subsurface Exploration Record B/W No. 1', Page 351 from Permit 235-B Amendment Volume II of V
- C.7.8 City of Kingsville MSWLF-Permit 235-B 'X-Section Location Map', Page 68 from Permit 235-B Amendment Volume II of V
- C.7.9 City of Kingsville MSWLF-Permit 235-B 'X-Section C-C", Page 71 From Permit 235-B Amendment Volume II of V
- C.7.10 City of Kingsville MSWLF-Permit 235-B 'Correlation of Geologic Units Along A-A Kleberg and Southern Jim Wells Counties', Page 45 from Permit 235-B Amendment Volume II of V
- C.7.11 City of Kingsville MSWLF-Permit 235-B 'Stratigraphic and Hydrogeologic Section I-I", Page 43 from Permit 235-B Amendment Volume II of V

### **APPENDIX D**

# **CALCULATIONS OF THE DILUTION ATTENUATION FACTOR (DAF)**

- D.1 Typical Profile-Alternative Liner Interim Landfill DAF
- D.2 Typical Profile-Alternative Liner Closed Landfill DAF
- D.3 Typical Profile-Alternative Liner and Overliner Interim Landfill DAF
- D.4 Typical Profile-Alternative Liner and Overliner Closed Landfill DAF

# APPENDIX E LEACHATE DATA

### APPENDIX F

### **MULTIMED MODEL OUTPUT**

- F.1 MULTIMED Output for Alternative Liner Interim Case 1-Location 1
- F.2 MULTIMED Output for Alternative Liner Interim Case 2-Location 2
- F.3 MULTIMED Output for Alternative Liner Interim Case 3-Location 3
- F.4 MULTIMED Output for Alternative Liner Interim Case 4-Location 4
- F.5 MULTIMED Output for Alternative Liner Closed Case 5-Location 1
- F.6 MULTIMED Output for Alternative Liner Closed Case 6-Location 2
- F.7 MULTIMED Output for Alternative Liner Closed Case 7-Location 3
- F.8 MULTIMED Output for Alternative Liner Closed Case 8-Location 4
- F.9 MULTIMED Output for Alternative Liner/Overliner Interim Case 1OL-Location 1

- F.10 MULTIMED Output for Alternative Liner/Overliner Interim Case 2OL-Location 2
- F.11 MULTIMED Output for Alternative Liner/Overliner Interim Case 3OL-Location 3
- F.12 MULTIMED Output for Alternative Liner/Overliner Interim Case 4OL-Location 4
- F.13 MULTIMED Output for Alternative Liner/Overliner Closed Case 5OL-Location 1
- F.14 MULTIMED Output for Alternative Liner/Overliner Closed Case 6OL-Location 2
- F.15 MULTIMED Output for Alternative Liner/Overliner Closed Case 7OL-Location 3
- F.16 MUTLIMED Output for Alternative Liner/Overliner Closed Case 8OL-Location 4

# **1 INTRODUCTION**

# 1.1 Purpose and Scope

This attachment is submitted to allow the use of a geosynthetic clay liner (GCL) as an alternative to the Subtitle D two-foot thick soil liner component of the liner system and demonstrate that the proposed alternative liner and overliner will meet the point of compliance (POC) requirements specified in Title 30 Texas Administrative Code (TAC) §330.331 (a).

This Alternate Liner Design Demonstration (ALD) was performed in accordance with the procedures presented in the *Texas Water Commission Alternate Liner Design Handbook, A Performance Standard As Authorized by 31 Texas Administrative Code (TAC)* §330.202 (Version 1, August 1993), using the Hydrologic Evaluation of Landfill Performance (HELP) and Mutimed Exposure Assessment (MULTIMED) computer models. This is achieved by demonstrating that the predicted concentrations of selected leachate chemical constituents do not exceed maximum contaminant levels (as listed in Table 1 in §330.331(a)(1)) in the uppermost aquifer at the POC. The concentration of various constituents at the POC is determined by calculating a dilution attenuation factor (DAF), which is determined by the following equation.

# DAF = Co, Initial Constituent Concentration of Leachate Within the Landfill Cp, Constituent Concentration at the POC

The DAF represents the factor by which the constituent concentration is expected to decrease between the landfill and the POC. When the constituent's concentration in leachate is divided by the model predicted DAF, the resulting concentration must be less than the allowable maximum contaminant levels (MCLs) in groundwater for the chemical parameters listed in Table 1 included in Title 30 TAC §330.331(a)(1).

The scope of this attachment includes both an alternative liner for future sectors and the proposed alternative liner and overliner for the pre-Subtitle D areas.

# 1.2 Proposed Alternative Liner

The layout of the proposed alternative liner is shown in Appendix A-Point of Compliance Figures, A.1 Permit Amendment Application MSW-235C Landfill Completion Site Plan. The proposed alternative liner system consists of a 60-mil high density polyethylene (HDPE) geomembrane placed over a GCL overlain by a geocomposite leachate collection

layer covered with a 2-foot-thick layer of protective soil cover. The components of the proposed alternative liner are shown in Appendix B.1 HELP Model/MULTIMED Model-Summary of Cases 1-8 for both interim and closed conditions. Details of the alternate liner are in Appendix D.1 and Appendix D.2.

# 1.3 Proposed Overliner System

The layout of the proposed overliner system is shown in Appendix A Point of Compliance Figures, A.1 Permit Amendment Application MSW-235C Landfill Completion Site Plan. The proposed alternative overliner system consists of a 60-mil high density polyethylene (HDPE) geomembrane placed over GCL overlain by a geocomposite leachate collection layer covered with a 2-foot thick layer of protective soil cover. The overliner will be placed over pre-Subtitle D areas to separate the existing waste and the vertical expansion area. The overliner system areas include Sectors 8A and 8B. The components of the proposed overliner system are shown in Appendix B.11 Help Model/MULTIMED Model-Summary of Cases 10L-8OL for both interim and closed conditions. Details of the overliner system are in Appendix D.3 and Appendix D.4.

# 1.4 Site Geology and Hydrogeology

A geologic and hydrogeologic site exploration program was conducted for the proposed City of Kingsville Landfill. Details of these investigations are included in Attachment 4 Geology Report.

# 2 ALTERNATE LINER DEMONSTRATION METHODS

## 2.1 HELP Model

The HELP Model Version 3.07 was used to estimate the amount of leachate generated by the landfill and the percolation through the proposed alternative liner system and overliner system. The HELP model is a water-balance model developed by the U.S. Army Corps of Engineers Waterways Experiment Station for the Environmental Protection Agency (EPA). The model uses climate, soil, and landfill design data to perform a solution technique that accounts for the effects of surface storage, run-off, infiltration, percolation, soil moisture storage, evapotranspiration, and lateral drainage.

### 2.2 MULTIMED MODEL

The MULTIMED Model Version 1.01 was used to assess contaminant fate and transport between the landfill base and the Point of Compliance (POC). MULTIMED was developed by the Athens Environmental Research Laboratory for the EPA. MULTIMED estimates the capacity of the hydrogeologic system modeled to dilute and attenuate contaminate concentrations. The model can be used to simulate fate and transport processes in both unsaturated and saturated subsurface environments. In this application, only the saturated environment was modeled to provide a conservative analysis.

## 2.3 LANDFILL CONFIGURATIONS

Sixteen HELP Model simulations were completed to estimate percolation rates through the alternate liner and overliner system. Both interim and closed landfill conditions were modeled in accordance with the Texas Water Commission Alternate Liner Design Handbook. The landfill configurations modeled for the alternative liner are summarized in Appendix B.1. HELP Model/MULTIMED Model-Summary of Cases 1-8 and in Appendix B.2 HELP Model Case Summary. The landfill configurations modeled for the overliner system are summarized in Appendix B.11 HELP Model/MULTIMED Model-Summary of Cases 10L-80L and B.12 HELP Mode Case Summary. The resulting percolation rate for each HELP Model simulation was then used to estimate the DAF using MULTIMED for each of the 16 cases. MULTIMED model analysis is in Appendix C. Calculations of the DAF are in Appendix D. The locations used for the POC demonstrations were chosen to represent the shortest distance to the POC. The analysis locations were selected to model the scenario at the toe of the landfill, midway up the slope, at the slope transition, and peak in order to consider the effect of the waste column thickness on the calculated DAF. Point of Compliance Figures are in Appendix A. DAFs were also computed at the four locations for each landfill configuration to show a direct relationship with the distance from the POC to the analysis point. Leachate Data is in Appendix E. MULTIMED Model output is in Appendix F. Aquifer Specific Data, geology, and hydrogeology are in

> Hanson Professional Services Inc. Submittal Date: September 2018

Appendices C.7.1 through C.7.11. The upper clay (light olive green clay) is ubiquitous under the site with a minimum proven thickness of 38 feet thick, the Chicot Aquifer is approximately 220 feet below ground surface, and the Evangeline Aquifer is approximately 500 feet below ground surface. The light olive green clay layer serves as aquiclude between the uppermost acquifer below the landfill site and the Chicot acquifer. To provide a conservative assumption given the bottom of the landfill and the groundwater, the percolation through the alternate liner and overliner system was assumed to be conveyed directly to the upper strata and therefore travel time, dilution, and attenuation are not accounted for in this analysis for upper soils.

## 2.4 SLOPE STABILITY ANALYSIS

The alternative liner and overliner system were analyzed for slope stability by performing two dimensional, effective stress slope stability analyses for the final, closed geometry, using the computer program SLIDE. The slope stability calculations are presented in Part III Attachment 4, Appendix 2-Section 7 WASTE MASS STABILITY and Appendix F: Graphical Representation of Mass Stability Analyses Results.

# **3 MODEL INPUT PARAMETERS**

Detailed HELP and MULTIMED information is presented in Appendices A through F. HELP Model input parameters and results are summarized in Appendices B.1, B.2, B.11, and B.12 for both the analysis of the alternative liner (interim and closed conditions) and overliner system (interim and closed conditions). In general, conservative assumptions were made in determining the percolation rate and dilution attenuation factor (DAF). A list of major assumptions used in the MULTIMED demonstrations are presented in Table 3-1. The table also compares the actual site conditions to the assumptions used for modeling. The criteria used to develop the percolation rate for each landfill case were selected to maximize the percolation rate. As discussed in Section 2.3, a major conservative assumption is not accounting for the approximately 38 feet of low permeability light olive green clay separating the bottom of the landfill and the uppermost groundwater zone. The estimated percolation through the alternative liner and overliner system is modeled to be conveyed directly to the strata below the bottom of the landfill at each evaluation section location; and the water table is assumed to be at the bottom of the liner as a conservative approach. If less conservative assumptions were used, the DAF calculated using MULTIMED for each landfill case would be significantly larger.

The MULTIMED model input parameters are detailed in Appendix C. By making the assumptions listed in Table 3-1, a single MULTIMED simulation accounts for all 24 constituents identified by the EPA as requiring landfill design protection criteria. The required minimum DAFs for the 24 EPA constituents are given in Table 2-Leachate Evaluation, page 24 of the Texas Water Commission Alternate Liner Design Handbook; the same table of constituents listed in Table 1 in Title 30 TAC §330.331(a)(1). The largest DAF listed in the table is 260. Therefore, if MULTIMED results in a DAF higher than 260 for a generic chemical that is conservatively modeled with no carbon absorption, no biodegradation, and no decay, it is concluded that the proposed alternative liner and overliner system design is acceptable. The actual DAF for a specific chemical would be higher than the result calculated by MULTIMED under these circumstances since actual physical processes of absorption, biodegradation, and decay would act to reduce chemical concentrations at the POC to less than those predicted by MULTIMED. The model result is then expressed in terms of the DAF, which is defined as the ratio of the input concentration to the concentration at the POC. MULTIMED can be used to find the DAF by using an input concentration of 1.0 mg/L. The DAF is the reciprocal of the resulting concentration of POC. The POCs for this demonstration are sin Appendix F.

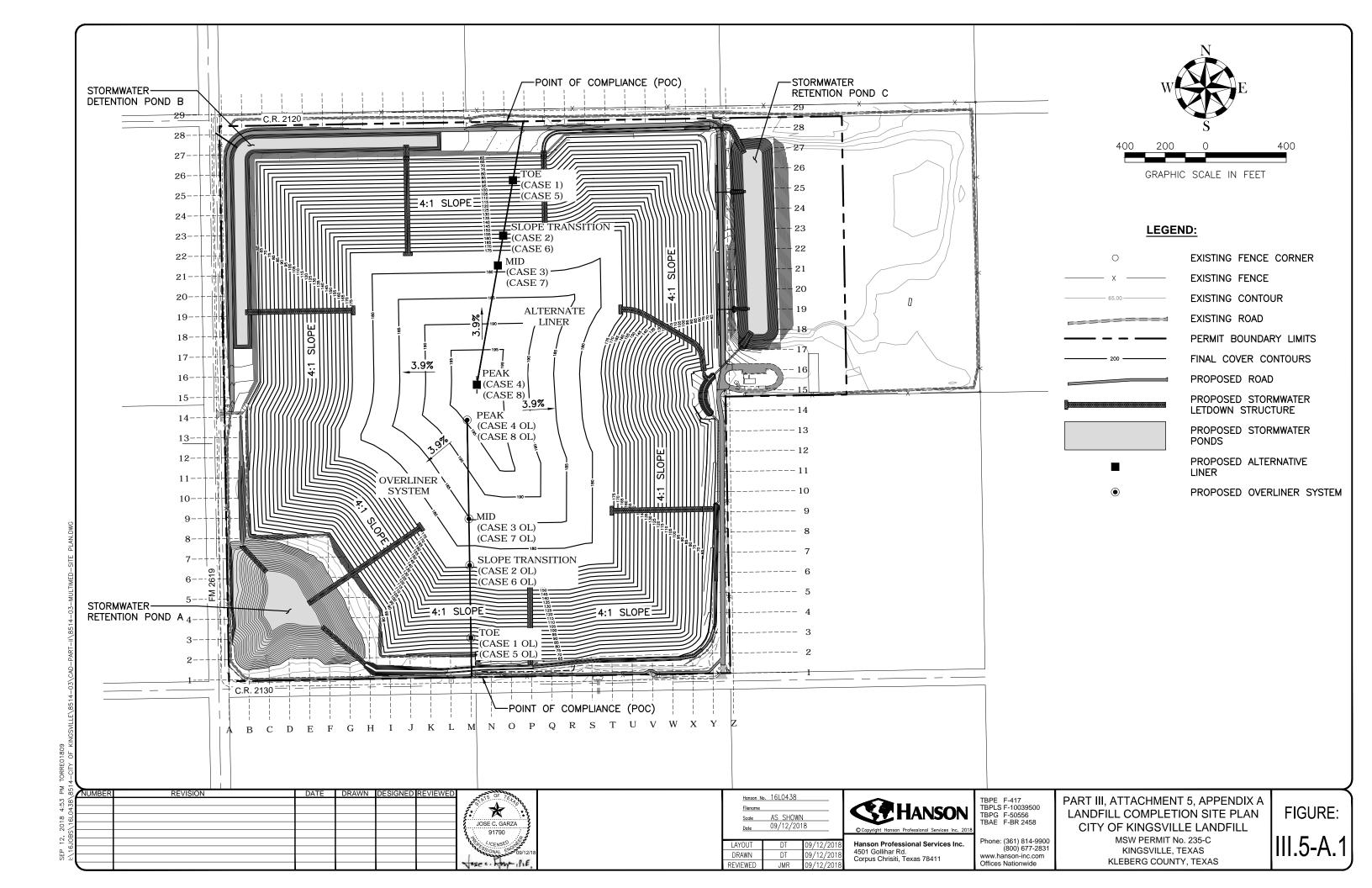
Table 3-1
Major Assumption Used to Determine MULTIMED Model Input Parameters

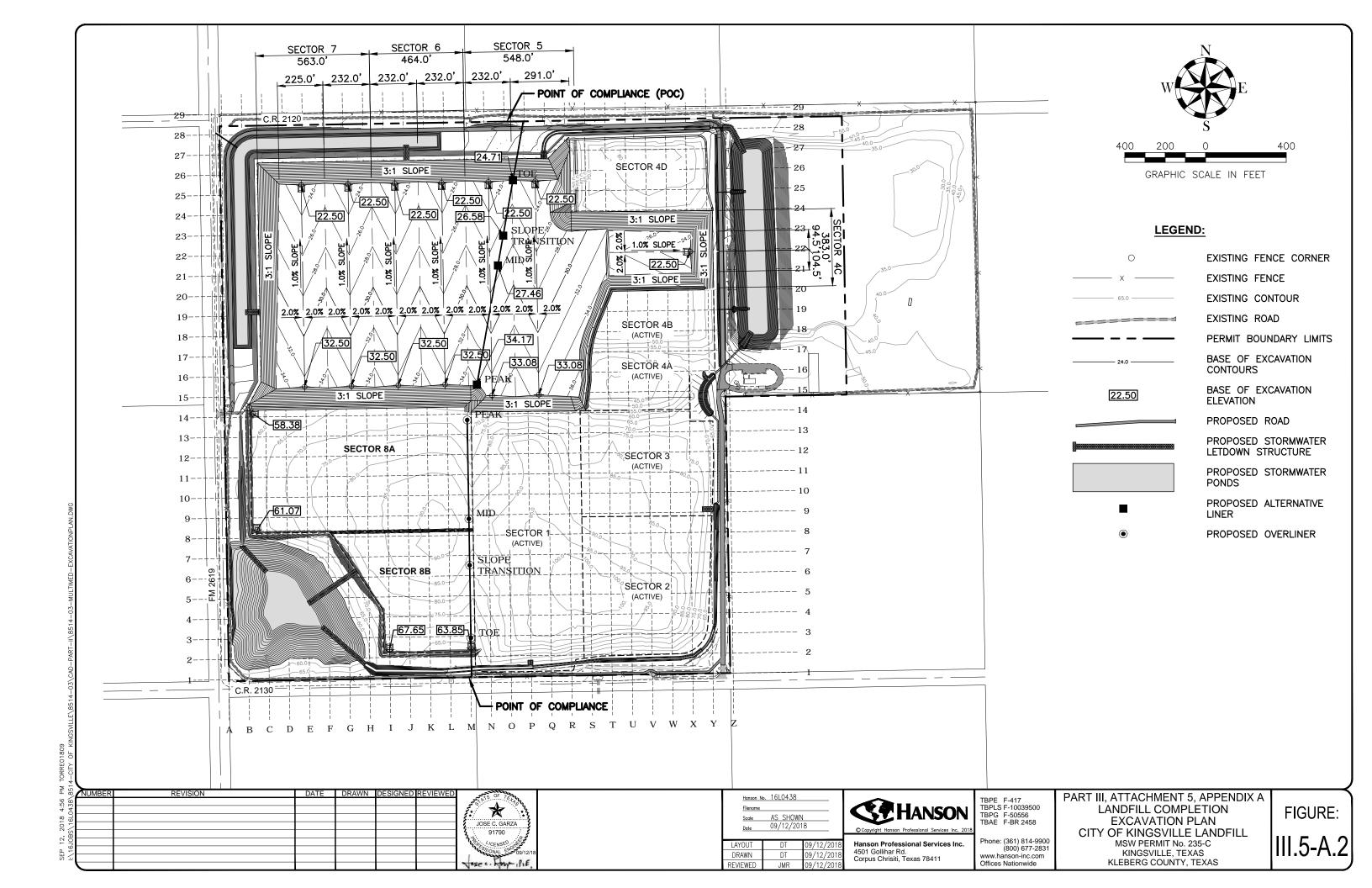
| Input Parameters  | Assumption        | Actual Site Conditions      |
|-------------------|-------------------|-----------------------------|
| Model Source Type | Steady state      | Assumed amount of           |
|                   |                   | leachate percolation is     |
|                   |                   | released continuously.      |
|                   |                   | This is a very conservative |
|                   |                   | assumption.                 |
| Biodegradation    | No biodegradation | Biodegradation is active in |
|                   |                   | hydrogeologic               |
|                   |                   | environments                |
| Chemical Decay    | No chemical deay  | Chemical decay will occur   |
|                   |                   | with most contaminants in   |
|                   |                   | hydrogeologic               |
|                   |                   | environments                |

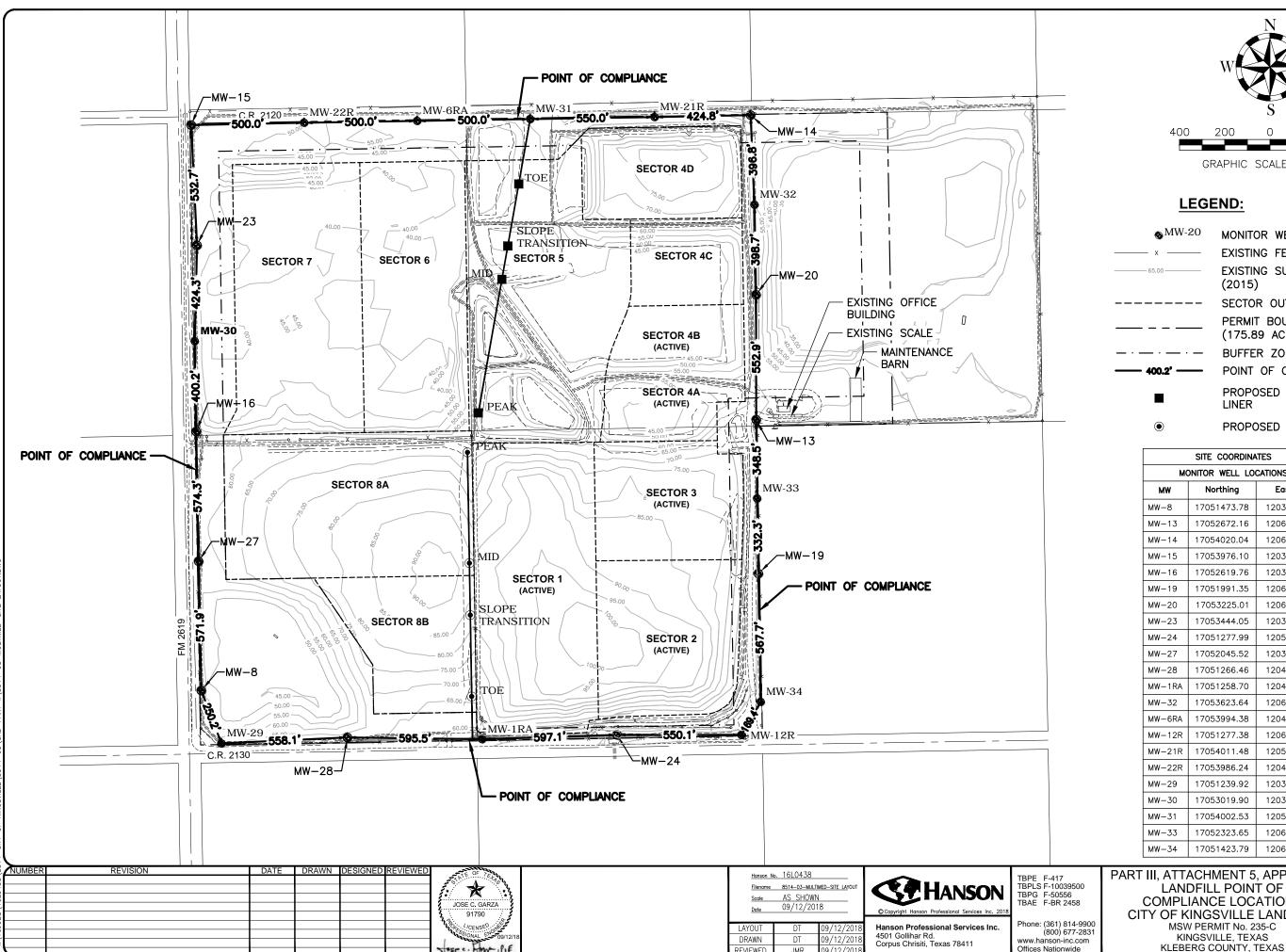
# **4 POINT OF COMPLIANCE DEMONSTRATION RESULTS**

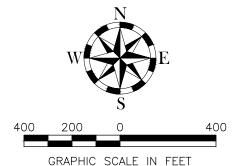
The HELP and MULTIMED models were used to evaluate the proposed design of the alternative liner and overliner system by estimating constituent concentrations at the POC for the landfill cases discussed in Section 2.3. The percolation rates obtained from the HELP Model cases included in Appendix C.3 and Appendix C.4 were used as input for the MULTIMED model to determine the DAF. Conservatively, the constituent concentrations at the base of the landfill liner and at the POC were used to calculate the DAF.

A summary of the calculated DAF is presented below and in Appendix D.


|                              | Interim Case |                 |
|------------------------------|--------------|-----------------|
| Location                     | DAF          | Closed Case DAF |
| Alternative Liner Location 1 | 33,979       | 85,106          |
| Alternative Liner Location 2 | 57,471       | 201,288         |
| Alternative Liner Location 3 | 80,645       | 282,566         |
| Alternative Liner Location 4 | 286,533      | 1,003,814       |


| Location             | Interim Case<br>DAF | Closed Case DAF |
|----------------------|---------------------|-----------------|
| Overliner Location 1 | 18,797              | 65,833          |
| Overliner Location 2 | 77,640              | 232,450         |
| Overliner Location 3 | 158,253             | 473,934         |
| Overliner Location 4 | 615,385             | 1,842,639       |


The results demonstrate that the proposed alternative liner design and overliner design meets or exceeds the requirements of Title 30 TAC §330.331(a)(1). The DAF calculated by the use of HELP and MULTIMED are well in excess of the 260 minimum criterion. The actual DAFs are expected to be substantially higher than the DAFs predicted by this modeling demonstration because the model input was conservatively estimated as discussed in previous sections of this report.


# APPENDIX A POINT OF COMPLIANCE FIGURES



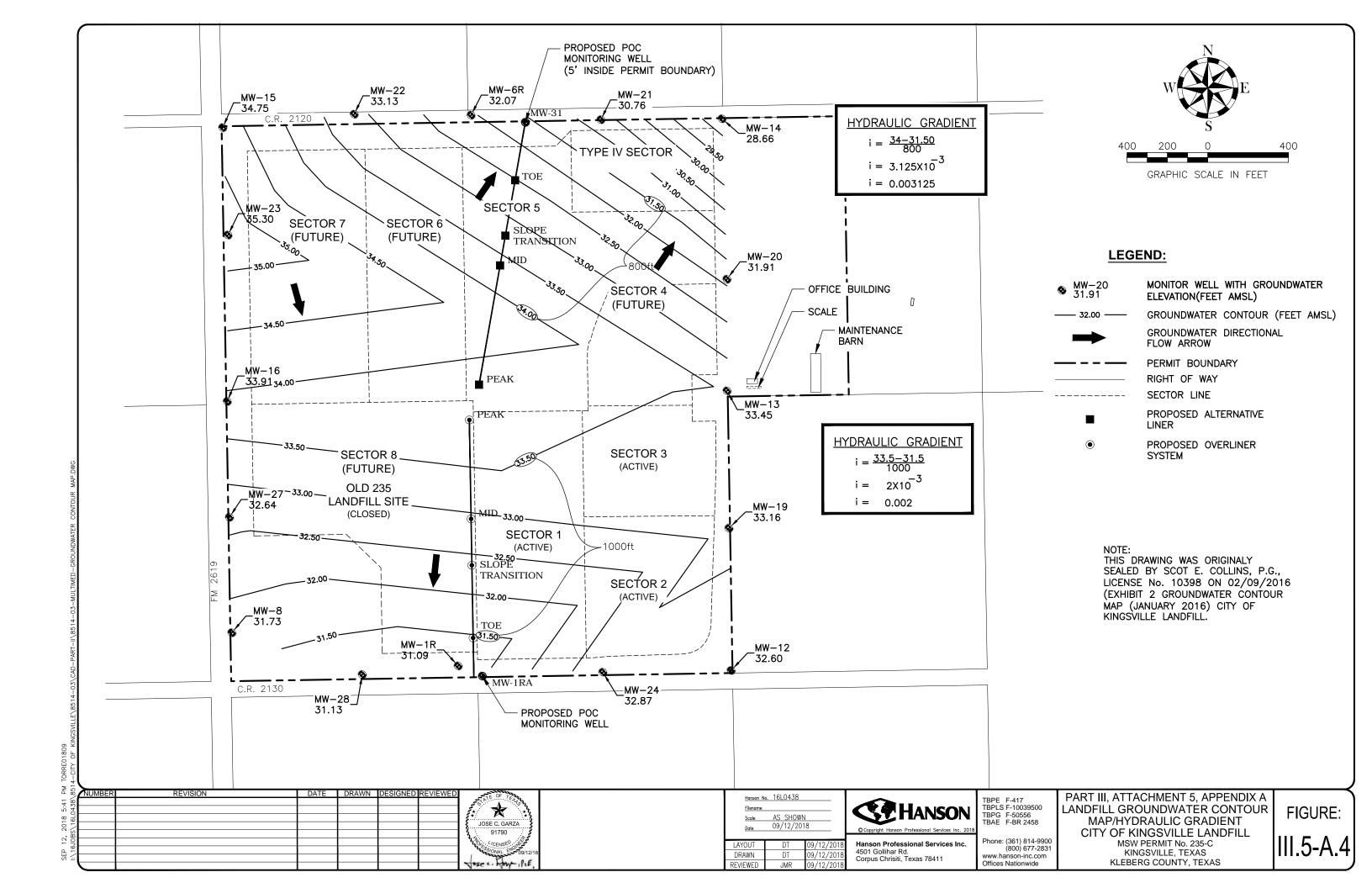




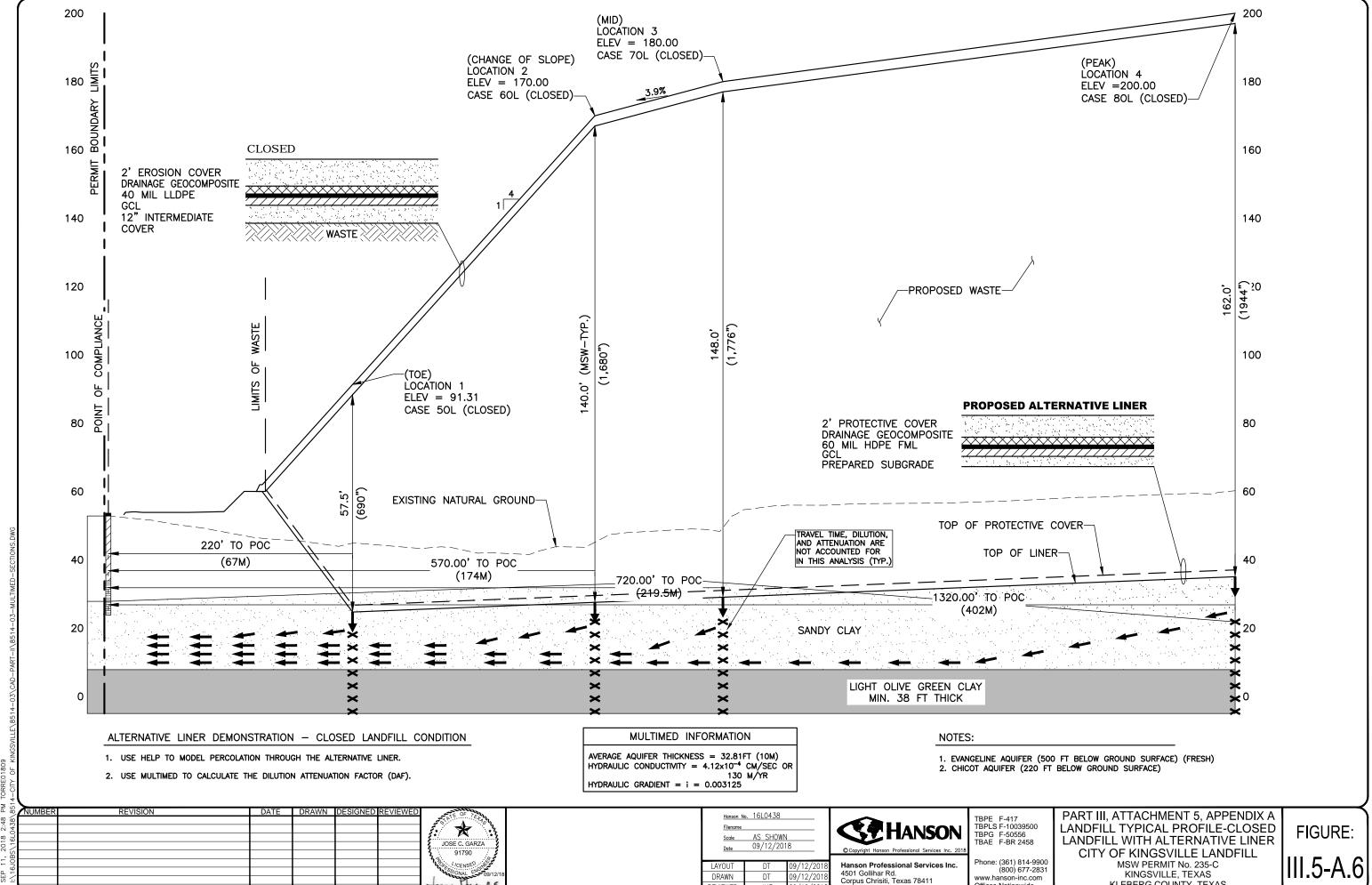




# **LEGEND:**

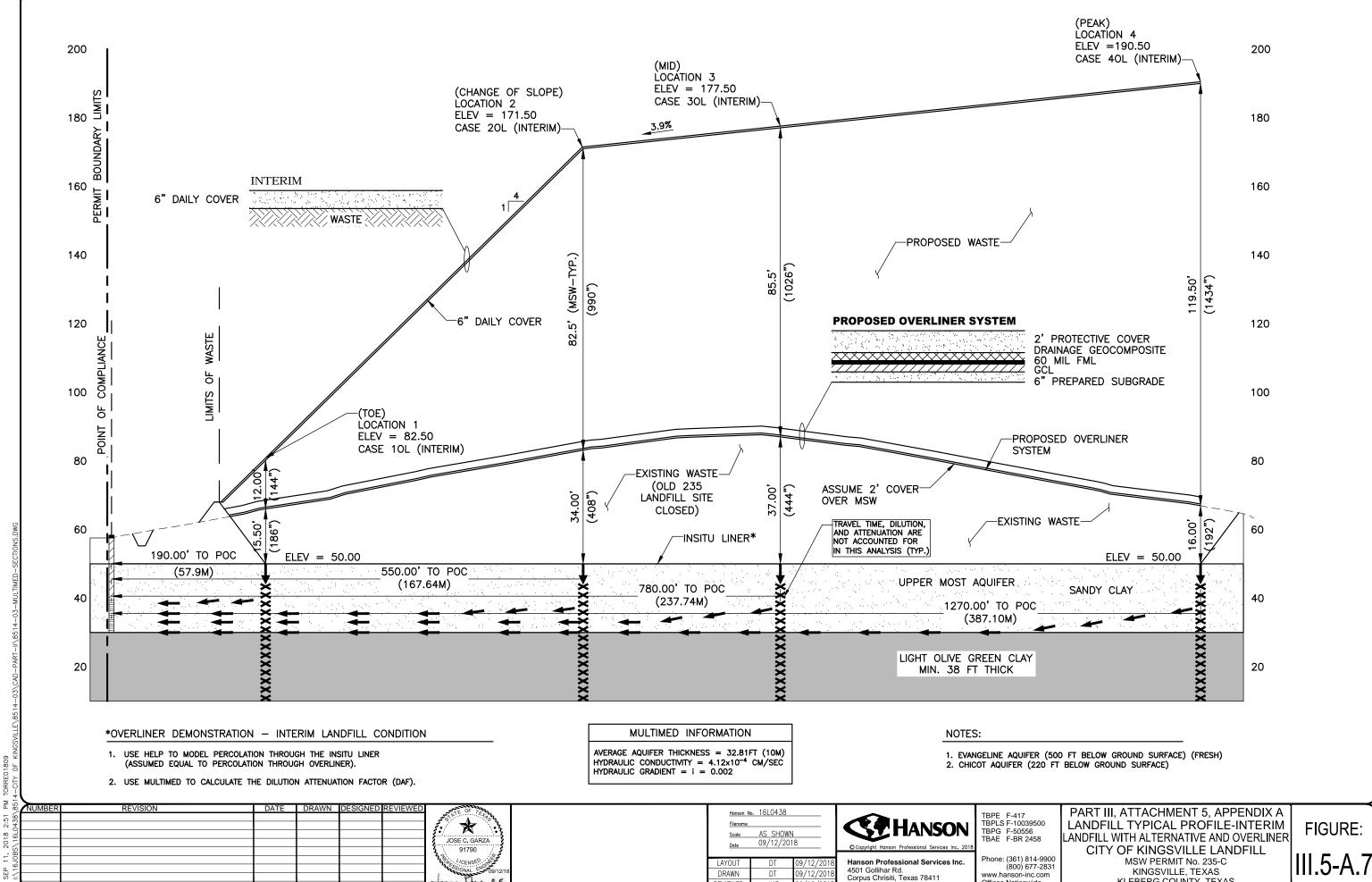

MONITOR WELL LOCATION EXISTING FENCE EXISTING SURFACE CONTOUR (2015)SECTOR OUTLINE PERMIT BOUNDARY (175.89 ACRES) BUFFER ZONE POINT OF COMPLIANCE PROPOSED ALTERNATIVE LINER PROPOSED OVERLINER


|                        | SITE COORDINA | ITES       |  |  |  |
|------------------------|---------------|------------|--|--|--|
| MONITOR WELL LOCATIONS |               |            |  |  |  |
| MW                     | Northing      | Easting    |  |  |  |
| MW-8                   | 17051473.78   | 1203673.74 |  |  |  |
| MW-13                  | 17052672.16   | 1206127.95 |  |  |  |
| MW-14                  | 17054020.04   | 1206103.02 |  |  |  |
| MW-15                  | 17053976.10   | 1203628.61 |  |  |  |
| MW-16                  | 17052619.76   | 1203651.21 |  |  |  |
| MW-19                  | 17051991.35   | 1206137.50 |  |  |  |
| MW-20                  | 17053225.01   | 1206127.20 |  |  |  |
| MW-23                  | 17053444.05   | 1203654.88 |  |  |  |
| MW-24                  | 17051277.99   | 1205512.42 |  |  |  |
| MW-27                  | 17052045.52   | 1203661.75 |  |  |  |
| MW-28                  | 17051266.46   | 1204320.24 |  |  |  |
| MW-1RA                 | 17051258.70   | 1204915.66 |  |  |  |
| MW-32                  | 17053623.64   | 1206120.29 |  |  |  |
| MW-6RA                 | 17053994.38   | 1204628.44 |  |  |  |
| MW-12R                 | 17051277.38   | 1206062.51 |  |  |  |
| MW-21R                 | 17054011.48   | 1205678.30 |  |  |  |
| MW-22R                 | 17053986.24   | 1204128.51 |  |  |  |
| MW-29                  | 17051239.92   | 1203762.81 |  |  |  |
| MW-30                  | 17053019.90   | 1203644.60 |  |  |  |
| MW-31                  | 17054002.53   | 1205128.38 |  |  |  |
| MW-33                  | 17052323.65   | 1206132.04 |  |  |  |
| MW-34                  | 17051423.79   | 1206147.64 |  |  |  |


PART III, ATTACHMENT 5, APPENDIX A LANDFILL POINT OF **COMPLIANCE LOCATIONS** CITY OF KINGSVILLE LANDFILL MSW PERMIT No. 235-C KINGSVILLE, TEXAS

Offices Nationwide

FIGURE:

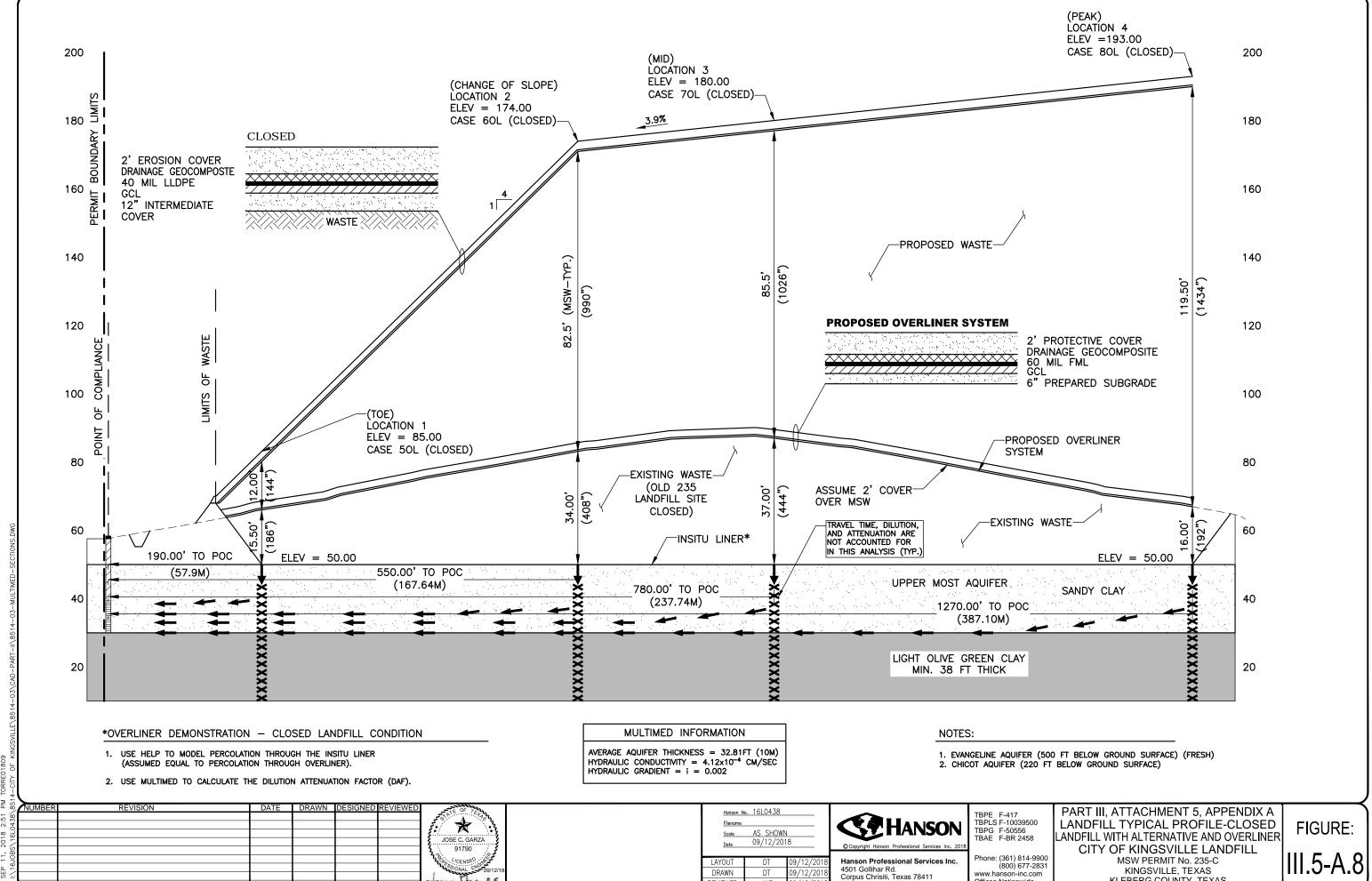







KLEBERG COUNTY, TEXAS

Offices Nationwide




DRAWN

DT

KLEBERG COUNTY, TEXAS

Offices Nationwide



DRAWN

KLEBERG COUNTY, TEXAS

Offices Nationwide

# APPENDIX B HELP MODEL ANALYSIS ALTERNATIVE LINER



# APPENDIX B.1 HELP MODEL/MULTIMED MODEL-SUMMARY OF CASES 1-8



Project No. 8514-3 Permit Amendment

Description: HELP Model/MULTIMED Model-Summary of Cases 1-8

Date: 3/01/17

By: JCG

<u>Case 1-Interim Landfill (Location 1)</u>- An open landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover),57.5 feet of waste with 250 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case 2-Interim Landfill (Location 2)</u>- An open landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 140 feet of waste with 500 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case 3-Interim Landfill (Location 3)</u>- An open landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 148 feet of waste with 500 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case 4-Interim Landfill (Location 4)</u>- An open landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 162 feet of waste with 500 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case 5-Closed Landfill (Location 1)</u> - A closed landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 57.5 feet of waste with 250 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

<u>Case 6-Closed Landfill (Location 2)</u>- A closed landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 140 feet of waste with 500 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

<u>Case7-Closed Landfill (Location 3)</u>- A closed landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 12 inch protective soil layer (Protective Cover), 148 feet of waste with 500 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

<u>Case 8-Closed Landfill (Location 4)</u>- A closed landfill with a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 162 feet of waste with 500 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

# APPENDIX B.2 HELP MODEL CASE SUMMARY



### HELP MODEL CASE SUMMARY

| Case<br>Alternative Liner               | Average<br>Precipitation<br>(IN/YR) | Average<br>Runoff<br>(IN/YR) | Average<br>Evapotranspiration<br>(IN/YR) | Average Percolation Through Liner (CF/YR) | Peak Percolation Through Liner (CF/DAY) | *Peak Percolation Through Liner (M/YR)  |
|-----------------------------------------|-------------------------------------|------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|
| Interim Landfill HELP Information       |                                     |                              |                                          | <del></del>                               |                                         |                                         |
| Location 1                              |                                     |                              |                                          |                                           |                                         | Relicio de Companyo                     |
| • 57.5 feet of waste (Case 1)           | 1                                   |                              |                                          |                                           |                                         | V                                       |
| 20 yr                                   | 25.74                               | 2.391                        | 21.632                                   | 0.004                                     | 0.000050                                | 1.28E-07                                |
| Location 2 • 140 feet of waste (Case 2) | 3                                   |                              |                                          |                                           |                                         |                                         |
| 20 yr                                   | 25.74                               | 2.135                        | 21.716                                   | 0.004                                     | 0.00007                                 | 1.79E-07                                |
| Location 3 • 148 feet of waste (Case 3) |                                     |                              |                                          |                                           |                                         |                                         |
| 20 yr                                   | 25.74                               | 2.197                        | 21.691                                   | 0.004                                     | 0.00007                                 | 1.79E-07                                |
| Location 4 • 162 feet of waste (Case 4) | 1                                   | 70 g                         | 5                                        |                                           |                                         |                                         |
| 20 yr                                   | 25.74                               | 1.907                        | 21.787                                   | 0.005                                     | 0.00007                                 | 1.79E-07                                |
| Closed Landfill HELP Information        |                                     |                              |                                          |                                           | is:                                     |                                         |
| Location 1                              |                                     |                              | a [                                      |                                           | 1 1                                     |                                         |
| • 57.5 feet of waste (Case 5)           |                                     |                              |                                          |                                           |                                         | E 44E 00                                |
| 30 yr                                   | 27.20                               | 1.880                        | 21.749                                   | 0.001                                     | 0.00002                                 | 5.11E-08                                |
| Location 2 • 140 feet of waste (Case 6) | 7                                   | 2                            | 7 1                                      |                                           |                                         |                                         |
| 30 yr                                   | 27.20                               | 1.680                        | 21.481                                   | 0.004                                     | 0.00002                                 | 5.11E-08                                |
| Location 3 • 148 feet of waste (Case 7) | a a Fi                              |                              |                                          |                                           |                                         |                                         |
| 30 yr                                   | 27.20                               | 1.711                        | 21.470                                   | 0.004                                     | 0.00002                                 | 5.11E-08                                |
| Location 4 • 162 feet of waste (Case 8) |                                     | 10                           |                                          |                                           |                                         |                                         |
| 30 yr                                   | 27.20                               | 1.533                        | 21.495                                   | 0.004                                     | 0.00002                                 | 5.11E-08                                |
| 55 /.                                   |                                     |                              |                                          |                                           |                                         | 700000000000000000000000000000000000000 |

<sup>\*</sup> Determined Using Peak Daily Percolation/Leakage Rate Through GCL and Converted to (M/YR) Example:  $((.00005 \text{ FT}^3/\text{Day-Acre})x(1 \text{ Acre}/43,560 \text{ FT}^2)/(1 \text{ Meter}/3.28 \text{ FT})) \times (365 \text{ Days}/1 \text{ YR}) = 1.28 \times 10^{-7} \text{ M/YR}$ 

# APPENDIX B.3 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 1LOCATION 1



| ****** | *******************                             | ****** |
|--------|-------------------------------------------------|--------|
| *****  | ******************                              | ****** |
| **     |                                                 | **     |
| **     |                                                 | **     |
| **     | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **     | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **     | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **     | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **     | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **     |                                                 | **     |
| **     |                                                 | **     |
| ****** | *****************                               | ****** |
| ****** | *********************                           | *****  |

PRECIPITATION DATA FILE: TEMPERATURE DATA FILE: EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE1.D10

C:\HELP3\MDATA\KGVPR20Y.D4 C:\HELP3\MDATA\KGVTE20Y.D7 SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO20Y.D13 C:\HELP3\MDATA\KGVEV20Y.D11 C:\HELP3\MDATA\CASE120Y.OUT

OUTPUT DATA FILE:

TIME: 16:43

DATE: 3/13/2017

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE 1 (Location 1)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1 -----

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

6.00 INCHES **THICKNESS** 0.4300 VOL/VOL POROSITY FIELD CAPACITY 0.3210 VOL/VOL WILTING POINT 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2393 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18 THICKNESS

690.00 INCHES

POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2905 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

### LAYER 3

### TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.3244 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

## LAYER 4

# TYPE 2 - LATERAL DRAINAGE LAYER

### MATERIAL TEXTURE NUMBER 20

0.20 INCHES THICKNESS = POROSITY 0.8500 VOL/VOL = 0.0100 VOL/VOL FIELD CAPACITY WILTING POINT 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0152 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC 2.00 PERCENT SLOPE

DRAINAGE LENGTH = 250.0 FEET

### LAYER 5

### TYPE 4 - FLEXIBLE MEMBRANE LINER

### MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.19999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE
FML PLACEMENT QUALITY = 3 - GOOD

### LAYER 6

# TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL

WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 100. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 89.50   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 80.0    | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.124   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 6.606   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 1.788   | INCHES      |
| INITIAL SNOW WATER                 | E | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 209.820 | INCHES      |
| TOTAL INITIAL WATER                | = | 209.820 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |

# EVAPOTRANSPIRATION AND WEATHER DATA

# NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

| STATION LATITUDE                      | = | 27.77 | DEGREES |
|---------------------------------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX               | = | 2.00  |         |
| START OF GROWING SEASON (JULIAN DATE) | = | 0     |         |
| END OF GROWING SEASON (JULIAN DATE)   |   | 367   |         |
| EVAPORATIVE ZONE DEPTH                | = | 12.0  | INCHES  |
| AVERAGE ANNUAL WIND SPEED             | = | 12.00 | MPH     |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 78.00 | %       |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
|                                       |   |       |         |

# NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

|         |         |         |         | CASE120Y.OU | T       |
|---------|---------|---------|---------|-------------|---------|
| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV     | JUN/DEC |
|         |         |         |         |             |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10       | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00       | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

| AVERAGE MONTHI       | Y VALUES I        | N INCHES             | FOR YEARS | 1 THR   | OUGH 20 |         |
|----------------------|-------------------|----------------------|-----------|---------|---------|---------|
|                      | COMPONENT SERVICE | TECHNICASIN NAMED IN | MAR/SEP   | APR/OCT | MAY/NOV | JUN/DEC |
| PRECIPITATION        |                   | (                    |           |         |         |         |
| TOTALS               | 1.15              | 2.02                 | 1.05      | 1.42    | 2.41    | 2.71    |
|                      | 2.43              | 2.37                 | 5.38      | 2.30    | 1.33    | 1.18    |
| STD. DEVIATIONS      | 0.63              | 1.18                 | 0.55      | 1.20    | 1.88    | 2.04    |
|                      | 2.55              | 1.63                 | 3.12      | 1.75    | 1.17    | 0.85    |
| RUNOFF               |                   |                      |           |         |         |         |
| TOTALS               | 0.015             | 0.067                | 0.006     | 0.104   | 0.281   | 0.288   |
|                      | 0.380             | 0.193                | 0.784     | 0.181   | 0.073   | 0.020   |
| STD. DEVIATIONS      | 0.043             | 0.081                | 0.009     | 0.237   | 0.504   | 0.348   |
|                      | 0.817             | 0.198                | 0.914     | 0.274   | 0.212   | 0.076   |
| EVAPOTRANSPIRATION   |                   |                      |           |         |         |         |
| TOTALS               | 0.939             | 2.086                | 1.297     | 1.241   | 1.988   | 2.114   |
| A 8/4 NOTES          | 2.037             | 1.875                | 3.620     | 2.256   | 1.089   | 1.091   |
| STD. DEVIATIONS      | 0.543             | 0.911                | 0.701     | 0.915   | 1.322   | 1.388   |
|                      | 1.606             | 1.312                | 1.225     | 1.220   | 0.757   | 0.583   |
| LATERAL DRAINAGE COL | LECTED FROM       | LAYER 4              |           |         |         |         |
| TOTALS               | 0.0660            | 0.0208               | 0.0717    | 0.0580  | 0.0362  | 0.053   |
|                      | 0.1446            | 0.1781               | 0.1018    | 0.4110  | 0.4038  | 0.191   |
| STD. DEVIATIONS      | 0.0860            | 0.0317               | 0.1423    | 0.1051  | 0.0619  | 0.105   |
|                      | 0.2593            | 0.3508               | 0.2000    | 0.5937  | 0.7436  | 0.324   |
| PERCOLATION/LEAKAGE  | THROUGH LAY       | ER 6                 |           |         |         |         |
| TOTALS               | 0.0000            | 0.0000               | 0.0000    | 0.0000  | 0.0000  | 0.000   |
|                      | 0.0000            | 0.0000               | 0.0000    | 0.0000  | 0.0000  | 0.000   |
| STD. DEVIATIONS      | 0.0000            | 0.0000               | 0.0000    | 0.0000  | 0.0000  | 0.000   |
|                      | 0.0000            | 0.0000               | 0.0000    | 0.0000  | 0.0000  | 0.000   |

| AVERAGES        | 0.0005 | 0.0002 | 0.0005 | 0.0004 | 0.0003 | 0.0004 |
|-----------------|--------|--------|--------|--------|--------|--------|
|                 | 0.0010 | 0.0013 | 0.0007 | 0.0029 | 0.0030 | 0.0014 |
| STD. DEVIATIONS | 0.0006 | 0.0002 | 0.0010 | 0.0008 | 0.0004 | 0.0008 |
|                 | 0.0018 | 0.0025 | 0.0015 | 0.0042 | 0.0055 | 0.0023 |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                                           | INC     | HES |          | CU. FEET | PERCENT |
|-------------------------------------------|---------|-----|----------|----------|---------|
| PRECIPITATION                             | 25.74   | (   | 5.706)   | 93448.9  | 100.00  |
| RUNOFF                                    | 2.391   | (   | 1.2854)  | 8679.79  | 9.288   |
| EVAPOTRANSPIRATION                        | 21.632  | (   | 3.6809)  | 78522.88 | 84.028  |
| ATERAL DRAINAGE COLLECTED<br>FROM LAYER 4 | 1.73689 | (   | 1.43677) | 6304.902 | 6.74690 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6    | 0.00000 | (   | 0.00000) | 0.004    | 0.0000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 5         | 0.001 ( |     | 0.001)   |          |         |
| CHANGE IN WATER STORAGE                   | -0.016  | (   | 0.5277)  | -58.66   | -0.063  |

|                                                              | (INCHES) | (CU. FT.) |
|--------------------------------------------------------------|----------|-----------|
| PRECIPITATION                                                | 5.07     | 18404.102 |
| RUNOFF                                                       | 2.138    | 7761.3745 |
| DRAINAGE COLLECTED FROM LAYER 4                              | 0.16595  | 602.40332 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                          | 0.000000 | 0.00005   |
| AVERAGE HEAD ON TOP OF LAYER 5                               | 0.037    |           |
| MAXIMUM HEAD ON TOP OF LAYER 5                               | 0.072    |           |
| LOCATION OF MAXIMUM HEAD IN LAYER 4<br>(DISTANCE FROM DRAIN) | 2.4 FEET |           |
| SNOW WATER                                                   | 0.00     | 0.0000    |

MINIMUM VEG. SOIL WATER (VOL/VOL)

0.1490

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| <b>^</b>        |       |       |       |
|-----------------|-------|-------|-------|
| *************** | ***** | ***** | ***** |

| LAYER      | (INCHES) | (VOL/VOL) |  |
|------------|----------|-----------|--|
|            |          |           |  |
| 1          | 1.4211   | 0.2369    |  |
| 2          | 200.1899 | 0.2901    |  |
| 3          | 7.7040   | 0.3210    |  |
| 4          | 0.0020   | 0.0100    |  |
| 5          | 0.0000   | 0.0000    |  |
| 6          | 0.1800   | 0.7500    |  |
| SNOW WATER | 0.000    |           |  |

# APPENDIX B.4 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 2LOCATION 2



| •      |                                                 |        |
|--------|-------------------------------------------------|--------|
| *****  | ******************                              | *****  |
| *****  | ******************                              | *****  |
| **     |                                                 | **     |
| **     |                                                 | **     |
| **     | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **     | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **     | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **     | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **     | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **     |                                                 | **     |
| **     |                                                 | **     |
| *****  | ********************                            | ****** |
| ****** | *******************                             | *****  |

PRECIPITATION DATA FILE: TEMPERATURE DATA FILE: EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE2.D10 OUTPUT DATA FILE:

C:\HELP3\MDATA\KGVPR20Y.D4 C:\HELP3\MDATA\KGVTE20Y.D7 SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO20Y.D13 C:\HELP3\MDATA\KGVEV20Y.D11 C:\HELP3\MDATA\CASE220Y.OUT

TIME: 16:53 DATE: 3/13/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE 2 (LOCATION 2)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

# LAYER 1

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13 6.00 INCHES THICKNESS

POROSITY 0.4300 VOL/VOL FIELD CAPACITY 0.3210 VOL/VOL WILTING POINT 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2391 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

THICKNESS

1680.00 INCHES

POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2914 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

### LAYER 3

# TYPE 1 - VERTICAL PERCOLATION LAYER

### MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3245 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 4

# TYPE 2 - LATERAL DRAINAGE LAYER

## MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0205 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 500.0 FEET

## LAYER 5

### -----

# TYPE 4 - FLEXIBLE MEMBRANE LINER

### MATERIAL TEXTURE NUMBER 35 = 0.06 INCHES

THICKNESS = 0.06 INCHES

POROSITY = 0.0000 VOL/VOL

FIELD CAPACITY = 0.0000 VOL/VOL

WILTING POINT = 0.0000 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC

FML PINHOLE DENSITY = 1.00 HOLES/ACRE

FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

# LAYER 6

# TYPE 3 - BARRIER SOIL LINER

### MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL

WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 350. FEET.

| SCS RUNOFF CURVE NUMBER            | 8 | 88.80   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 80.0    | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
|                                    | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.124   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 6.606   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 1.788   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 498.905 | INCHES      |
| TOTAL INITIAL WATER                | = | 498.905 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |

## EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

STATION LATITUDE = 27.77 DEGREES
MAXIMUM LEAF AREA INDEX = 2.00
START OF GROWING SEASON (JULIAN DATE) = 0
END OF GROWING SEASON (JULIAN DATE) = 367
EVAPORATIVE ZONE DEPTH = 12.0 INCHES
AVERAGE ANNUAL WIND SPEED = 12.00 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 76.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

## NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

Page 3

Revision: 0

|         |         |         |         | CASE220Y.OU | T       |
|---------|---------|---------|---------|-------------|---------|
| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV     | JUN/DEC |
|         |         |         |         |             |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10       | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00       | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

| AVERAGE MONTHL        | Y VALUES II | N INCHES | FOR YEARS | 1 THR   | OUGH 20 |         |
|-----------------------|-------------|----------|-----------|---------|---------|---------|
|                       | JAN/JUL     |          | MAR/SEP   | APR/OCT | MAY/NOV | JUN/DEC |
| PRECIPITATION         |             |          |           |         |         |         |
| TOTALS                | 1.15        | 2.02     | 1.05      | 1.42    | 2.41    | 2.71    |
|                       | 2.43        | 2.37     | 5.38      | 2.30    | 1.33    | 1.18    |
| STD. DEVIATIONS       | 0.63        | 1.18     | 0.55      | 1.20    | 1.88    | 2.04    |
|                       | 2.55        | 1.63     | 3.12      | 1.75    | 1.17    | 0.85    |
| RUNOFF                |             |          |           |         |         |         |
| TOTALS                | 0.012       | 0.055    | 0.003     | 0.092   | 0.254   | 0.252   |
|                       | 0.350       | 0.170    | 0.716     | 0.149   | 0.066   | 0.016   |
| STD. DEVIATIONS       | 0.037       | 0.071    | 0.006     | 0.216   | 0.479   | 0.31    |
| eie, eeremeene        | 0.770       | 0.181    | 0.864     | 0.234   | 0.199   | 0.05    |
| EVAPOTRANSPIRATION    |             |          |           |         |         |         |
| TOTALS                | 0.932       | 2.093    | 1.304     | 1.251   | 1.993   | 2.12    |
|                       | 2.048       | 1.899    | 3.628     | 2.264   | 1.098   | 1.07    |
| STD. DEVIATIONS       | 0.540       | 0.899    | 0.714     | 0.930   | 1.317   | 1.38    |
|                       | 1.634       | 1.319    | 1.222     | 1.208   | 0.786   | 0.59    |
| ATERAL DRAINAGE COLL  | ECTED FROM  | LAYER 4  |           |         |         |         |
| TOTALS                | 0.0714      | 0.0325   | 0.0735    | 0.0598  | 0.0433  | 0.06    |
|                       | 0.1629      | 0.1994   | 0.1144    | 0.4250  | 0.4282  | 0.22    |
| STD. DEVIATIONS       | 0.0918      | 0.0521   | 0.1373    | 0.1034  | 0.0700  | 0.14    |
|                       | 0.3040      | 0.4252   | 0.2386    | 0.5913  | 0.7365  | 0.41    |
| PERCOLATION/LEAKAGE T | HROUGH LAY  | ER 6     |           |         |         |         |
| TOTALS                | 0.0000      | 0.0000   | 0.0000    | 0.0000  | 0.0000  | 0.00    |
|                       | 0.0000      | 0.0000   | 0.0000    | 0.0000  | 0.0000  | 0.00    |
| STD. DEVIATIONS       | 0.0000      | 0.0000   | 0.0000    | 0.0000  | 0.0000  | 0.00    |
|                       | 0.0000      | 0.0000   | 0.0000    | 0.0000  | 0.0000  | 0.00    |

| AVERAGES        | 0.0010 | 0.0005 | 0.0010 | 0.0009 | 0.0006 | 0.0010 |
|-----------------|--------|--------|--------|--------|--------|--------|
|                 | 0.0023 | 0.0028 | 0.0017 | 0.0060 | 0.0063 | 0.0033 |
| STD. DEVIATIONS | 0.0013 | 0.0008 | 0.0020 | 0.0015 | 0.0010 | 0.0021 |
|                 | 0.0043 | 0.0061 | 0.0035 | 0.0084 | 0.0108 | 0.0059 |

|                                            | INC     | HES | 71       | CU. FEET | PERCENT |
|--------------------------------------------|---------|-----|----------|----------|---------|
| PRECIPITATION                              | 25.74   | (   | 5.706)   | 93448.9  | 100.00  |
| RUNOFF                                     | 2.135   | (   | 1.1936)  | 7751.57  | 8.295   |
| EVAPOTRANSPIRATION                         | 21.716  | (   | 3.6903)  | 78829.24 | 84.355  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 4 | 1.90751 | (   | 1.54789) | 6924,269 | 7.40968 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6     | 0.00000 | (   | 0.00000) | 0.004    | 0.0000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 5          | 0.002 ( |     | 0.002)   |          |         |
| CHANGE IN WATER STORAGE                    | -0.015  | (   | 0.5511)  | -56.19   | -0.060  |

|                                                              | (INCHES) | (CU. FT.) |
|--------------------------------------------------------------|----------|-----------|
| PRECIPITATION                                                | 5.07     | 18404.102 |
| RUNOFF                                                       | 2.088    | 7578.4883 |
| DRAINAGE COLLECTED FROM LAYER 4                              | 0.16062  | 583.03455 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                          | 0.000000 | 0.00007   |
| AVERAGE HEAD ON TOP OF LAYER 5                               | 0.071    |           |
| MAXIMUM HEAD ON TOP OF LAYER 5                               | 0.141    |           |
| LOCATION OF MAXIMUM HEAD IN LAYER 4<br>(DISTANCE FROM DRAIN) | 1.7 FEET |           |
| SNOW WATER                                                   | 0.00     | 0.0000    |

MINIMUM VEG. SOIL WATER (VOL/VOL)

0.1490

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| FINAL WATER | STORAGE AT EN | ID OF YEAR 20 |  |
|-------------|---------------|---------------|--|
| <br>LAYER   | (INCHES)      | (VOL/VOL)     |  |
|             | (INCIES)      |               |  |
| 1           | 1.4393        | 0.2399        |  |
| 2           | 489.2699      | 0.2912        |  |
| 3           | 7.7040        | 0.3210        |  |
| 4           | 0.0020        | 0.0100        |  |
| 5           | 0.0000        | 0.0000        |  |
| 6           | 0.1800        | 0.7500        |  |
| SNOW WATER  | 0.000         | 1.39          |  |

# APPENDIX B.5 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 3LOCATION 3



| ******* | *******************                             | ****** |
|---------|-------------------------------------------------|--------|
| ******* | ******************                              | ****** |
| **      |                                                 | **     |
| **      |                                                 | **     |
| **      | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **      | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **      | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **      | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **      | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **      |                                                 | **     |
| **      |                                                 | **     |
| ******  | *****************                               | ****** |
| *****   | ********************                            | *****  |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS020Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV20Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE3.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE320Y.OUT

TIME: 9:42 DATE: 3/3/2017

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

# LAYER 1

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

THICKNESS = 6.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2391 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18
THICKNESS = 1776.00

1776.00 INCHES

Part III

CASE320Y, OUT

POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2914 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

## LAYER 3

## TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3245 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 4

# TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0205 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 500.0 FEET

### LAYER 5

## TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35

0.06 INCHES THICKNESS = POROSITY 0.0000 VOL/VOL 0.0000 VOL/VOL FIELD CAPACITY WILTING POINT 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC 1.00 FML PINHOLE DENSITY **100** HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE = 3 - GOOD FML PLACEMENT QUALITY

## LAYER 6

# TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL

WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 12.% AND A SLOPE LENGTH OF 200. FEET.

| SCS RONOTT CORVE HOUSER            | = | 89.00   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 80.0    | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.124   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 6.606   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 1.788   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 526.937 | INCHES      |
| TOTAL INITIAL WATER                | = | 526.937 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

STATION LATITUDE = 27.77 DEGREES
MAXIMUM LEAF AREA INDEX = 2.00
START OF GROWING SEASON (JULIAN DATE) = 0
END OF GROWING SEASON (JULIAN DATE) = 367
EVAPORATIVE ZONE DEPTH = 12.00 INCHES
AVERAGE ANNUAL WIND SPEED = 12.00 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 76.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| FEB/AUG | MAR/SEP | APR/OCT   | MAY/NOV        | JUN/DEC             |
|---------|---------|-----------|----------------|---------------------|
|         |         |           |                |                     |
| 1.69    | 1.20    | 1.57      | 3.29           | 3.12                |
| 2.78    | 5.31    | 2.92      | 1.61           | 1.17                |
|         | 1.69    | 1.69 1.20 | 1.69 1.20 1.57 | 1.69 1.20 1.57 3.29 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

|         |         |         | CASE320Y.OUT |         |         |  |  |
|---------|---------|---------|--------------|---------|---------|--|--|
| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT      | MAY/NOV | JUN/DEC |  |  |
|         |         |         |              |         |         |  |  |
| 56.30   | 59.30   | 65.90   | 73.00        | 78.10   | 82.70   |  |  |
| 84.90   | 85.00   | 81.50   | 74.00        | 65.00   | 59.10   |  |  |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

| AVERAGE MONTH        | LY VALUES IN |         | FOR YEARS    |        |         |         |
|----------------------|--------------|---------|--------------|--------|---------|---------|
|                      | 0.000        |         | MAR/SEP      |        | MAY/NOV | JUN/DEC |
| PRECIPITATION        |              |         |              |        |         |         |
|                      | 4 4 5        | 2.02    | 1 05         | 1 12   | 2.41    | 2.71    |
| TOTALS               | 2.43         | 2.02    | 1.05<br>5.38 | 2.30   | 1.33    | 1.18    |
| STD. DEVIATIONS      | 0.63         | 1.18    | 0.55         | 1.20   | 1.88    | 2.04    |
| 11                   | 2.55         | 1.63    | 3.12         | 1.75   |         | 0.85    |
| RUNOFF               |              |         |              |        |         |         |
| TOTALS               | 0.013        | 0.058   | 0.004        | 0.095  | 0.261   | 0.260   |
|                      | 0.358        | 0.176   | 0.733        | 0.155  | 0.067   | 0.017   |
| STD. DEVIATIONS      | 0.038        | 0.074   | 0.007        | 0.221  | 0.486   | 0.324   |
|                      | 0.783        | 0.186   | 0.879        | 0.241  | 0.202   | 0.058   |
| EVAPOTRANSPIRATION   |              |         |              |        |         |         |
| TOTALS               | 0.931        | 2.093   |              |        | 1.993   | 2.121   |
|                      | 2.045        | 1.896   | 3.629        | 2.258  | 1.099   | 1.074   |
| STD. DEVIATIONS      | 0.537        | 0.898   | 0.710        | 0.928  | 1.312   |         |
|                      | 1.629        | 1.315   | 1.227        | 1.202  | 0.786   | 0.593   |
| LATERAL DRAINAGE COL |              | LAYER 4 |              |        |         |         |
| TOTALS               |              | 0.0357  |              | 0.0581 |         |         |
|                      | 0.1587       | 0.1953  | 0.1104       | 0.4160 | 0.4200  | 0.227   |
| STD. DEVIATIONS      |              |         | 0.1437       |        |         |         |
|                      | 0.2950       | 0.4190  | 0.2386       | 0.5831 | 0.7316  | 0.415   |
| PERCOLATION/LEAKAGE  | THROUGH LAY  | ER 6    |              |        |         |         |
| TOTALS               | 0.0000       |         | 0.0000       |        |         |         |
|                      | 0.0000       | 0.0000  | 0.0000       | 0.0000 | 0.0000  | 0.000   |
| STD. DEVIATIONS      | 0.0000       |         | 0.0000       |        |         |         |
|                      | 0.0000       | 0.0000  | 0.0000       | 0.0000 | 0.0000  | 0.000   |
|                      |              |         |              |        |         |         |

| AVERAGES        | 0.0010 | 0.0006 | 0.0011 | 0.0009 | 0.0006 | 0.0009 |
|-----------------|--------|--------|--------|--------|--------|--------|
|                 | 0.0023 | 0.0028 | 0.0016 | 0.0059 | 0.0062 | 0.0032 |
| STD. DEVIATIONS | 0.0013 | 0.0009 | 0.0020 | 0.0015 | 0.0010 | 0.0021 |
|                 | 0.0042 | 0.0060 | 0.0035 | 0.0083 | 0.0108 | 0.0059 |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                                            | INC     | HES |          | CU. FEET | PERCENT |
|--------------------------------------------|---------|-----|----------|----------|---------|
|                                            |         |     |          |          |         |
| PRECIPITATION                              | 25.74   | (   | 5.706)   | 93448.9  | 100.00  |
| RUNOFF                                     | 2.197   | (   | 1.2161)  | 7975.32  | 8.534   |
| EVAPOTRANSPIRATION                         | 21.691  | (   | 3.6830)  | 78736.87 | 84.257  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 4 | 1.87134 | (   | 1.53436) | 6792.955 | 7.26917 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6     | 0.00000 | (   | 0.00000) | 0.004    | 0.0000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 5          | 0.002 ( |     | 0.002)   |          |         |
| CHANGE IN WATER STORAGE                    | -0.015  | (   | 0.5521)  | -56.24   | -0.060  |

| PEAK DAILY VALUES FOR YEARS                              | 1 THROUGH | 20        |
|----------------------------------------------------------|-----------|-----------|
|                                                          | (INCHES)  | (CU. FT.) |
| PRECIPITATION                                            | 5.07      | 18404.102 |
| RUNOFF                                                   | 2.106     | 7646.4312 |
| DRAINAGE COLLECTED FROM LAYER 4                          | 0.16174   | 587.13318 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                      | 0.000000  | 0.00007   |
| AVERAGE HEAD ON TOP OF LAYER 5                           | 0.071     |           |
| MAXIMUM HEAD ON TOP OF LAYER 5                           | 0.142     |           |
| OCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN) | 2.9 FEET  |           |
| SNOW WATER                                               | 0.00      | 0.0000    |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                        | 0.        | 3893      |
| 1.E.C                                                    | Page      | 5         |

MINIMUM VEG. SOIL WATER (VOL/VOL)

0.1490

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| ************************ | ****** | *** |
|--------------------------|--------|-----|
|                          |        |     |

| <br>FINAL WATER | STORAGE AT ENI | O OF YEAR 20 |  |
|-----------------|----------------|--------------|--|
| LAYER           | (INCHES)       | (VOL/VOL)    |  |
| 1               | 1.4394         | 0.2399       |  |
| 2               | 517.3019       | 0.2913       |  |
| 3               | 7.7040         | 0.3210       |  |
| 4               | 0.0020         | 0.0100       |  |
| 5               | 0.0000         | 0.0000       |  |
| 6               | 0.1800         | 0.7500       |  |
| SNOW WATER      | 0.000          |              |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# **APPENDIX B.6** HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 4-**LOCATION 4**



#### CASE420Y, OUT

| •                                 |                                                    |         |
|-----------------------------------|----------------------------------------------------|---------|
| *****                             | \$************************************             | *****   |
| ****                              | <b>6. 张水岑宋水安水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水</b> | ******* |
| **                                |                                                    | **      |
| **                                |                                                    | **      |
| **                                | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE      | **      |
| **                                | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)          | **      |
| **                                | DEVELOPED BY ENVIRONMENTAL LABORATORY              | **      |
| **                                | USAE WATERWAYS EXPERIMENT STATION                  | **      |
| **                                | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY    | **      |
| **                                |                                                    | **      |
| **                                |                                                    | **      |
| ******                            | ·************************************              | *****   |
| the dealers of the dealers of the |                                                    |         |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS020Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV20Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE4.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE420Y.OUT

TIME: 17: 0 DATE: 3/13/2017

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE 4 (LOCATION 4)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

# LAYER 1

## TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 6.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.2210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00

FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1944.00 INCHES

Part III

CASE420Y.OUT

0.6710 VOL/VOL POROSITY FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2914 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

### LAYER 3

## TYPE 1 - VERTICAL PERCOLATION LAYER

### MATERIAL TEXTURE NUMBER 13

24.00 INCHES THICKNESS = POROSITY 0.4300 VOL/VOL = 0.3210 VOL/VOL FIELD CAPACITY WILTING POINT = 0.2210 VOL/VOL WILTING POINT = 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3246 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

#### LAYER 4

# TYPE 2 - LATERAL DRAINAGE LAYER

### MATERIAL TEXTURE NUMBER 20

THICKNESS 0.20 INCHES 0.8500 VOL/VOL = POROSITY FIELD CAPACITY = 0.0100 VOL/VOL 0.0050 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.0206 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE 2.00 PERCENT DRAINAGE LENGTH 500.0 FEET

### LAYER 5

# TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35 0.06 INCHES =

POROSITY 0.0000 VOL/VOL = 0.0000 VOL/VOL FIELD CAPACITY WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.19999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

= 3 - GOOD FML PLACEMENT QUALITY

THICKNESS

## LAYER 6

# TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXTURE NUMBER 17

0.24 INCHES THICKNESS = POROSITY 0.7500 VOL/VOL FIELD CAPACITY 0.7470 VOL/VOL =

WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 4.% AND A SLOPE LENGTH OF 600. FEET.

| SCS RUNOFF CURVE NUMBER     | =         | 88.00   |             |
|-----------------------------|-----------|---------|-------------|
| FRACTION OF AREA ALLOWING R | UNOFF =   | 80.0    | PERCENT     |
| AREA PROJECTED ON HORIZONTA | L PLANE = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH      | =         | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIV | E ZONE =  | 1.920   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE  | STORAGE = | 6.606   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE  | STORAGE = | 1.788   | INCHES      |
| INITIAL SNOW WATER          | 823       | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATE | RIALS =   | 575.790 | INCHES      |
| TOTAL INITIAL WATER         | =         | 575.790 | INCHES      |
| TOTAL SUBSURFACE INFLOW     | =         | 0.00    | INCHES/YEAR |

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

| STATION LATITUDE                      | = | 27.77 | DEGREES |
|---------------------------------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX               | = | 2.00  |         |
| START OF GROWING SEASON (JULIAN DATE) | = | 0     |         |
| END OF GROWING SEASON (JULIAN DATE)   | = | 367   |         |
| EVAPORATIVE ZONE DEPTH                | = | 12.0  | INCHES  |
| AVERAGE ANNUAL WIND SPEED             | = | 12.00 | MPH     |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 78.00 | %       |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JUC/NAC | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

|         |                  |         |         | CASE420Y.OUT |         |  |
|---------|------------------|---------|---------|--------------|---------|--|
| JUC/NAC | UL FEB/AUG MAR/S | MAR/SEP | APR/OCT | MAY/NOV      | JUN/DEC |  |
|         |                  |         |         |              |         |  |
| 56.30   | 59.30            | 65.90   | 73.00   | 78.10        | 82.70   |  |
| 84.90   | 85.00            | 81.50   | 74.00   | 65.00        | 59.10   |  |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

| AVERAGE MONTH        |         |         |         |         | OUGH 20 |        |
|----------------------|---------|---------|---------|---------|---------|--------|
|                      | JAN/JUL |         | MAR/SEP | APR/OCT | MAY/NOV | JUN/DE |
| PRECIPITATION        |         |         |         |         |         |        |
|                      |         |         |         |         |         |        |
| TOTALS               | 1.15    |         |         | 1.42    | 2.41    | 2.71   |
|                      | 2.43    | 2.37    | 5.38    | 2.30    | 1.33    | 1.18   |
| STD. DEVIATIONS      | 0.63    | 1.18    | 0.55    | 1.20    | 1.88    | 2.04   |
|                      | 2.55    | 1.63    | 3.12    | 1.75    | 1.17    | 0.85   |
| RUNOFF               |         |         |         |         |         |        |
| TOTALS               | 0.010   | 0.044   | 0.002   | 0.080   | 0.229   | 0.22   |
| TOTALS               | 0.322   | 0.145   | 0.650   | 0.131   | 0.058   | 0.01   |
| STD. DEVIATIONS      | 0.032   | 0.059   | 0.004   | 0.198   | 0.452   | 0.28   |
|                      | 0.721   | 0.160   | 0.809   | 0.208   | 0.182   | 0.04   |
| EVAPOTRANSPIRATION   |         |         |         |         |         |        |
| TOTALS               | 0.926   | 2.091   | 1.307   | 1.259   | 2.002   | 2.14   |
|                      | 2.063   | 1.908   | 3.649   | 2.262   | 1.101   | 1.08   |
| STD. DEVIATIONS      | 0.553   | 0.908   | 0.722   | 0.938   | 1.315   | 1.39   |
|                      | 1.651   | 1.324   | 1.215   | 1.209   | 0.795   | 0.58   |
| LATERAL DRAINAGE COL |         | LAYER 4 |         |         |         |        |
| TOTALS               | 0.0726  | 0.0392  | 0.0796  | 0.0589  | 0.0482  | 0.07   |
|                      | 0.1774  | 0.2168  | 0.1255  | 0.4497  | 0.4595  | 0.25   |
| STD. DEVIATIONS      | 0.0955  | 0.0557  | 0.1545  | 0.1063  | 0.0799  | 0.15   |
|                      | 0.3182  | 0.4582  | 0.2771  | 0.6082  | 0.7549  | 0.45   |
| PERCOLATION/LEAKAGE  |         |         |         |         |         |        |
| TOTALS               | 0.0000  |         | 0.0000  |         |         |        |
|                      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.00   |
| STD. DEVIATIONS      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |        |
|                      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.00   |
|                      |         |         |         |         |         |        |

| AVERAGES        | 0.0010 | 0.0006 | 0.0011 | 0.0009 | 0.0007 | 0.001 |
|-----------------|--------|--------|--------|--------|--------|-------|
|                 | 0.0025 | 0.0031 | 0.0018 | 0.0064 | 0.0068 | 0.003 |
| STD. DEVIATIONS | 0.0014 | 0.0009 | 0.0022 | 0.0016 | 0.0011 | 0.002 |
|                 | 0.0045 | 0.0065 | 0.0041 | 0.0087 | 0.0111 | 0.006 |

|                                            | INC     | HES |          | CU. FEET | PERCENT |
|--------------------------------------------|---------|-----|----------|----------|---------|
| PRECIPITATION                              | 25.74   | (   | 5.706)   | 93448.9  | 100.00  |
| RUNOFF                                     | 1.907   | (   | 1.1083)  | 6921.00  | 7.406   |
| EVAPOTRANSPIRATION                         | 21.787  | (   | 3.6980)  | 79085.98 | 84.630  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 4 | 2.05535 | (   | 1.61442) | 7460.923 | 7.98396 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6     | 0.00000 | (   | 0.00000) | 0.005    | 0.0000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 5          | 0.002 ( |     | 0.002)   |          |         |
| CHANGE IN WATER STORAGE                    | -0.005  | (   | 0.5759)  | -18.99   | -0.020  |

|                                                             | (INCHES) | (CU. FT.) |
|-------------------------------------------------------------|----------|-----------|
| PRECIPITATION                                               | 5.07     | 18404.102 |
| RUNOFF                                                      | 2.016    | 7318.0361 |
| DRAINAGE COLLECTED FROM LAYER 4                             | 0.16131  | 585.57281 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                         | 0.000000 | 0.00007   |
| VERAGE HEAD ON TOP OF LAYER 5                               | 0.071    |           |
| MAXIMUM HEAD ON TOP OF LAYER 5                              | 0.142    |           |
| OCATION OF MAXIMUM HEAD IN LAYER 4<br>(DISTANCE FROM DRAIN) | 1.4 FEET |           |
| SNOW WATER                                                  | 0.00     | 0.0000    |

MINIMUM VEG. SOIL WATER (VOL/VOL)

0.1490

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| •              |                   |
|----------------|-------------------|
| ************** | ***************** |
|                |                   |

| 1.4410      | 0.2402 |  |
|-------------|--------|--|
| 566.3580    |        |  |
|             | 0.2913 |  |
| Description |        |  |
| 7.7040      | 0.3210 |  |
| 0.0020      | 0.0100 |  |
| 0.0000      | 0.0000 |  |
| 0.1800      | 0.7500 |  |
|             |        |  |

# APPENDIX B.7 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 5LOCATION 1



### CASE530Y.OUT

| •                                |                                                 |         |
|----------------------------------|-------------------------------------------------|---------|
| *****                            | ***********************                         | ******  |
| ******                           | ****************                                | ******* |
| **                               |                                                 | **      |
| **                               |                                                 | **      |
| **                               | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **      |
| **                               | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **      |
| **                               | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **      |
| **                               | USAE WATERWAYS EXPERIMENT STATION               | **      |
| **                               | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **      |
| **                               |                                                 | **      |
| **                               |                                                 | **      |
| *****                            | *******************                             | ******* |
| - stantantantantantantantantanta |                                                 | ******* |

TEMPERATURE DATA FILE: SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE5.D10 OUTPUT DATA FILE:

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4 C:\HELP3\MDATA\KGVTE30Y.D7 SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO30Y.D13 EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11 C:\HELP3\MDATA\CASE530Y.OUT

TIME: 8:21 DATE: 3/14/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE 5 (LOCATION 1)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

# LAYER 1

### TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

24.00 INCHES THICKNESS = POROSITY 0.4300 VOL/VOL FIELD CAPACITY 0.3210 VOL/VOL = WILTING POINT 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2719 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS

0.20 INCHES

Part III

CASE530Y.OUT

POROSITY 0.8500 VOL/VOL FIELD CAPACITY 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

2.00 PERCENT

DRAINAGE LENGTH 250.0 FEET

# LAYER 3

### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

= 0.04 INCHES THICKNESS 0.0000 VOL/VOL POROSITY

FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

# LAYER 4

### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

= 0.24 INCHES THICKNESS POROSITY = 0.7500 VUL/VUL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL 0.7500 VOL/VOL POROSITY

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 5

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

= 12.00 INCHES THICKNESS POROSITY 0.4300 VOL/VOL FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 6 -----

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS 690.00 INCHES = POROSITY = 0.6710 VOL/VOL FIELD CAPACITY 0.2920 VOL/VOL

CASE530Y.OUT

WILTING POINT 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# LAYER 7

## TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS 24.00 INCHES 0.4300 VOL/VOL POROSITY FIELD CAPACITY 0.3210 VOL/VOL WILTING POINT 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20

THICKNESS 0.20 INCHES POROSITY 0.8500 VOL/VOL = 0.0100 VOL/VOL FIELD CAPACITY 0.0050 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT, HYD. COND. = 10.0000000000 CM/SEC

2.00 PERCENT SLOPE DRAINAGE LENGTH 250.0 FEET

LAYER 9

TYPE 4 - FLEXIBLE MEMBRANE LINER

= 3 - GOOD

MATERIAL TEXTURE NUMBER 35

0.06 INCHES THICKNESS 0.0000 VOL/VOL POROSTTY FIELD CAPACITY 0.0000 VOL/VOL WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

LAYER 10

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

0.24 INCHES THICKNESS = 0.7500 VOL/VOL POROSITY FIELD CAPACITY 0.7470 VOL/VOL 0.4000 VOL/VOL WILTING POINT 0.7500 VOL/VOL

INITIAL SOIL WATER CONTENT =

FML PLACEMENT QUALITY

CASE530Y.OUT
EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 100. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 85.60   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 100.0   | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.674   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 5.160   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.652   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 219.926 | INCHES      |
| TOTAL INITIAL WATER                | = | 219.926 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |

### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

STATION LATITUDE = 27.77 DEGREES
MAXIMUM LEAF AREA INDEX = 3.50
START OF GROWING SEASON (JULIAN DATE) = 0
END OF GROWING SEASON (JULIAN DATE) = 367
EVAPORATIVE ZONE DEPTH = 12.0 INCHES
AVERAGE ANNUAL WIND SPEED = 12.00 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 76.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JUC/NAC | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
|         |         |         |         | Page 4  |         |

|       |       |       |       | CASE530Y.OU | I     |
|-------|-------|-------|-------|-------------|-------|
| 56.30 | 59.30 | 65.90 | 73.00 | 78.10       | 82.70 |
| 84.90 | 85.00 | 81.50 | 74.00 | 65.00       | 59.10 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

|                                                      | JAN/JUL                                             | FEB/AUG                                                | MAR/SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APR/OCT                              | MAY/NOV                                                  | JUN/DEC                          |
|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------|
| PRECIPITATION                                        |                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                          |                                  |
|                                                      |                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                          |                                  |
| TOTALS                                               | 1.37                                                |                                                        | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.40                                 | 2.51                                                     | 2.59                             |
|                                                      | 2.36                                                | 2.86                                                   | 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.99                                 | 1.49                                                     | 1.25                             |
| STD. DEVIATIONS                                      | 0.81                                                | 1.21                                                   | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.05                                 | 1.80                                                     | 1.82                             |
|                                                      | 2.23                                                | 2.36                                                   | 2.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.90                                 | 1.16                                                     | 0.84                             |
| RUNOFF                                               |                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                          |                                  |
|                                                      | 0 007                                               | 0 000                                                  | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.051                                | 0.100                                                    | 0 17                             |
| TOTALS                                               | 0.007                                               | 0.022                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.051                                |                                                          | 0.174                            |
|                                                      | 0.342                                               | 0.218                                                  | 0.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.191                                | 0.067                                                    | 0.00                             |
| STD. DEVIATIONS                                      | 0.022                                               | 0.041                                                  | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.171                                | 0.500                                                    | 0.24                             |
|                                                      | 0.789                                               | 0.366                                                  | 0.822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.318                                | 0.265                                                    | 0.02                             |
| EVAPOTRANSPIRATION                                   |                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                          |                                  |
| TOTALS                                               | 1.093                                               | 1.768                                                  | 1.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.252                                | 1.966                                                    | 2.07                             |
| **************************************               | 1.754                                               | 2.186                                                  | 3.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.435                                | 1.312                                                    | 1.10                             |
| STD. DEVIATIONS                                      | 0.665                                               | 0.864                                                  | 0.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.803                                | 1.191                                                    | 1.22                             |
|                                                      | 1.256                                               | 1.504                                                  | 1.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.136                                | 0.899                                                    | 0.68                             |
| LATERAL DRAINAGE COLLE                               |                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                          |                                  |
| TOTALS                                               | 0.0698                                              | 0.2237                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0457                               | 0.1805                                                   | 0.33                             |
| TOTALS                                               | 0.3318                                              |                                                        | 2 THE STATE OF STATE | 8 1 1 1 1 1 1 1 1                    |                                                          |                                  |
|                                                      |                                                     | 0.2604                                                 | 0.1270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1234                               | 0.2785                                                   | 0.46                             |
| CTD DEVITATIONS                                      | 0 1215                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 0.2703                                                   | 0.40                             |
| STD. DEVIATIONS                                      |                                                     | 0.5857                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 0.3203                                                   | 0.11                             |
| PERCOLATION/LEAKAGE TH                               | 0.5455<br>HROUGH LAYI                               | 0.5857                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 0.3203                                                   | 0.11                             |
| PERCOLATION/LEAKAGE TH                               | 0.5455<br>HROUGH LAYI                               | 0.5857<br>ER 4                                         | 0.9977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7204                               |                                                          |                                  |
| PERCOLATION/LEAKAGE TH                               | 0.5455<br>HROUGH LAYI                               | 0.5857<br>ER 4<br>                                     | 0.9977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7204                               | 0.0000                                                   | 0.00                             |
| PERCOLATION/LEAKAGE TH<br>TOTALS                     | 0.5455<br>HROUGH LAYI<br>0.0000<br>0.0000           | 0.5857<br>ER 4<br>0.0000<br>0.0000                     | 0.9977<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7204<br>0.0000<br>0.0000           | 0.0000<br>0.0000                                         | 0.00<br>0.00                     |
| PERCOLATION/LEAKAGE TH                               | 0.5455<br>HROUGH LAYI<br>0.0000<br>0.0000           | 0.5857 ER 4 0.0000 0.0000                              | 0.9977<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7204<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000                                         | 0.00<br>0.00                     |
| PERCOLATION/LEAKAGE TH<br>TOTALS                     | 0.5455<br>HROUGH LAYI<br>0.0000<br>0.0000<br>0.0000 | 0.5857 ER 4 0.0000 0.0000 0.0000                       | 0.9977<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7204<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000                                         | 0.00<br>0.00                     |
| PERCOLATION/LEAKAGE THE<br>TOTALS<br>STD. DEVIATIONS | 0.5455 HROUGH LAYI 0.0000 0.0000 0.0000             | 0.5857 ER 4 0.0000 0.0000 0.0000 LAYER 8               | 0.9977<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7204<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.0000                     | 0.00<br>0.00<br>0.00             |
| PERCOLATION/LEAKAGE TH<br>TOTALS<br>STD. DEVIATIONS  | 0.5455<br>HROUGH LAYI<br>0.0000<br>0.0000<br>0.0000 | 0.5857 ER 4 0.0000 0.0000 0.0000 LAYER 8               | 0.9977<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7204<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.0000                     | 0.000<br>0.000<br>0.000<br>0.000 |
| PERCOLATION/LEAKAGE THE<br>TOTALS<br>STD. DEVIATIONS | 0.5455 HROUGH LAYI 0.0000 0.0000 0.0000 0.0000      | 0.5857 ER 4 0.0000 0.0000 0.0000 LAYER 8 0.0000 0.0000 | 0.9977 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7204<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.000<br>0.000<br>0.000<br>0.000 |

|                                                                      |                                                     |                                                  | C                                    | ASE530Y.O                            | UT                                   |                         |
|----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|
|                                                                      | 0.0000                                              | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                   |
| PERCOLATION/LEAKAGE TI                                               | HROUGH LAYE                                         | R 10                                             |                                      |                                      |                                      |                         |
| TOTALS                                                               | 0.0000                                              | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                   |
|                                                                      | 0.0000                                              | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                   |
| STD. DEVIATIONS                                                      | 0.0000                                              | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                   |
|                                                                      | 0.0000                                              | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                   |
|                                                                      |                                                     |                                                  |                                      |                                      |                                      |                         |
| AVERAGES                                                             | OF MONTHLY                                          | AVERAGED                                         | DATLY HE                             | ADS (TNCH                            | =51                                  |                         |
| AVERAGES                                                             | OF MONTHLY                                          | AVERAGED                                         | DAILY HEA                            | ADS (INCH                            | ES)<br>                              |                         |
| AVERAGES                                                             | OF MONTHLY                                          | AVERAGED                                         | DAILY HE                             | ADS (INCHI                           | ES)                                  |                         |
| ,                                                                    |                                                     |                                                  | DAILY HEA                            | ADS (INCHI                           | ES)                                  |                         |
| ,                                                                    |                                                     |                                                  | DAILY HEA                            | ADS (INCHI                           | ES)                                  |                         |
| ,                                                                    |                                                     |                                                  | 0.0008                               | 0.0003                               | 0.0013                               | 0.013                   |
| DAILY AVERAGE HEAD ON                                                | TOP OF LAY                                          | ER 3                                             |                                      |                                      | 90 accepts, 900                      | 0.013<br>0.000          |
| DAILY AVERAGE HEAD ON                                                | TOP OF LAY!                                         | ER 3<br><br>0.0017                               | 0.0008                               | 0.0003                               | 0.0013                               |                         |
| DAILY AVERAGE HEAD ON<br>AVERAGES                                    | TOP OF LAY!<br>0.0005<br>0.0206                     | ER 3<br>0.0017<br>0.0177                         | 0.0008<br>0.1061                     | 0.0003<br>0.0240                     | 0.0013<br>0.0018                     | 0.000                   |
| DAILY AVERAGE HEAD ON AVERAGES STD. DEVIATIONS                       | 0.0005<br>0.0206<br>0.0009<br>0.1028                | ER 3<br><br>0.0017<br>0.0177<br>0.0020<br>0.0537 | 0.0008<br>0.1061<br>0.0009           | 0.0003<br>0.0240<br>0.0009           | 0.0013<br>0.0018<br>0.0020           | 0.000                   |
| DAILY AVERAGE HEAD ON AVERAGES STD. DEVIATIONS                       | 0.0005<br>0.0206<br>0.0009<br>0.1028                | ER 3<br><br>0.0017<br>0.0177<br>0.0020<br>0.0537 | 0.0008<br>0.1061<br>0.0009           | 0.0003<br>0.0240<br>0.0009           | 0.0013<br>0.0018<br>0.0020           | 0.000<br>0.041<br>0.000 |
| DAILY AVERAGE HEAD ON AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON | 0.0005<br>0.0206<br>0.0009<br>0.1028                | ER 3<br>0.0017<br>0.0177<br>0.0020<br>0.0537     | 0.0008<br>0.1061<br>0.0009<br>0.2641 | 0.0003<br>0.0240<br>0.0009<br>0.0529 | 0.0013<br>0.0018<br>0.0020<br>0.0024 | 0.000<br>0.041<br>0.000 |
| DAILY AVERAGE HEAD ON AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON | 0.0005<br>0.0206<br>0.0009<br>0.1028<br>TOP OF LAYI | 0.0017<br>0.0177<br>0.0020<br>0.0537<br>ER 9     | 0.0008<br>0.1061<br>0.0009<br>0.2641 | 0.0003<br>0.0240<br>0.0009<br>0.0529 | 0.0013<br>0.0018<br>0.0020<br>0.0024 | 0.000                   |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                                            | INC     | HES |          | CU. FEET        | PERCENT  |
|--------------------------------------------|---------|-----|----------|-----------------|----------|
| PRECIPITATION                              | 27.20   | (   | 5.704)   | 98722.7         | 100.00   |
| RUNOFF                                     | 1.880   | (   | 1.2157)  | 6825.49         | 6.914    |
| EVAPOTRANSPIRATION                         | 21.749  | (   | 3.7373)  | 78947.65        | 79.969   |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 2 | 3.55912 | (   | 1.91851) | 12919.604       | 13,08676 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 4     | 0.00001 | (   | 0.00001) | 0.023           | 0.00002  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.016 ( |     | 0.026)   |                 |          |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00001 | (   | 0.00001) | 0.022           | 0.00002  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | (   | 0.00000) | 0.001           | 0.0000   |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |     | 0.000)   |                 |          |
| CHANGE IN WATER STORAGE                    | 0.008   | (   | 0.4489)  | 29.91<br>Page 6 | 0.030    |

CASE530Y.OUT

| *********** |  |
|-------------|--|

| •                     |       |
|-----------------------|-------|
| ********************* | k**** |

| PEAK DAILY VALUES FOR YEARS                               | 1 THROUGH | 30         |
|-----------------------------------------------------------|-----------|------------|
|                                                           | (INCHES)  | (CU. FT.)  |
| PRECIPITATION                                             | 5.07      | 18404.102  |
| RUNOFF                                                    | 2.585     | 9382.1035  |
| DRAINAGE COLLECTED FROM LAYER 2                           | 0.91251   | 3312.41650 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4                       | 0.000012  | 0.04380    |
| AVERAGE HEAD ON TOP OF LAYER 3                            | 14.568    |            |
| MAXIMUM HEAD ON TOP OF LAYER 3                            | 18.997    |            |
| LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) | 87.9 FEET |            |
| DRAINAGE COLLECTED FROM LAYER 8                           | 0.00001   | 0.03665    |
| PERCOLATION/LEAKAGE THROUGH LAYER 10                      | 0.000000  | 0.00002    |
| AVERAGE HEAD ON TOP OF LAYER 9                            | 0.000     |            |
| MAXIMUM HEAD ON TOP OF LAYER 9                            | 0.000     |            |
| LOCATION OF MAXIMUM HEAD IN LAYER 8 (DISTANCE FROM DRAIN) | 0.0 FEET  |            |
| SNOW WATER                                                | 0.02      | 73.7433    |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.4       | 4285       |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.3       | 2210       |
|                                                           |           |            |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FINAL WATER STORAGE AT END OF YEAR 30

LAYER (INCHES) (VOL/VOL)

1 6.7730 0.2822

|            |          | CASE530Y.OUT |
|------------|----------|--------------|
| 2          | 0.0020   | 0.0100       |
| 3          | 0.0000   | 0.0000       |
| 4          | 0.1800   | 0.7500       |
| 5          | 3.8520   | 0.3210       |
| 6          | 201.4800 | 0.2920       |
| 7          | 7.7040   | 0.3210       |
| 8          | 0.0020   | 0.0100       |
| 9          | 0.0000   | 0.0000       |
| 10         | 0.1800   | 0.7500       |
| SNOW WATER | 0.000    |              |

# APPENDIX B.8 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 6LOCATION 2



### CASE630Y.OUT

| •       |                                                 |         |
|---------|-------------------------------------------------|---------|
| ******* | *********************                           | ******  |
| ******  | ****************                                | *****   |
| **      |                                                 | **      |
| **      |                                                 | **      |
| **      | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **      |
| **      | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **      |
| **      | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **      |
| **      | USAE WATERWAYS EXPERIMENT STATION               | **      |
| **      | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **      |
| **      |                                                 | **      |
| **      |                                                 | **      |
| ******  | ******************                              | ******  |
| ******* | *******************                             | k****** |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4 C:\HELP3\MDATA\KGVTE30Y.D7 TEMPERATURE DATA FILE: SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO30Y.D13 EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11 SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE6.D10 OUTPUT DATA FILE: C:\HELP3\MDATA\CASE630Y.OUT

8:29 DATE: 3/14/2017 TIME:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE 6 (LOCATION 2)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

### LAYER 1

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS 24.00 INCHES POROSITY 0.4300 VOL/VOL FIELD CAPACITY 0.3210 VOL/VOL 0.2210 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.2754 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS 0.20 INCHES

CASE630Y.OUT

POROSITY = 0.8500 VOL/VOL |
FIELD CAPACITY = 0.0100 VOL/VOL |
WILTING POINT = 0.0050 VOL/VOL |
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL |
EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 500.0 FEET

# LAYER 3

# TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

THICKNESS = 0.04 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

## LAYER 4

# TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 5

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

THICKNESS = 12.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 6

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 1680.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL

CASE630Y.OUT

WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# LAYER 7

## TYPE 1 - VERTICAL PERCOLATION LAYER

### MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER

## MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 500.0 FEET

## LAYER 9

# TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

### LAYER 10

# TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

CASE630Y.OUT
EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 350. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 84.60   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 100.0   | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.757   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 5.160   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.652   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 509.089 | INCHES      |
| TOTAL INITIAL WATER                | = | 509.089 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |

### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

| STATION LATITUDE                      | = | 27.77 | DEGREES |
|---------------------------------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX               | = | 3.50  |         |
| START OF GROWING SEASON (JULIAN DATE) | = | 0     |         |
|                                       |   | 367   |         |
| EVAPORATIVE ZONE DEPTH                | = | 12.0  | INCHES  |
| AVERAGE ANNUAL WIND SPEED             | = | 12.00 | MPH     |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 78.00 | %       |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 76.00 | %       |
|                                       |   |       |         |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

## NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

## NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
|         |         |         |         | Page 4  |         |

|       |       | CASE630Y.OUT |       |       |       |  |  |
|-------|-------|--------------|-------|-------|-------|--|--|
| 56.30 | 59.30 | 65.90        | 73.00 | 78.10 | 82.70 |  |  |
| 84.90 | 85.00 | 81.50        | 74.00 | 65.00 | 59.10 |  |  |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

|                      | JAN/JUL     | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|----------------------|-------------|---------|---------|---------|---------|---------|
| PRECIPITATION        |             |         |         |         |         |         |
| TOTALS               | 1.37        | 1.81    | 1.19    | 1.40    | 2.51    | 2.59    |
|                      | 2.36        | 2.86    | 5.39    | 2.99    | 1.49    | 1.25    |
| STD. DEVIATIONS      | 0.81        | 1.21    | 0.57    | 1.05    | 1.80    | 1.82    |
|                      | 2.23        | 2.36    | 2.96    | 1.90    | 1.16    | 0.84    |
| RUNOFF               |             |         |         |         |         |         |
| TOTALS               | 0.005       | 0.016   | 0.004   | 0.047   | 0.169   | 0.145   |
| 4, 4,                | 0.325       | 0.191   | 0.568   | 0.161   | 0.044   | 0.004   |
| STD. DEVIATIONS      | 0.016       | 0.032   | 0.020   | 0.171   | 0.495   | 0.206   |
|                      | 0.770       | 0.339   | 0.843   | 0.294   | 0.176   | 0.018   |
| EVAPOTRANSPIRATION   |             |         |         |         |         |         |
| TOTALS               | 1.081       | 1.760   | 1.314   | 1.251   | 1.928   | 2.038   |
|                      | 1.728       | 2.139   | 3.444   | 2.384   | 1.304   | 1.109   |
| STD. DEVIATIONS      | 0.675       | 0.902   | 0.615   | 0.801   | 1.168   | 1.210   |
|                      | 1.204       | 1.461   | 1.229   | 1.106   | 0.896   | 0.689   |
| LATERAL DRAINAGE COL |             | LAYER 2 |         |         |         |         |
| TOTALS               | 0.0809      |         |         |         |         |         |
|                      | 0.3796      | 0.4275  | 0.9447  | 0.7920  | 0.2900  | 0.0857  |
| STD. DEVIATIONS      | 0.1435      | 0.2996  | 0.1230  | 0.1528  | 0.3265  | 0.5469  |
|                      | 0.6067      | 0.6486  | 0.9618  | 0.8406  | 0.4048  | 0.1200  |
| PERCOLATION/LEAKAGE  |             |         |         |         |         |         |
| TOTALS               | 0.0000      | 0.0000  | 0.0000  | 0.0000  |         |         |
|                      | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| STD. DEVIATIONS      | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
|                      | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| LATERAL DRAINAGE COL | LECTED FROM | LAYER 8 |         |         |         |         |
| TOTALS               | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
|                      | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| STD. DEVIATIONS      | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
|                      |             |         |         | Page 5  |         |         |

|                                                                      | CASE630Y.OUT                                        |                                                        |                                      |                                      |                                      |                                  |  |
|----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--|
|                                                                      | 0.0000                                              | 0.0000                                                 | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                            |  |
| PERCOLATION/LEAKAGE TH                                               | HROUGH LAYER                                        | R 10                                                   |                                      |                                      |                                      |                                  |  |
| TOTALS                                                               | 0.0000                                              | 0.0000                                                 | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                            |  |
|                                                                      | 0.0000                                              | 0.0000                                                 | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                            |  |
| STD. DEVIATIONS                                                      | 0.0000                                              | 0.0000                                                 | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                            |  |
|                                                                      | 0.0000                                              | 0.0000                                                 | 0.0000                               | 0.0000                               | 0.0000                               | 0.0000                           |  |
|                                                                      |                                                     |                                                        |                                      |                                      |                                      |                                  |  |
| AVERAGES                                                             | OF MONTHLY                                          | AVERAGED                                               | DAILY HEA                            | ADS (INCH                            | ES)                                  |                                  |  |
| AVERAGES                                                             | OF MONTHLY                                          | AVERAGED                                               | DAILY HEA                            | ADS (INCHI                           | ES)<br>                              |                                  |  |
| AVERAGES                                                             |                                                     |                                                        | DAILY HEA                            | ADS (INCH                            | ES)                                  |                                  |  |
|                                                                      |                                                     |                                                        | 0.0016                               | 0.0008                               | 0.0104                               | 0.058                            |  |
| DAILY AVERAGE HEAD ON                                                | TOP OF LAYI                                         | ER 3                                                   |                                      |                                      |                                      |                                  |  |
| AILY AVERAGE HEAD ON<br>AVERAGES                                     | TOP OF LAY!                                         | ER 3<br>                                               | 0.0016                               | 0.0008                               | 0.0104                               | 0.001                            |  |
| DAILY AVERAGE HEAD ON                                                | TOP OF LAYI<br>0.0012<br>0.0681                     | ER 3<br><br>0.0038<br>0.0899                           | 0.0016<br>0.3548                     | 0.0008<br>0.1774                     | 0.0104<br>0.0241                     | 0.058<br>0.001<br>0.191<br>0.001 |  |
| DAILY AVERAGE HEAD ON<br>AVERAGES                                    | 0.0012<br>0.0681<br>0.0020<br>0.2573                | ER 3<br>0.0038<br>0.0899<br>0.0047<br>0.2432           | 0.0016<br>0.3548<br>0.0017           | 0.0008<br>0.1774<br>0.0022           | 0.0104<br>0.0241<br>0.0324           | 0.001                            |  |
| AZILY AVERAGE HEAD ON AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON | 0.0012<br>0.0681<br>0.0020<br>0.2573                | 0.0038<br>0.0899<br>0.0047<br>0.2432                   | 0.0016<br>0.3548<br>0.0017<br>0.7287 | 0.0008<br>0.1774<br>0.0022<br>0.4575 | 0.0104<br>0.0241<br>0.0324<br>0.1013 | 0.001<br>0.191<br>0.001          |  |
| AXILY AVERAGE HEAD ON  AVERAGES  STD. DEVIATIONS                     | 0.0012<br>0.0681<br>0.0020<br>0.2573                | ER 3<br>0.0038<br>0.0899<br>0.0047<br>0.2432           | 0.0016<br>0.3548<br>0.0017           | 0.0008<br>0.1774<br>0.0022           | 0.0104<br>0.0241<br>0.0324           | 0.001<br>0.191<br>0.001          |  |
| AZILY AVERAGE HEAD ON AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON | 0.0012<br>0.0681<br>0.0020<br>0.2573<br>TOP OF LAYI | 0.0038<br>0.0038<br>0.0899<br>0.0047<br>0.2432<br>ER 9 | 0.0016<br>0.3548<br>0.0017<br>0.7287 | 0.0008<br>0.1774<br>0.0022<br>0.4575 | 0.0104<br>0.0241<br>0.0324<br>0.1013 | 0.001                            |  |

| ************* |  |
|---------------|--|
|               |  |

|                                            | INCHES  |   |          | CU. FEET        | PERCENT  |  |
|--------------------------------------------|---------|---|----------|-----------------|----------|--|
| PRECIPITATION                              | 27.20   | ( | 5.704)   | 98722.7         | 100.00   |  |
| RUNOFF                                     | 1.680   | ( | 1.1902)  | 6099.48         | 6.178    |  |
| EVAPOTRANSPIRATION                         | 21.481  | ( | 3.7202)  | 77976.52        | 78,985   |  |
| LATERAL DRAINAGE COLLECTED FROM LAYER 2    | 4.02954 | ( | 2.05403) | 14627.235       | 14.81649 |  |
| PERCOLATION/LEAKAGE THROUGH LAYER 4        | 0.00002 | ( | 0.00003) | 0.077           | 0.00008  |  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.066 ( |   | 0.096)   |                 |          |  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00002 | ( | 0.00003) | 0.073           | 0.00007  |  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | ( | 0.00000) | 0.004           | 0.00000  |  |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |   | 0.000)   |                 |          |  |
| CHANGE IN WATER STORAGE                    | 0.005   | ( | 0.4311)  | 19.37<br>Page 6 | 0.020    |  |

| PEAK DAILY VALUES FOR YEARS                                  | 1 THROUGH  | 30         |
|--------------------------------------------------------------|------------|------------|
|                                                              |            | (CU. FT.)  |
| PRECIPITATION                                                | 5.07       |            |
| RUNOFF                                                       | 2.585      | 9382.0957  |
| DRAINAGE COLLECTED FROM LAYER 2                              | 0.45365    | 1646.75024 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4                          | 0.000023   | 0.08305    |
| AVERAGE HEAD ON TOP OF LAYER 3                               | 22.812     |            |
| MAXIMUM HEAD ON TOP OF LAYER 3                               | 31.119     |            |
| LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)    | 158.8 FEET |            |
| DRAINAGE COLLECTED FROM LAYER 8                              | 0.00002    | 0.07910    |
| PERCOLATION/LEAKAGE THROUGH LAYER 10                         | 0.000000   | 0.00002    |
| AVERAGE HEAD ON TOP OF LAYER 9                               | 0.000      |            |
| MAXIMUM HEAD ON TOP OF LAYER 9                               | 0.000      |            |
| LOCATION OF MAXIMUM HEAD IN LAYER 8<br>(DISTANCE FROM DRAIN) | 0.0 FEET   | 6          |
| SNOW WATER                                                   | 0.02       | 73.7433    |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FINAL WATER STORAGE AT END OF YEAR 30

LAYER (INCHES) (VOL/VOL)

1 6.7691 0.2820

|            |          | CASE630Y.OUT |
|------------|----------|--------------|
| 2          | 0.0020   | 0.0100       |
| 3          | 0.0000   | 0.0000       |
| 4          | 0.1800   | 0.7500       |
| 5          | 3.8520   | 0.3210       |
| 6          | 490.5600 | 0.2920       |
| 7          | 7.7040   | 0.3210       |
| 8          | 0.0020   | 0.0100       |
| 9          | 0.0000   | 0.0000       |
| 10         | 0.1800   | 0.7500       |
| SNOW WATER | 0.000    |              |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# **APPENDIX B.9** HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 7-**LOCATION 3**



| •     |                                                 |        |        |
|-------|-------------------------------------------------|--------|--------|
| ***** | ****************                                | *****  | *****  |
| ***** | **************                                  | ****** | *****  |
| **    |                                                 |        | **     |
| **    |                                                 |        | **     |
| **    | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   |        | **     |
| **    | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       |        | **     |
| **    | DEVELOPED BY ENVIRONMENTAL LABORATORY           |        | **     |
| **    | USAE WATERWAYS EXPERIMENT STATION               |        | **     |
| **    | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY |        | **     |
| **    |                                                 |        | **     |
| **    |                                                 |        | **     |
| ***** | ***************                                 | ****** | ****** |
| ***** | ***************                                 | ****** | *****  |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVTE30Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS030Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE7.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE730Y.OUT

TIME: 10:27 DATE: 3/3/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE

COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

#### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2734 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES

POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 500.0 FEET

LAYER 3

#### TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 36

THICKNESS = 0.04 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 12.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

LAYER 6

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 1776.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
Page 2

WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# LAYER 7

#### TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 13

 THICKNESS
 =
 24.00
 INCHES

 POROSITY
 =
 0.4300
 VOL/VOL

 FIELD CAPACITY
 =
 0.3210
 VOL/VOL

 WILTING POINT
 =
 0.2210
 VOL/VOL

 INITIAL SOIL WATER CONTENT
 =
 0.3210
 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

#### LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 500.0 FEET

#### LAYER 9

### TYPE 4 - FLEXIBLE MEMBRANE LINER

#### MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

#### LAYER 10

#### TYPE 3 - BARRIER SOIL LINER

#### MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

CASE730Y.OUT
EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

## GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 12.% AND A SLOPE LENGTH OF 200. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 84.80   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 100.0   | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.709   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 5.160   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.652   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 537.073 | INCHES      |
| TOTAL INITIAL WATER                | = | 537.073 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |

#### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

| STATION LATITUDE                     | =   | 27.77 | DEGREES |
|--------------------------------------|-----|-------|---------|
| MAXIMUM LEAF AREA INDEX              | =   | 3.50  |         |
| START OF GROWING SEASON (JULIAN DATE | ) = | 0     |         |
| END OF GROWING SEASON (JULIAN DATE)  |     | 367   |         |
| EVAPORATIVE ZONE DEPTH               | =   | 12.0  | INCHES  |
| AVERAGE ANNUAL WIND SPEED            | =   | 12.00 | MPH     |
| AVERAGE 1ST QUARTER RELATIVE HUMIDIT | Y = | 76.00 | %       |
| AVERAGE 2ND QUARTER RELATIVE HUMIDIT | Y = | 78.00 | %       |
| AVERAGE 3RD QUARTER RELATIVE HUMIDIT | Y = | 76.00 | %       |
| AVERAGE 4TH QUARTER RELATIVE HUMIDIT | Y = | 76.00 | %       |
|                                      |     |       |         |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

#### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

#### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
|         |         |         |         | Page 4  |         |

|       |       |       |       | CASE/304.00 | 1     |
|-------|-------|-------|-------|-------------|-------|
| 56.30 | 59.30 | 65.90 | 73.00 | 78.10       | 82.70 |
| 84.90 | 85.00 | 81.50 | 74.00 | 65.00       | 59.10 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

|                       | JAN/JUL      | FEB/AUG | MAR/SEP      | APR/OCT | MAY/NOV      | JUN/DEC      |
|-----------------------|--------------|---------|--------------|---------|--------------|--------------|
| PRECIPITATION         |              |         |              |         |              | HT TOTO TO   |
|                       |              |         | 101 312      | 1000    | JT 1923 1222 | 2 221        |
| TOTALS                | 1.37<br>2.36 | 1.81    | 1.19<br>5.39 | 1.40    | 2.51<br>1.49 | 2.59<br>1.25 |
| CTD DEVITATIONS       | 0.01         | 1.21    | 0.57         | 1.05    | 1.80         | 1.82         |
| STD. DEVIATIONS       | 0.81<br>2.23 | 2.36    | 2.96         | 1.90    | 1.16         | 0.84         |
| RUNOFF                |              |         |              |         |              |              |
|                       |              |         |              |         |              |              |
| TOTALS                | 0.005        | 0.017   | 0.004        | 0.048   | 0.172        | 0.15         |
|                       | 0.327        | 0.197   | 0.576        | 0.165   | 0.045        | 0.00         |
| STD. DEVIATIONS       | 0.017        | 0.034   | 0.021        | 0.172   | 0.495        | 0.21         |
|                       | 0.771        | 0.344   | 0.849        | 0.296   | 0.177        | 0.019        |
| EVAPOTRANSPIRATION    |              |         |              |         |              |              |
| TOTALS                | 1.078        | 1.759   | 1.312        | 1.250   | 1.927        | 2.03         |
| TOTALS                | 1.733        | 2.138   | 3.441        | 2.378   | 1.302        | 1.11         |
| STD. DEVIATIONS       | 0.678        | 0.893   | 0.613        | 0.800   | 1.166        | 1.21         |
|                       | 1.208        | 1.465   | 1.222        | 1.103   | 0.899        | 0.69         |
| LATERAL DRAINAGE COLI | LECTED FROM  | LAYER 2 |              |         |              |              |
| TOTALS                | 0.0770       | 0.2413  | 0.1130       | 0.0569  | 0.2266       | 0.389        |
|                       | 0.3734       | 0.4229  | 0.9423       | 0.7940  | 0.2864       | 0.08         |
| STD. DEVIATIONS       | 0.1384       | 0.3007  | 0.1237       | 0.1480  | 0.3277       | 0.534        |
|                       | 0.6049       | 0.6418  | 0.9643       | 0.8378  | 0.4003       | 0.12         |
| PERCOLATION/LEAKAGE   | THROUGH LAY  | ER 4    |              |         |              |              |
| TOTALS                | 0.0000       | 0.0000  | 0.0000       | 0.0000  | 0.0000       | 0.00         |
|                       | 0.0000       | 0.0000  | 0.0000       | 0.0000  | 0.0000       | 0.00         |
| STD. DEVIATIONS       | 0.0000       | 0.0000  | 0.0000       | 0.0000  | 0.0000       | 0.00         |
|                       | 0.0000       | 0.0000  | 0.0000       | 0.0000  | 0.0000       | 0.00         |
| LATERAL DRAINAGE COLI |              | LAYER 8 |              |         |              |              |
| TOTALS                | 0.0000       | 0.0000  | 0.0000       | 0.0000  | 0.0000       | 0.000        |
|                       | 0.0000       |         |              |         | 0.0000       | 0.00         |
| STD. DEVIATIONS       | 0.0000       | 0.0000  | 0.0000       | 0.0000  | 0.0000       | 0.000        |
|                       |              |         |              | Page 5  |              |              |

|                                                                |                                                       |                                                  | C                                    | ASE730Y.0                            | UT                                   |                              |
|----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|
|                                                                | 0.0000                                                | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                        |
| PERCOLATION/LEAKAGE                                            | THROUGH LAYE                                          | R 10                                             |                                      |                                      |                                      |                              |
| TOTALS                                                         | 0.0000                                                | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                        |
|                                                                | 0.0000                                                | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                        |
| STD. DEVIATIONS                                                | 0.0000                                                | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.00                         |
|                                                                | 0.0000                                                | 0.0000                                           | 0.0000                               | 0.0000                               | 0.0000                               | 0.00                         |
|                                                                |                                                       |                                                  |                                      |                                      |                                      |                              |
|                                                                |                                                       |                                                  |                                      |                                      |                                      |                              |
| AVERAG                                                         | ES OF MONTHLY                                         | AVERAGED                                         | DAILY HE                             | ADS (INCH                            | ES)                                  |                              |
| AVERAG                                                         | ES OF MONTHLY                                         | AVERAGED                                         | DAILY HE                             | ADS (INCH                            | ES)                                  |                              |
| AVERAG                                                         | ES OF MONTHLY                                         | AVERAGED                                         | DAILY HE                             | ADS (INCH                            | ES)                                  |                              |
| 2                                                              |                                                       |                                                  | DAILY HEA                            | ADS (INCH                            | ES)                                  |                              |
| AVERAGI                                                        |                                                       |                                                  | DAILY HE                             | ADS (INCH                            | ES)                                  |                              |
| 2                                                              |                                                       |                                                  | 0.0016                               | 0.0008                               | 0.0105                               | 0.05                         |
| AILY AVERAGE HEAD (                                            | ON TOP OF LAY                                         | ER 3                                             |                                      |                                      |                                      |                              |
| AILY AVERAGE HEAD (                                            | ON TOP OF LAY                                         | ER 3<br><br>0.0038                               | 0.0016                               | 0.0008                               | 0.0105                               | 0.00                         |
| AILY AVERAGE HEAD (                                            | ON TOP OF LAY<br>0.0011<br>0.0675                     | ER 3<br><br>0.0038<br>0.0853                     | 0.0016<br>0.3606                     | 0.0008<br>0.1844                     | 0.0105<br>0.0215                     | 0.00<br>0.18                 |
| AILY AVERAGE HEAD (                                            | 0.0011<br>0.0675<br>0.0020<br>0.2555                  | ER 3<br><br>0.0038<br>0.0853<br>0.0047<br>0.2308 | 0.0016<br>0.3606<br>0.0018           | 0.0008<br>0.1844<br>0.0022           | 0.0105<br>0.0215<br>0.0325           | 0.00<br>0.18                 |
| AVERAGE HEAD ( AVERAGES  STD. DEVIATIONS  WAILY AVERAGE HEAD ( | 0.0011<br>0.0675<br>0.0020<br>0.2555                  | ER 3<br><br>0.0038<br>0.0853<br>0.0047<br>0.2308 | 0.0016<br>0.3606<br>0.0018           | 0.0008<br>0.1844<br>0.0022           | 0.0105<br>0.0215<br>0.0325           | 0.00<br>0.18<br>0.00         |
| AILY AVERAGE HEAD OF AVERAGES  STD. DEVIATIONS                 | 0.0011<br>0.0075<br>0.0020<br>0.2555<br>ON TOP OF LAY | ER 3  0.0038 0.0853  0.0047 0.2308  ER 9         | 0.0016<br>0.3606<br>0.0018<br>0.7392 | 0.0008<br>0.1844<br>0.0022<br>0.4599 | 0.0105<br>0.0215<br>0.0325<br>0.0994 | 0.00<br>0.18<br>0.00         |
| AVERAGE HEAD ( AVERAGES  STD. DEVIATIONS  WAILY AVERAGE HEAD ( | 0.0011<br>0.0075<br>0.0020<br>0.2555<br>ON TOP OF LAY | ER 3  0.0038 0.0853  0.0047 0.2308  ER 9  0.0000 | 0.0016<br>0.3606<br>0.0018<br>0.7392 | 0.0008<br>0.1844<br>0.0022<br>0.4599 | 0.0105<br>0.0215<br>0.0325<br>0.0994 | 0.05<br>0.00<br>0.18<br>0.00 |

|                                           | INCHES  |   |          | CU. FEET  | PERCENT  |  |
|-------------------------------------------|---------|---|----------|-----------|----------|--|
| RECIPITATION                              | 27.20   | ( | 5.704)   | 98722.7   | 100.00   |  |
| UNOFF                                     | 1.711   | ( | 1.1947)  | 6210.31   | 6.291    |  |
| VAPOTRANSPIRATION                         | 21.470  | ( | 3.7084)  | 77936.37  | 78.945   |  |
| ATERAL DRAINAGE COLLECTED<br>FROM LAYER 2 | 4.00840 | ( | 2.03256) | 14550.508 | 14.73877 |  |
| ERCOLATION/LEAKAGE THROUGH<br>LAYER 4     | 0.00002 | ( | 0.00003) | 0.078     | 0.00008  |  |
| VERAGE HEAD ON TOP<br>OF LAYER 3          | 0.066 ( |   | 0.097)   |           |          |  |
| ATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00002 | ( | 0.00003) | 0.073     | 0.00007  |  |
| ERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | ( | 0.00000) | 0.004     | 0.0000   |  |
| VERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |   | 0.000)   |           |          |  |
| HANGE IN WATER STORAGE                    | 0.007   | ( | 0.4345)  | 25.43     | 0.026    |  |

| <b>^</b>    |         |         |       |
|-------------|---------|---------|-------|
| *********** | ******* | ******* | ***** |
|             |         |         |       |

|   | PEAK DAILY VALUES FOR YEARS                                  | 1 THROUGH  | 30         |
|---|--------------------------------------------------------------|------------|------------|
| - |                                                              |            | (CU. FT.)  |
|   | PRECIPITATION                                                | 5.07       | 18404.102  |
|   | RUNOFF                                                       | 2.585      | 9382.0957  |
|   | DRAINAGE COLLECTED FROM LAYER 2                              | 0.45365    | 1646.75073 |
|   | PERCOLATION/LEAKAGE THROUGH LAYER 4                          | 0.000023   | 0.08307    |
|   | AVERAGE HEAD ON TOP OF LAYER 3                               | 22.816     |            |
|   | MAXIMUM HEAD ON TOP OF LAYER 3                               | 31.124     |            |
|   | LOCATION OF MAXIMUM HEAD IN LAYER 2<br>(DISTANCE FROM DRAIN) | 158.8 FEET |            |
|   | DRAINAGE COLLECTED FROM LAYER 8                              | 0.00002    | 0.07912    |
|   | PERCOLATION/LEAKAGE THROUGH LAYER 10                         | 0.000000   | 0.00002    |
|   | AVERAGE HEAD ON TOP OF LAYER 9                               | 0.000      |            |
|   | MAXIMUM HEAD ON TOP OF LAYER 9                               | 0.000      |            |
|   | LOCATION OF MAXIMUM HEAD IN LAYER 8 (DISTANCE FROM DRAIN)    | 0.0 FEET   |            |
|   | SNOW WATER                                                   | 0.02       | 73.7433    |
|   |                                                              |            |            |
|   | MAXIMUM VEG. SOIL WATER (VOL/VOL)                            | 0.         | 4300       |
|   | MINIMUM VEG. SOIL WATER (VOL/VOL)                            | 0.         | 2210       |
|   |                                                              |            |            |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 30

LAYER (INCHES) (VOL/VOL)

1 6.7714 0.2821

|            |          | CASE730Y.OUT |  |  |
|------------|----------|--------------|--|--|
| 2          | 0.0020   | 0.0100       |  |  |
| 3          | 0.0000   | 0.0000       |  |  |
| 4          | 0.1800   | 0.7500       |  |  |
| 5          | 3.8520   | 0.3210       |  |  |
| 6          | 518.5920 | 0.2920       |  |  |
| 7          | 7.7040   | 0.3210       |  |  |
| 8          | 0.0020   | 0.0100       |  |  |
| 9          | 0.0000   | 0.0000       |  |  |
| 10         | 0.1800   | 0.7500       |  |  |
| SNOW WATER | 0.000    |              |  |  |
|            |          |              |  |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# APPENDIX B.10 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 8LOCATION 4



\*\* \*\* HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) \*\* \*\* \*\* DEVELOPED BY ENVIRONMENTAL LABORATORY \*\* \*\* USAE WATERWAYS EXPERIMENT STATION \*\* \*\* FOR USEPA RISK REDUCTION ENGINEERING LABORATORY \*\* \*\* 

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVTE30Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO30Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE8.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE830Y.OUT

TIME: 8:39 DATE: 3/14/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2733 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES

POROSITY 0.8500 VOL/VOL 0.0100 VOL/VOL FIELD CAPACITY WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

2.00 PERCENT DRAINAGE LENGTH 500.0 FEET

#### LAYER 3

#### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

**THICKNESS** 0.04 INCHES 0.0000 VOL/VOL POROSITY = FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

#### LAYER 4

#### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

0.24 INCHES THICKNESS 0.7500 VOL/VOL POROSITY FIELD CAPACITY = WILTING POINT = INITIAL SOIL WATER CONTENT = 0.7470 VOL/VOL 0.4000 VOL/VOL 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

#### LAYER 5 -----

#### TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

= 12.00 INCHES THICKNESS 0.4300 VOL/VOL POROSITY FIELD CAPACITY 0.3210 VOL/VOL WILTING POINT 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

#### LAYER 6 -----

#### TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

= 1944.00 INCHES **THICKNESS** POROSITY = 0.6710 VOL/VOL FIELD CAPACITY 0.2920 VOL/VOL

0.0770 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

#### LAYER 7 -----

#### TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 13

THICKNESS 24.00 INCHES 0.4300 VOL/VOL POROSITY = FIELD CAPACITY 0.3210 VOL/VOL 0.2210 VOL/VOL = WILTING POINT INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

#### LAYER 8

#### TYPE 2 - LATERAL DRAINAGE LAYER

#### MATERIAL TEXTURE NUMBER 20

THICKNESS 0.20 INCHES 0.8500 VOL/VOL POROSITY = 0 0.0100 VOL/VOL FIELD CAPACITY 0.0050 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

CM/SEC EFFECTIVE SAT. HYD. COND. = 10.0000000000

= 2.00 PERCENT SLOPE DRAINAGE LENGTH 500.0 FEET

#### LAYER 9

### TYPE 4 - FLEXIBLE MEMBRANE LINER

#### MATERIAL TEXTURE NUMBER 35

0.06 INCHES **THICKNESS** POROSITY 0.0000 VOL/VOL = 0.0000 VOL/VOL FIELD CAPACITY WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC = FML PINHOLE DENSITY 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

#### LAYER 10

#### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS 0.24 INCHES 0.7500 VOL/VOL POROSITY 0.7470 VOL/VOL FIELD CAPACITY WILTING POINT 0.4000 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

CASE830Y.OUT
EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

#### GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 4.% AND A SLOPE LENGTH OF 600. FEET.

| SCS RUNOFF CURVE NUMBER            | = 1 | 83.40   |             |
|------------------------------------|-----|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | =   | 100.0   | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | =   | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | =   | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | =   | 2.708   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | =   | 5.160   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | =   | 2.652   | INCHES      |
| INITIAL SNOW WATER                 | =   | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | =   | 586.128 | INCHES      |
| TOTAL INITIAL WATER                | =   | 586.128 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | =   | 0.00    | INCHES/YEAR |

#### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

| STATION LATITUDE                      | =          | 27.77 | DEGREES |
|---------------------------------------|------------|-------|---------|
| MAXIMUM LEAF AREA INDEX               | =          | 3.50  |         |
| START OF GROWING SEASON (JULIAN DATE) | ) =        | 0     |         |
| END OF GROWING SEASON (JULIAN DATE)   | =          | 367   |         |
| EVAPORATIVE ZONE DEPTH                | 8          | 12.0  | INCHES  |
| AVERAGE ANNUAL WIND SPEED             | =          | 12.00 | MPH     |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | <b>/</b> = | 76.00 | %       |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | <b>/</b> = | 78.00 | %       |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | <b>Y</b> = | 76.00 | %       |
| AVERAGE 4TH OUARTER RELATIVE HUMIDITY | / =        | 76.00 | %       |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KINGSVILLE TEXAS

#### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

#### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JUC/NAC | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
|         |         |         |         | Page 4  |         |

|       |       |       |       | CASE830Y.OU | T     |
|-------|-------|-------|-------|-------------|-------|
| 56.30 | 59.30 | 65.90 | 73.00 | 78.10       | 82.70 |
| 84.90 | 85.00 | 81.50 | 74.00 | 65.00       | 59.10 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

|                      |             | N INCHES |         |         |         |         |
|----------------------|-------------|----------|---------|---------|---------|---------|
|                      | JAN/JUL     | FEB/AUG  | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
| PRECIPITATION        |             |          | X       |         |         |         |
| TOTALS               | 1.37        | 1.81     | 1.19    | 1.40    | 2.51    | 2.59    |
|                      | 2.36        | 2.86     | 5.39    | 2.99    | 1.49    | 1.25    |
| STD. DEVIATIONS      | 0.81        | 1.21     | 0.57    | 1.05    | 1.80    | 1.82    |
|                      | 2.23        | 2.36     | 2.96    | 1.90    | 1.16    | 0.84    |
| RUNOFF               |             |          |         |         |         |         |
| TOTALS               | 0.003       | 0.011    | 0.003   | 0.043   | 0.154   | 0.117   |
| LEANIER III          | 0.320       | 0.167    | 0.536   | 0.138   | 0.039   | 0.002   |
| STD. DEVIATIONS      | 0.012       | 0.024    | 0.015   | 0.167   | 0.494   | 0.168   |
|                      | 0.765       | 0.317    | 0.853   | 0.285   | 0.166   | 0.012   |
| EVAPOTRANSPIRATION   |             |          |         |         |         |         |
| TOTALS               | 1.075       | 1.755    | 1.316   | 1.246   | 1.943   | 2.036   |
|                      | 1.740       | 2.149    | 3.445   | 2.375   | 1.304   | 1.111   |
| STD. DEVIATIONS      | 0.680       | 0.890    | 0.616   | 0.799   | 1.174   | 1,212   |
|                      | 1.225       | 1.476    | 1.225   | 1.098   | 0.904   | 0.695   |
| LATERAL DRAINAGE COL | LECTED FROM | LAYER 2  |         |         |         |         |
| TOTALS               | 0.0871      | 0.2477   | 0.1143  | 0.0601  | 0.2280  | 0.425   |
|                      | 0.3740      | 0.4325   | 0.9802  | 0.8286  | 0.2979  | 0.084   |
| STD. DEVIATIONS      | 0.1585      | 0.3090   | 0.1186  | 0.1609  | 0.3250  |         |
|                      | 0.6004      | 0.6575   | 0.9888  | 0.8731  | 0.4168  | 0.119   |
| PERCOLATION/LEAKAGE  | THROUGH LAY | ER 4     |         |         |         |         |
| TOTALS               | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
|                      | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
| STD. DEVIATIONS      | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
|                      | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
| LATERAL DRAINAGE COL | LECTED FROM | LAYER 8  |         |         |         |         |
| TOTALS               | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
|                      | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
| STD. DEVIATIONS      | 0.0000      | 0.0000   | 0.0000  | 0.0000  | 0.0000  | 0.000   |
|                      |             |          |         | Page 5  |         |         |

|                                                                               |                                                       |                                                      | C                                    | ASE830Y.0                            | UT                                   |                                           |
|-------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
| ¥0                                                                            | 0.0000                                                | 0.0000                                               | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                                     |
| PERCOLATION/LEAKAGE                                                           | THROUGH LAYE                                          | R 10                                                 |                                      |                                      |                                      |                                           |
| TOTALS                                                                        | 0.0000                                                | 0.0000                                               | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                                     |
|                                                                               | 0.0000                                                | 0.0000                                               | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                                     |
| STD. DEVIATIONS                                                               | 0.0000                                                | 0.0000                                               | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                                     |
|                                                                               | 0.0000                                                | 0.0000                                               | 0.0000                               | 0.0000                               | 0.0000                               | 0.000                                     |
|                                                                               |                                                       |                                                      |                                      |                                      |                                      |                                           |
|                                                                               |                                                       |                                                      |                                      |                                      |                                      |                                           |
|                                                                               | S OF MONTHLY                                          |                                                      |                                      | 2.0                                  | 0.0                                  |                                           |
|                                                                               | S OF MONTHLY                                          |                                                      |                                      | 2.0                                  | 0.0                                  |                                           |
|                                                                               |                                                       |                                                      |                                      | 2.0                                  | 0.0                                  |                                           |
|                                                                               |                                                       |                                                      |                                      | 2.0                                  | 0.0                                  |                                           |
|                                                                               |                                                       |                                                      |                                      | 2.0                                  | 0.0                                  | 0.074                                     |
| DAILY AVERAGE HEAD ON                                                         | N TOP OF LAY                                          | ER 3                                                 |                                      |                                      | 3-3                                  |                                           |
| DAILY AVERAGE HEAD ON                                                         | N TOP OF LAY                                          | ER 3<br><br>0.0039                                   | 0.0016                               | 0.0009                               | 0.0104                               | 0.001                                     |
| DAILY AVERAGE HEAD ON<br>AVERAGES                                             | 0.0012<br>0.0679                                      | ER 3<br><br>0.0039<br>0.0824                         | 0.0016<br>0.3707                     | 0.0009<br>0.2120                     | 0.0104<br>0.0248                     | 0.001<br>0.232                            |
| DAILY AVERAGE HEAD OF AVERAGES STD. DEVIATIONS                                | 0.0012<br>0.0679<br>0.0023<br>0.2719                  | ER 3<br>0.0039<br>0.0824<br>0.0048<br>0.2347         | 0.0016<br>0.3707<br>0.0017           | 0.0009<br>0.2120<br>0.0024           | 0.0104<br>0.0248<br>0.0323           | 0.001<br>0.232                            |
| DAILY AVERAGE HEAD OF AVERAGES STD. DEVIATIONS                                | 0.0012<br>0.0679<br>0.0023<br>0.2719                  | ER 3<br>0.0039<br>0.0824<br>0.0048<br>0.2347         | 0.0016<br>0.3707<br>0.0017           | 0.0009<br>0.2120<br>0.0024           | 0.0104<br>0.0248<br>0.0323           | 0.001<br>0.232<br>0.001                   |
| AVERAGE HEAD ON<br>AVERAGES  STD. DEVIATIONS  DAILY AVERAGE HEAD ON           | 0.0012<br>0.0679<br>0.0023<br>0.2719                  | ER 3<br>0.0039<br>0.0824<br>0.0048<br>0.2347         | 0.0016<br>0.3707<br>0.0017<br>0.7766 | 0.0009<br>0.2120<br>0.0024<br>0.4906 | 0.0104<br>0.0248<br>0.0323<br>0.1168 | 0.001<br>0.232<br>0.001                   |
| DAILY AVERAGE HEAD ON<br>AVERAGES<br>STD. DEVIATIONS<br>DAILY AVERAGE HEAD ON | 0.0012<br>0.0679<br>0.0023<br>0.2719<br>N TOP OF LAY! | er 3<br>0.0039<br>0.0824<br>0.0048<br>0.2347<br>Er 9 | 0.0016<br>0.3707<br>0.0017<br>0.7766 | 0.0009<br>0.2120<br>0.0024<br>0.4906 | 0.0104<br>0.0248<br>0.0323<br>0.1168 | 0.074<br>0.001<br>0.232<br>0.001<br>0.000 |

|                                            | INC     | HES |          | CU. FEET  | PERCENT  |
|--------------------------------------------|---------|-----|----------|-----------|----------|
| PRECIPITATION                              | 27.20   | (   | 5.704)   | 98722.7   | 100.00   |
| RUNOFF                                     | 1.533   | (   | 1.1930)  | 5565.96   | 5.638    |
| EVAPOTRANSPIRATION                         | 21.495  | (   | 3.7381)  | 78026.06  | 79.036   |
| LATERAL DRAINAGE COLLECTED FROM LAYER 2    | 4.16123 | (   | 2.10988) | 15105.281 | 15.30072 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4        | 0.00002 | (   | 0.00003) | 0.083     | 0.00008  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.071 ( |     | 0.104)   |           |          |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00002 | (   | 0.00003) | 0.079     | 0.00008  |
| PERCOLATION/LEAKAGE THROUGH LAYER 10       | 0.00000 | (   | 0.00000) | 0.004     | 0.00000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |     | 0.000)   |           |          |
| CHANGE IN WATER STORAGE                    | 0.007   | (   | 0.4342)  | 25.30     | 0.026    |

|   | PEAK DAILY VALUES FOR YEARS                               | 1 THROUGH  | 30         |      |
|---|-----------------------------------------------------------|------------|------------|------|
| - |                                                           | (INCHES)   | (CU. FT.)  | #### |
|   | PRECIPITATION                                             | 5.07       | 18404.102  |      |
|   | RUNOFF                                                    | 2.585      | 9382.0947  |      |
|   | DRAINAGE COLLECTED FROM LAYER 2                           | 0.45365    | 1646.74548 |      |
|   | PERCOLATION/LEAKAGE THROUGH LAYER 4                       | 0.000023   | 0.08285    |      |
|   | AVERAGE HEAD ON TOP OF LAYER 3                            | 22.774     |            |      |
|   | MAXIMUM HEAD ON TOP OF LAYER 3                            | 31.078     |            |      |
|   | LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) | 158.7 FEET |            |      |
|   | DRAINAGE COLLECTED FROM LAYER 8                           | 0.00002    | 0.07933    |      |
|   | PERCOLATION/LEAKAGE THROUGH LAYER 10                      | 0.000000   | 0.00002    |      |
|   | AVERAGE HEAD ON TOP OF LAYER 9                            | 0.000      |            |      |
|   | MAXIMUM HEAD ON TOP OF LAYER 9                            | 0.000      |            |      |
|   | LOCATION OF MAXIMUM HEAD IN LAYER 8 (DISTANCE FROM DRAIN) | 0.0 FEET   |            |      |
|   | SNOW WATER                                                | 0.02       | 73.7433    |      |
|   | MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0          | .4300      |      |
|   | MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0          | .2210      |      |
|   |                                                           |            |            |      |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FINAL WATER STORAGE AT END OF YEAR 30

LAYER (INCHES) (VOL/VOL)

1 6.7694 0.2821

|            |          | CASE830Y.OUT |
|------------|----------|--------------|
| 2          | 0.0020   | 0.0100       |
| 3          | 0.0000   | 0.0000       |
| 4          | 0.1800   | 0.7500       |
| 5          | 3.8520   | 0.3210       |
| 6          | 567.6481 | 0.2920       |
| 7          | 7.7040   | 0.3210       |
| 8          | 0.0020   | 0.0100       |
| 9          | 0.0000   | 0.0000       |
| 10         | 0.1800   | 0.7500       |
| SNOW WATER | 0.000    |              |

# HELP MODEL ANALYSIS ALTERNATIVE LINER AND OVERLINER



# APPENDIX B.11 HELP MODEL/MULTIMED MODEL-SUMMARY OF CASES 10L-80L



Project No. 8514-3 Permit Amendment

Description: HELP Model/MULTIMED Model-Summary of Cases 10L-80L

Date: 3/07/17

By: JCG

<u>Case1OL-Interim Landfill (Location 1)</u>- An open landfill with 15.5 feet of insitu pre-Subtitle D waste and liner, 30 inches of cover, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 12 feet of waste with 400 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case2OL-Interim Landfill (Location 2)</u>- An open landfill with 34 feet of insitu pre-Subtitle waste and liner, 30 inches of cover, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 82.5 feet of waste with 400 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case 3OL-Interim Landfill (Location 3)</u>- An open landfill with 37 feet of insitu pre-Subtitle D waste and liner, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 85.5 feet of waste with 400 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case4OL-Interim Landfill (Location 4)</u>- An open landfill with 16 feet of insitu pre-Subtitle D waste and liner, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 119.5 feet of waste with 400 foot drain length at 2%, and 6 inches of daily soil cover.

<u>Case5OL-Closed Landfill (Location 1)</u> - A closed landfill with 15.5 feet of insitu pre-Subtitle D waste and liner, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 12 feet of waste with 400 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

<u>Case6OL-Closed Landfill (Location 2)</u>- A closed landfill with 34 feet of insitu pre-Subtitle D waste and liner, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 82.5 feet of waste with 400 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

<u>Case7OL-Closed Landfill (Location 3)</u>- A closed landfill with 37 feet of insitu pre-Subtitle D waste and liner, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 12 inch protective soil layer (Protective Cover), 85.5 feet of waste with 400 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

<u>Case8OL-Closed Landfill (Location 4)</u>- A closed landfill with 16 feet of insitu pre-Subtitle D waste and liner, a Geosynthetic Clay Liner (GCL), a 60 mil HDPE Flexible Membrane Liner (FML), a Geocomposite drainage layer (Geonet), a 24 inch protective soil layer (Protective Cover), 119.5 feet of waste with 400 foot drain length at 2%, and 12 inches of intermediate cover, a GCL, a 40 mil LLDPE membrane, a Geocomposite drainage layer, and 24 inch erosion cover.

# APPENDIX B.12 HELP MODEL CASE SUMMARY



#### HELP MODEL CASE SUMMARY

| Case<br>Alternative Liner/Overliner                      | Average<br>Precipitation<br>(IN/YR) | Average<br>Runoff<br>(IN/YR) | Average<br>Evapotranspiration | Average Percolation Through Liner (CF/YR) | Peak Percolation Through Liner (CF/DAY) | *Peak Percolation Through Liner (M/YR) |
|----------------------------------------------------------|-------------------------------------|------------------------------|-------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------|
| Interim Landfill HELP Information                        |                                     |                              | 9 =                           |                                           | 1                                       |                                        |
| Location 1 (Case 1OL)  • 12 feet of waste above liner    |                                     |                              |                               | UII                                       |                                         |                                        |
| 15.5 feet of waste below liner                           |                                     | William III                  |                               |                                           |                                         |                                        |
| 20 yr                                                    | 25.74                               | 2.364                        | 21.601                        | 0.004                                     | 0.00007                                 | 1.79E-07                               |
| Location 2 (Case 2OL)  • 82.5 feet of waste above liner  |                                     |                              |                               | 2 8                                       | 1 . 1                                   |                                        |
| 34 feet of waste below liner                             |                                     |                              |                               |                                           |                                         |                                        |
| 20 yr                                                    | 25.74                               | 2.135                        | 21.716                        | 0.004                                     | 0.00006                                 | 1.53E-07                               |
| Location 3 (Case 3OL)  • 85.5 feet of waste above liner  |                                     |                              | - y-                          |                                           |                                         |                                        |
| • 37 feet of waste below liner                           |                                     |                              |                               |                                           |                                         |                                        |
| 20 yr                                                    | 25.74                               | 2.043                        | 21.741                        | 0.004                                     | 0.00006                                 | 1.53E-07                               |
| Location 4 (Case 4OL)  • 119.5 feet of waste above liner |                                     |                              | 7 1                           | e a a                                     | u lk ie                                 |                                        |
| 16 feet of waste below liner                             |                                     |                              |                               |                                           |                                         |                                        |
| 20 yr                                                    | 25.74                               | 1.907                        | 21.787                        | 0.004                                     | 0.00006                                 | 1.53E-07                               |
| Closed Landfill HELP Information                         | 8 2 50 8                            |                              |                               |                                           |                                         |                                        |
| Location 1 (Case 5OL)  • 12 feet of waste above liner    | 45                                  | 12 - 14<br>12 - 14           |                               |                                           | \$1 m."                                 | 11                                     |
| 15.5 feet of waste below liner                           |                                     |                              |                               |                                           |                                         |                                        |
| 30 yr                                                    | 27.20                               | 1.880                        | 21.749                        | 0.001                                     | 0.00002                                 | 5.11E-08                               |
| Location 2 (Case 6OL)  • 82.5 feet of waste above liner  | 22                                  |                              |                               |                                           |                                         |                                        |
| • 34 feet of waste below liner                           |                                     |                              | *                             |                                           | , Y ,                                   |                                        |
| 30 yr                                                    | 27.20                               | 1.723                        | 21.785                        | 0.002                                     | 0.00002                                 | 5.11E-08                               |
| Location 3 (Case 70L)  • 85.5 feet of waste above liner  | 4                                   |                              | - 8                           |                                           | -                                       | , iii                                  |
| 37 feet of waste below liner                             |                                     |                              |                               | N                                         |                                         |                                        |
| 30 yr                                                    | 27.20                               | 1.657                        | 21.773                        | 0.002                                     | 0.00002                                 | 5.11E-08                               |
| Location 4 (Case 8OL)  • 119.5 feet of waste above liner |                                     |                              | 72                            | 4 2 2                                     | W                                       | v = ' '                                |
| • 16 feet of waste below liner                           |                                     | 31                           |                               |                                           |                                         |                                        |
| 30 yr                                                    | 27.20                               | 1.562                        | 21.805                        | 0.002                                     | 0.00002                                 | 5.11E-08                               |

<sup>\*</sup> Determined Using Peak Daily Percolation/Leakage Rate Through GCL and Converted to (M/YR) Example:  $((.00007 \, \text{FT}^3/\text{Day-Acre}) \times (1 \, \text{Acre}/43,560 \, \text{FT}^2) / (1 \, \text{Meter}/3.28 \, \text{FT})) \times (365 \, \text{Days}/1 \, \text{YR}) = 1.79 \times 10^{-7} \, \text{M/YR}$ 

# APPENDIX B.13 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 10L-LOCATION 1



CASE10L.OUT

\*\*\*\* \*\* \*\* HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE \*\* \*\* \*\* HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) \*\* \*\* DEVELOPED BY ENVIRONMENTAL LABORATORY \*\* USAE WATERWAYS EXPERIMENT STATION \*\* FOR USEPA RISK REDUCTION ENGINEERING LABORATORY \*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D4 TEMPERATURE DATA FILE: SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO20Y.D13 EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV20Y.D11 SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE10L.D10 OUTPUT DATA FILE:

C:\HELP3\MDATA\KGVTE20Y.D7

C:\HELP3\MDATA\CASE10L.OUT

TIME: 14:36 DATE: 3/6/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE10L (LOCATION 1) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

#### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS 6.00 INCHES 0.4300 VOL/VOL POROSITY FIELD CAPACITY 0.3210 VOL/VOL WILTING POINT 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

THICKNESS

144.00 INCHES

CASE10L.OUT

POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2837 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

LAYER 3

#### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3242 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

LAYER 4

#### TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0020020020

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC SLOPE = 2.00 PERCENT

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 400.0 FEET

LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES

POROSITY = 0.0000 VOL/VOL

FIELD CAPACITY = 0.0000 VOL/VOL

WILTING POINT = 0.0000 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC

FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

LAYER 6

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL

CASE10L.OUT

WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

#### LAYER 7

#### TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 13

THICKNESS = 30.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

#### LAYER 8

#### TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 18

THICKNESS = 186.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

#### GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 100. FEET.

| SCS RUNOFF CURVE NUMBER            | 8        | 89.50   |             |
|------------------------------------|----------|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | =        | 80.0    | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | =        | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | =        | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | $\equiv$ | 1.886   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | 22       | 6.606   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | =        | 1.788   | INCHES      |
| INITIAL SNOW WATER                 | =        | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | =        | 114.065 | INCHES      |
| TOTAL INITIAL WATER                | =        | 114.065 | INCHES      |
| TOTAL SUBSURFACE INFLOW            | =        | 0.00    | INCHES/YEAR |

#### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

|                                       | CA | CASE10L.OUT |                |  |  |
|---------------------------------------|----|-------------|----------------|--|--|
| STATION LATITUDE                      | =  | 27.77       | <b>DEGREES</b> |  |  |
| MAXIMUM LEAF AREA INDEX               | =  | 2.00        |                |  |  |
| START OF GROWING SEASON (JULIAN DATE) | =  | 0           |                |  |  |
| END OF GROWING SEASON (JULIAN DATE)   | =  | 367         |                |  |  |
| EVAPORATIVE ZONE DEPTH                | =  | 12.0        | INCHES         |  |  |
| AVERAGE ANNUAL WIND SPEED             | =  | 12.00       |                |  |  |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | =  | 76.00       | %              |  |  |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | =  | 78.00       | %              |  |  |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | =  | 76.00       | %              |  |  |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | =  | 76.00       | %              |  |  |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

#### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

#### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 20

|                 | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------|---------|---------|---------|---------|---------|---------|
|                 |         |         |         |         |         |         |
| PRECIPITATION   |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 1.15    | 2.02    | 1.05    | 1.42    | 2.41    | 2.71    |
|                 | 2.43    | 2.37    | 5.38    | 2.30    | 1.33    | 1.18    |
| STD. DEVIATIONS | 0.63    | 1.18    | 0.55    | 1.20    | 1.88    | 2.04    |
|                 | 2.55    | 1.63    | 3.12    | 1.75    | 1.17    | 0.85    |
| RUNOFF          |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 0.015   | 0.067   | 0.006   | 0.103   | 0.278   | 0.282   |
|                 | 0.377   | 0.192   | 0.779   | 0.173   | 0.073   | 0.019   |
| STD. DEVIATIONS | 0.042   | 0.081   | 0.009   | 0.233   | 0.504   | 0.344   |
|                 |         |         |         | Page 4  | 1       |         |

|                       |             |          | (        | CASE1OL.OU | JT     |        |
|-----------------------|-------------|----------|----------|------------|--------|--------|
|                       | 0.815       | 0.200    | 0.918    | 0.257      | 0.214  | 0.065  |
| EVAPOTRANSPIRATION    |             |          |          |            |        |        |
| TOTALS                | 0.927       | 2.081    | 1.305    | 1.245      | 1.981  | 2.108  |
|                       | 2.038       | 1.886    | 3.610    | 2.255      | 1.096  | 1.069  |
| STD. DEVIATIONS       | 0.558       | 0.899    | 0.714    | 0.924      | 1.308  | 1.378  |
|                       | 1.630       | 1.312    | 1.219    | 1.213      | 0.780  | 0.585  |
| LATERAL DRAINAGE COLL | ECTED FROM  | LAYER 4  |          |            |        |        |
| TOTALS                | 0.0557      | 0.0293   | 0.0663   | 0.0567     | 0.0409 | 0.0574 |
|                       | 0.1701      | 0.1696   | 0.1118   | 0.5501     | 0.3280 | 0.1472 |
| STD. DEVIATIONS       | 0.0736      | 0.0491   | 0.1278   | 0.1001     | 0.0685 | 0.1269 |
|                       | 0.2914      | 0.3491   | 0.2088   | 0.8668     | 0.5012 | 0.2297 |
| PERCOLATION/LEAKAGE T | HROUGH LAYE | R 6      |          |            |        |        |
| TOTALS                | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
|                       | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
| STD. DEVIATIONS       | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
|                       | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
| PERCOLATION/LEAKAGE T | HROUGH LAYE | R 8      |          |            | 20     |        |
| TOTALS                | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
|                       | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
| STD. DEVIATIONS       | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
|                       | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000 | 0.000  |
|                       |             |          |          |            |        |        |
| AVERAGES              | OF MONTHLY  | AVERAGED | DAILY HE | ADS (INCH  | ES)    |        |
|                       |             |          |          |            |        |        |
| DAILY AVERAGE HEAD ON | TOP OF LAY  | ER 5     |          |            |        |        |
| AVERAGES              | 0.0006      | 0.0004   | 0.0008   | 0.0007     | 0.0005 | 0.000  |
|                       | 0.0019      | 0.0019   | 0.0013   | 0.0063     | 0.0039 | 0.001  |
| STD. DEVIATIONS       | 0.0008      | 0.0006   | 0.0015   | 0.0012     | 0.0008 | 0.001  |
| )                     | 0.0033      | 0.0040   | 0.0025   | 0.0099     | 0.0059 | 0.002  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| AVERAGE ANNUAL TOTALS &                 | (STD. DEVIAT | IO  | NS) FOR Y | EARS 1 THROUG | GH 20   |
|-----------------------------------------|--------------|-----|-----------|---------------|---------|
|                                         | INCH         | IES |           | CU. FEET      | PERCENT |
| PRECIPITATION                           | 25.74        | (   | 5.706)    | 93448.9       | 100.00  |
| RUNOFF                                  | 2.364        | (   | 1.2831)   | 8580.98       | 9.183   |
| EVAPOTRANSPIRATION                      | 21.601       | (   | 3.6817)   | 78409.91      | 83.907  |
| LATERAL DRAINAGE COLLECTED FROM LAYER 4 | 1.78305      | (   | 1.49648)  | 6472.482      | 6.92623 |

Page 5

|                                        |         |     | CASE     | 10L.OUT |         |
|----------------------------------------|---------|-----|----------|---------|---------|
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6 | 0.00000 | (   | 0.00000) | 0.004   | 0.00000 |
| AVERAGE HEAD ON TOP<br>OF LAYER 5      | 0.002 ( |     | 0.001)   |         |         |
| PERCOLATION/LEAKAGE THROUGH LAYER 8    | 0.00000 | (   | 0.00000) | 0.000   | 0.00000 |
| CHANGE IN WATER STORAGE                | -0.004  | (   | 0.5412)  | -14.46  | -0.015  |
| **********                             | *****   | *** | ******   | ******  | *****   |

| PEAK DAILY VALUES FOR YEARS                               | 1 THROUGH | 20        |    |
|-----------------------------------------------------------|-----------|-----------|----|
|                                                           | (INCHES)  | (CU. FT.) | 50 |
| PRECIPITATION                                             | 5.07      | 18404.102 |    |
| RUNOFF                                                    | 2.156     | 7827.0879 | Ţ) |
| DRAINAGE COLLECTED FROM LAYER 4                           | 0.19851   | 720.60400 |    |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                       | 0.000000  | 0.00007   |    |
| AVERAGE HEAD ON TOP OF LAYER 5                            | 0.070     |           |    |
| MAXIMUM HEAD ON TOP OF LAYER 5                            | 0.139     |           |    |
| LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN) | 4.2 FEET  |           |    |
| PERCOLATION/LEAKAGE THROUGH LAYER 8                       | 0.000000  | 0.00000   |    |
| SNOW WATER                                                | 0.00      | 0.0000    |    |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.3       | 3865      |    |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.3       | 1490      |    |
|                                                           |           |           |    |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| ********* | *******     | *****      | *****       | ****** |
|-----------|-------------|------------|-------------|--------|
|           |             |            |             |        |
|           | FINAL WATER | STORAGE AT | END OF YEAR | 20     |
|           |             |            |             |        |
|           | LAYER       | (INCHES)   | (VOL/VO     | DL)    |
|           |             |            |             |        |

|           |         | CASE10L.OUT |  |
|-----------|---------|-------------|--|
| 1         | 1.4228  | 0.2371      |  |
| 2         | 40.7579 | 0.2830      |  |
| 3         | 7.7040  | 0.3210      |  |
| 4         | 0.0020  | 0.0100      |  |
| 5         | 0.0000  | 0.0000      |  |
| 6         | 0.1800  | 0.7500      |  |
| 7         | 9.6289  | 0.3210      |  |
| 8         | 54.2892 | 0.2919      |  |
| NOW WATER | 0.000   |             |  |
|           |         |             |  |

# APPENDIX B.14 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 2OL-LOCATION 2



CASE2OL.OUT

| •      |                                                 |        |
|--------|-------------------------------------------------|--------|
| ****** | *****************                               | ****** |
| ****** | ***************                                 | *****  |
| **     |                                                 | **     |
| **     |                                                 | **     |
| **     | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **     | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **     | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **     | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **     | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **     |                                                 | **     |
| **     |                                                 | **     |
| *****  | *********************                           | ****** |
| ****** | ******************                              | ****** |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVTE20Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS020Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV20Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE2OL.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE2OL.OUT

TIME: 14:43 DATE: 3/ 6/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

THICKNESS = 6.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2391 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

#### LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 990.00 INCHES

CASE2OL.OUT

POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2909 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

#### LAYER 3

#### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3245 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 4

#### TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0184 VOL/VOL

EFFECTIVE SAT. HYD, COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 400.0 FEET

#### LAYER 5

---

#### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

# LAYER 6

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
Page 2

CASE20L.OUT

0.4000 VOL/VOL 0.7500 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT =

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

### LAYER 7

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

= 30.00 INCHES THICKNESS POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 8

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

= 408.00 INCHES THICKNESS 0.6710 VOL/VOL POROSITY = FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

### GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A

FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.%

AND A SLOPE LENGTH OF 356. FEET.

SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF = 80.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 12.0 INCHES EVAPORATIVE ZONE DEPTH INCHES INITIAL WATER IN EVAPORATIVE ZONE = 2.124 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 6.606 INCHES 1.788 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 426.166 INCHES
TOTAL INITIAL WATER = 426.166 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/ 0.00 INCHES/YEAR

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

CORPUS CHRISTI **TEXAS** 

|                                       | CASE20L.OUT |       |                |  |
|---------------------------------------|-------------|-------|----------------|--|
| STATION LATITUDE                      | =           | 27.77 | <b>DEGREES</b> |  |
| MAXIMUM LEAF AREA INDEX               | =           | 2.00  |                |  |
| START OF GROWING SEASON (JULIAN DATE) | =           | 0     |                |  |
| END OF GROWING SEASON (JULIAN DATE)   | =           | 367   |                |  |
| EVAPORATIVE ZONE DEPTH                | =           | 12.0  | INCHES         |  |
| AVERAGE ANNUAL WIND SPEED             | =           | 12.00 | MPH            |  |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | =           | 76.00 | %              |  |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | æ           | 78.00 | %              |  |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY |             |       | 1000           |  |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | =           | 76.00 | %              |  |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JUC/NAC | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 20

|                 | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------|---------|---------|---------|---------|---------|---------|
|                 |         |         |         |         |         |         |
| PRECIPITATION   |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 1.15    | 2.02    | 1.05    | 1.42    | 2.41    | 2.71    |
|                 | 2.43    | 2.37    | 5.38    | 2.30    | 1.33    | 1.18    |
| STD. DEVIATIONS | 0.63    | 1.18    | 0.55    | 1.20    | 1.88    | 2.04    |
|                 | 2.55    | 1.63    | 3.12    | 1.75    | 1.17    | 0.85    |
| RUNOFF          |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 0.012   | 0.055   | 0.003   | 0.092   | 0.254   | 0.252   |
|                 | 0.350   | 0.170   | 0.716   | 0.149   | 0.066   | 0.016   |
| STD. DEVIATIONS | 0.037   | 0.071   | 0.006   | 0.216   | 0.479   | 0.315   |
|                 |         |         |         | Page 4  | 1       |         |
|                 |         |         |         |         |         |         |

|                        |            |          | (         | CASE20L.OL | JT     |       |
|------------------------|------------|----------|-----------|------------|--------|-------|
|                        | 0.770      | 0.181    | 0.864     | 0.234      | 0.199  | 0.057 |
| EVAPOTRANSPIRATION     |            |          |           |            |        |       |
| TOTALS                 | 0.932      | 2.093    | 1.304     | 1.251      | 1.993  | 2.128 |
| TOTALS                 | 2.048      | 1.899    | 3.628     | 2.264      | 1.098  | 1.076 |
| STD. DEVIATIONS        | 0.540      | 0.899    | 0.714     | 0.930      | 1.317  | 1.382 |
|                        | 1.634      | 1.319    | 1.222     | 1.208      | 0.786  | 0.592 |
| LATERAL DRAINAGE COLLE |            | LAYER 4  |           |            |        |       |
| TOTALS                 | 0.0702     | 0.0321   | 0.0735    | 0.0597     | 0.0436 | 0.067 |
|                        | 0.1643     | 0.1983   | 0.1143    | 0.4356     | 0.4270 | 0.221 |
| STD. DEVIATIONS        | 0.0901     | 0.0515   | 0.1376    | 0.1032     | 0.0709 | 0.144 |
|                        | 0.3053     | 0.4238   | 0.2389    | 0.6078     | 0.7392 | 0.396 |
| PERCOLATION/LEAKAGE TH |            | R 6      |           |            |        |       |
| TOTALS                 | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
|                        | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
| STD. DEVIATIONS        | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
|                        | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
| PERCOLATION/LEAKAGE TH |            | R 8      |           |            |        |       |
| TOTALS                 | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
|                        | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
| STD. DEVIATIONS        | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
|                        | 0.0000     | 0.0000   | 0.0000    | 0.0000     | 0.0000 | 0.000 |
|                        |            |          |           |            |        |       |
| AVERAGES               | OF MONTHLY | AVERAGED | DAILY HEA | ADS (INCH  | ES)    |       |
|                        |            |          |           |            |        |       |
| DAILY AVERAGE HEAD ON  | TOP OF LAY | ER 5     |           |            |        |       |
| AVERAGES               | 0.0008     | 0.0004   | 0.0008    | 0.0007     | 0.0005 | 0.000 |
|                        | 0.0019     | 0.0023   | 0.0013    | 0.0050     | 0.0050 | 0.002 |
| STD. DEVIATIONS        | 0.0010     | 0.0006   | 0.0016    | 0.0012     | 0.0008 | 0.001 |
|                        | 0.0035     | 0.0048   | 0.0028    | 0.0069     | 0.0087 | 0.004 |
| *******                | *******    | *****    | *****     | ******     | ****** | ***** |
|                        |            |          |           |            |        |       |

| AVERAGE ANNUAL TOTALS &                    | (STD. DEVIA | TIC | NS) FOR YE | ARS 1 THROUG | SH 20   |
|--------------------------------------------|-------------|-----|------------|--------------|---------|
|                                            | INC         | HES |            | CU. FEET     | PERCENT |
| PRECIPITATION                              | 25.74       | (   | 5.706)     | 93448.9      | 100.00  |
| RUNOFF                                     | 2.135       | (   | 1.1936)    | 7751.57      | 8.295   |
| EVAPOTRANSPIRATION                         | 21.716      | (   | 3.6903)    | 78829.24     | 84.355  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 4 | 1.90747     | (   | 1.55045)   | 6924.125     | 7.40953 |

Page 5

Part III, Attachment 5, Appendix B,14, p.g.-5

|                                        |         |     | CASE     | 20L.OUT |         |
|----------------------------------------|---------|-----|----------|---------|---------|
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6 | 0.00000 | (   | 0.00000) | 0.004   | 0.00000 |
| AVERAGE HEAD ON TOP<br>OF LAYER 5      | 0.002 ( |     | 0.001)   |         |         |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 8 | 0.00000 | (   | 0.00000) | 0.000   | 0.00000 |
| CHANGE IN WATER STORAGE                | -0.015  | (   | 0.5500)  | -56.04  | -0.060  |
| *********                              | ******  | *** | *****    | ******  | *****   |

| PEAK DAILY VALUES FOR YEARS                               | 1 THROUGH | 20        |
|-----------------------------------------------------------|-----------|-----------|
|                                                           | (INCHES)  | (CU. FT.) |
| PRECIPITATION                                             | 5.07      | 18404.102 |
| RUNOFF                                                    | 2.088     | 7578.4883 |
| DRAINAGE COLLECTED FROM LAYER 4                           | 0.16451   | 597.18555 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                       | 0.000000  | 0.00006   |
| AVERAGE HEAD ON TOP OF LAYER 5                            | 0.058     |           |
| MAXIMUM HEAD ON TOP OF LAYER 5                            | 0.116     |           |
| LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN) | 1.8 FEET  |           |
| PERCOLATION/LEAKAGE THROUGH LAYER 8                       | 0.000000  | 0.00000   |
| SNOW WATER                                                | 0.00      | 0.0000    |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.3       | 3901      |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.3       | 1490      |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| ****** | *******     | *******        | *********** | ****** |
|--------|-------------|----------------|-------------|--------|
|        | FINAL WATER | STORAGE AT END | OF YEAR 20  |        |
|        | LAYER       | (INCHES)       | (VOL/VOL)   |        |
|        | SEEEE.      |                |             |        |
|        |             |                | Page 6      |        |

|            |          | CASE20L.OUT |
|------------|----------|-------------|
| 1          | 1.4393   | 0.2399      |
| 2          | 287.7899 | 0.2907      |
| 3          | 7.7040   | 0.3210      |
| 4          | 0.0020   | 0.0100      |
| 5          | 0.0000   | 0.0000      |
| 6          | 0.1800   | 0.7500      |
| 7          | 9.6295   | 0.3210      |
| 8          | 119.1126 | 0.2919      |
| SNOW WATER | 0.000    |             |

# APPENDIX B.15 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 3OL-LOCATION 3



#### CASE3OL.OUT

| 4      |                                                 |        |
|--------|-------------------------------------------------|--------|
| ****** | ********************                            | ****** |
| *****  | *****************                               | *****  |
| **     |                                                 | **     |
| **     |                                                 | **     |
| **     | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **     | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **     | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **     | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **     | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **     |                                                 | **     |
| **     |                                                 | **     |
| *****  | *********************                           | ****** |
| ****** | *****************                               | *****  |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS020Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV20Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE3OL.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE3OL.OUT

TIME: 14:51 DATE: 3/6/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE3OL (LOCATION 3)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

### LAYER 1

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 6.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2210 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC
OTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

### LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 1026.00 INCHES

CASE3OL.OUT

POROSITY 0.6710 VOL/VOL 0.2920 VOL/VOL FIELD CAPACITY WILTING POINT 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2909 VOL/VOL

= 0.100000005000E-02 CM/SEC EFFECTIVE SAT. HYD. COND.

### LAYER 3

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS 24.00 INCHES 0.4300 VOL/VOL = POROSITY = 0.3210 VOL/VOL FIELD CAPACITY 0.2210 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.3246 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 4

# TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20 0.20 INCHES

THICKNESS POROSITY 0.8500 VOL/VOL FIELD CAPACITY 0.0100 VOL/VOL WILTING POINT 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0184 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

PERCENT SLOPE 2.00 DRAINAGE LENGTH 400.0 FEET

#### LAYER 5 -----

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35

0.06 INCHES THICKNESS 0.0000 VOL/VOL POROSITY FIELD CAPACITY = 0.0000 VOL/VOL 0.0000 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY 1.00 HOLES/ACRE = HOLES/ACRE FML INSTALLATION DEFECTS 2.00

FML PLACEMENT QUALITY = 3 - GOOD

#### LAYER 6 -----

### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS 0.24 INCHES = POROSITY = 0.7500 VOL/VOL FIELD CAPACITY 0.7470 VOL/VOL

CASE3OL.OUT

WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 7

### TYPE 1 - VERTICAL PERCOLATION LAYER

### MATERIAL TEXTURE NUMBER 13

THICKNESS = 30.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 8

# TYPE 1 - VERTICAL PERCOLATION LAYER

### MATERIAL TEXTURE NUMBER 18

THICKNESS = 444.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 220. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 88.50   |             |  |
|------------------------------------|---|---------|-------------|--|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 80.0    | PERCENT     |  |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |  |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |  |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 1.920   | INCHES      |  |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 6.606   | INCHES      |  |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 1.788   | INCHES      |  |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |  |
| INITIAL WATER IN LAYER MATERIALS   | = | 446.987 | INCHES      |  |
| TOTAL INITIAL WATER                | = | 446.987 | INCHES      |  |
| TOTAL SUBSURFACE INFLOW            | = | 0.00    | INCHES/YEAR |  |

#### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

|                                       | CASE3OL.OUT |       |         |  |
|---------------------------------------|-------------|-------|---------|--|
| STATION LATITUDE                      | S.          | 27.77 | DEGREES |  |
| MAXIMUM LEAF AREA INDEX               | =           | 2.00  |         |  |
| START OF GROWING SEASON (JULIAN DATE) | =           | 0     |         |  |
| END OF GROWING SEASON (JULIAN DATE)   | =           | 367   |         |  |
| EVAPORATIVE ZONE DEPTH                | =           | 12.0  | INCHES  |  |
| AVERAGE ANNUAL WIND SPEED             | ==          | 12.00 | MPH     |  |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | =           | 76.00 | %       |  |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | =           | 78.00 | %       |  |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | =           | 76.00 | %       |  |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | =           | 76.00 | %       |  |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |  |
|---------|---------|---------|---------|---------|---------|--|
|         |         |         |         |         |         |  |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |  |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |  |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |  |
|---------|---------|---------|---------|---------|---------|--|
|         |         |         |         |         |         |  |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |  |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |  |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

### AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 20

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                    |           |          | ,5      |         |         |         |
|--------------------|-----------|----------|---------|---------|---------|---------|
|                    | JAN/JUL   | FEB/AUG  | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|                    |           |          |         |         |         |         |
| PRECIPITATION      |           |          |         |         |         |         |
|                    |           |          |         |         |         |         |
| TOTALS             | 1.15      | 2.02     | 1.05    | 1.42    | 2.41    | 2.71    |
|                    | 2.43      | 2.37     | 5.38    | 2.30    | 1.33    | 1.18    |
| STD. DEVIATIONS    | 0.63      | 1.18     | 0.55    | 1.20    | 1.88    | 2.04    |
|                    | 2.55      | 1.63     | 3.12    | 1.75    | 1.17    | 0.85    |
| RUNOFF             |           |          |         |         |         |         |
| Walker and Andrews | a rangran | L. wasan | -       |         |         |         |
| TOTALS             | 0.011     | 0.050    | 0.003   | 0.087   | 0.244   | 0.240   |
|                    | 0.339     | 0.160    | 0.690   | 0.141   | 0.062   | 0.015   |
| STD. DEVIATIONS    | 0.035     | 0.066    | 0.005   | 0.209   | 0.469   | 0.303   |
|                    |           |          |         | Page 4  | 1       |         |

|                                                                                    |                                                                                                                      |                                                                                                  |                                                                                           | ACEDOL OF                                          | rec                                                                       |                                                    |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|
|                                                                                    | 0.752                                                                                                                | 0.173                                                                                            | 0.842                                                                                     | 0.224                                              | 0.191                                                                     | 0.052                                              |
| VAPOTRANSPIRATION                                                                  |                                                                                                                      |                                                                                                  |                                                                                           |                                                    |                                                                           |                                                    |
| TOTALC                                                                             | 0.022                                                                                                                | 2 100                                                                                            | 1 202                                                                                     | 1,256                                              | 1.998                                                                     | 2.129                                              |
| TOTALS                                                                             | 0.923<br>2.050                                                                                                       | 2.100<br>1.905                                                                                   | 1.303<br>3.640                                                                            | 2.259                                              | 1.105                                                                     | 1.073                                              |
|                                                                                    | 2.030                                                                                                                | 1.505                                                                                            | 3.040                                                                                     | 2.233                                              | 1.105                                                                     | 1.075                                              |
| STD. DEVIATIONS                                                                    | 0.556                                                                                                                | 0.908                                                                                            | 0.712                                                                                     | 0.934                                              | 1.314                                                                     | 1.388                                              |
|                                                                                    | 1.630                                                                                                                | 1.324                                                                                            | 1.226                                                                                     | 1.208                                              | 0.790                                                                     | 0.591                                              |
| ATERAL DRAINAGE COLL                                                               | ECTED FROM                                                                                                           | LAYER 4                                                                                          |                                                                                           |                                                    |                                                                           |                                                    |
| TOTALS                                                                             | 0.0699                                                                                                               | 0.0385                                                                                           | 0.0689                                                                                    | 0.0590                                             | 0.0458                                                                    | 0.068                                              |
| ASSEMBLE SECTION                                                                   | 0.1735                                                                                                               | 0.2086                                                                                           | 0.1176                                                                                    | 0.4423                                             | 0.4385                                                                    | 0.233                                              |
| STD. DEVIATIONS                                                                    | 0.0925                                                                                                               | 0.0574                                                                                           | 0.1339                                                                                    | 0.1045                                             | 0.0746                                                                    | 0.148                                              |
| SID. DEVIATIONS                                                                    | 0.3121                                                                                                               | 0.4439                                                                                           | 0.2479                                                                                    | 0.6142                                             | 0.7449                                                                    | 0.421                                              |
|                                                                                    |                                                                                                                      |                                                                                                  |                                                                                           |                                                    |                                                                           |                                                    |
| ERCOLATION/LEAKAGE T                                                               | HROUGH LAYE                                                                                                          | R 6                                                                                              |                                                                                           |                                                    |                                                                           |                                                    |
| TOTALS                                                                             | 0.0000                                                                                                               | 0.0000                                                                                           | 0.0000                                                                                    | 0.0000                                             | 0.0000                                                                    | 0.000                                              |
|                                                                                    | 0.0000                                                                                                               | 0.0000                                                                                           | 0.0000                                                                                    | 0.0000                                             | 0.0000                                                                    | 0.000                                              |
| STD. DEVIATIONS                                                                    | 0.0000                                                                                                               | 0.0000                                                                                           | 0.0000                                                                                    | 0.0000                                             | 0.0000                                                                    | 0.000                                              |
|                                                                                    |                                                                                                                      |                                                                                                  |                                                                                           |                                                    |                                                                           |                                                    |
| 3101 0212112010                                                                    | 0.0000                                                                                                               | 0.0000                                                                                           | 0.0000                                                                                    | 0.0000                                             | 0.0000                                                                    | 0.000                                              |
|                                                                                    | 000000000000000000000000000000000000000                                                                              |                                                                                                  | 0.0000                                                                                    | 0.0000                                             | 0.0000                                                                    | 0.000                                              |
| ERCOLATION/LEAKAGE T                                                               | HROUGH LAYE                                                                                                          | R 8                                                                                              |                                                                                           |                                                    |                                                                           | 0.000                                              |
| ERCOLATION/LEAKAGE T                                                               | HROUGH LAYE                                                                                                          | R 8<br><br>0.0000                                                                                | 0.0000                                                                                    | 0.0000                                             | 0.0000                                                                    | 0.000<br>0.000                                     |
| ERCOLATION/LEAKAGE T                                                               | 0.0000<br>0.0000<br>0.0000                                                                                           | 0.0000<br>0.0000                                                                                 | 0.0000<br>0.0000                                                                          | 0.0000<br>0.0000                                   | 0.0000<br>0.0000                                                          | 0.000<br>0.000                                     |
| ERCOLATION/LEAKAGE T                                                               | 0.0000<br>0.0000<br>0.0000                                                                                           | 0.0000<br>0.0000                                                                                 | 0.0000<br>0.0000<br>0.0000                                                                | 0.0000<br>0.0000<br>0.0000                         | 0.0000<br>0.0000<br>0.0000                                                | 0.000<br>0.000                                     |
| TOTALS STD. DEVIATIONS AVERAGES                                                    | 0.0000<br>0.0000<br>0.0000                                                                                           | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>0.0000<br>0.0000                                      | 0.000<br>0.000                                     |
| TOTALS STD. DEVIATIONS AVERAGES                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>0.0000<br>0.0000                                      | 0.000<br>0.000                                     |
| TOTALS STD. DEVIATIONS AVERAGES                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>0.0000<br>0.0000                                      | 0.000<br>0.000                                     |
| TOTALS STD. DEVIATIONS AVERAGES                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>0.0000<br>0.0000                                      | 0.000<br>0.000<br>0.000                            |
| TOTALS  STD. DEVIATIONS  AVERAGES  VAILY AVERAGE HEAD ON                           | HROUGH LAYER  0.0000  0.0000  0.0000  OF MONTHLY                                                                     | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>AVERAGED                                                 | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000               | 0.0000<br>0.0000<br>0.0000<br>0.0000                                      | 0.000<br>0.000<br>0.000                            |
| TOTALS  STD. DEVIATIONS  AVERAGES  ALLY AVERAGE HEAD ON  AVERAGES                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>TOP OF LAY!                                                        | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>AVERAGED<br>                                             | 0.0000<br>0.0000<br>0.0000<br>DAILY HEA<br>0.0008<br>0.0014                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>ADS (INCHI | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>ES)                               | 0.000<br>0.000<br>0.000<br>0.000                   |
| TOTALS  STD. DEVIATIONS  AVERAGES  VAILY AVERAGE HEAD ON                           | HROUGH LAYER  0.0000  0.0000  0.0000  OF MONTHLY  TOP OF LAYER  0.0008                                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>AVERAGED                                                 | 0.0000<br>0.0000<br>0.0000<br>DAILY HEA                                                   | 0.0000<br>0.0000<br>0.0000<br>ADS (INCH            | 0.0000<br>0.0000<br>0.0000<br>ES)                                         | 0.000<br>0.000<br>0.000<br>0.000<br>0.000          |
| TOTALS  STD. DEVIATIONS  AVERAGES  ALLY AVERAGE HEAD ON  AVERAGES                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0008<br>0.0008<br>0.0020<br>0.0011<br>0.0036 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>AVERAGED<br>ER 5<br>0.0005<br>0.0005<br>0.0005 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>DAILY HEA<br>0.0008<br>0.0014<br>0.0015<br>0.0029 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>ADS (INCHI | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>ES)<br>0.0005<br>0.0052<br>0.0088 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
| TOTALS  STD. DEVIATIONS  AVERAGES  VAILY AVERAGE HEAD ON AVERAGES  STD. DEVIATIONS | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0008<br>0.0008<br>0.0020<br>0.0011<br>0.0036 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>AVERAGED<br>ER 5<br>0.0005<br>0.0005<br>0.0005 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>DAILY HEA<br>0.0008<br>0.0014<br>0.0015<br>0.0029 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>ADS (INCHI | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>ES)<br>0.0005<br>0.0052<br>0.0088 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000          |

| AVERAGE ANNUAL TOTALS & | (STD. DEVIA | TIONS) FOR Y | EARS 1 THROU | GH 20   |
|-------------------------|-------------|--------------|--------------|---------|
|                         | INC         | HES          | CU. FEET     | PERCENT |
| PRECIPITATION           | 25.74       | ( 5.706)     | 93448.9      | 100.00  |
| RUNOFF                  | 2.043       | ( 1.1566)    | 7417.81      | 7.938   |
| EVAPOTRANSPIRATION      | 21.741      | ( 3.6990)    | 78919.84     | 84.452  |

LATERAL DRAINAGE COLLECTED

FROM LAYER 4

1.96422 ( 1.58077)

Page 5

Part III, Attachment 5, Appendix B,15, p.g.-5

7130.124

7.62997

|                                        |         | E30L.OUT |          |        |         |
|----------------------------------------|---------|----------|----------|--------|---------|
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6 | 0.00000 | (        | 0.00000) | 0.004  | 0.00000 |
| AVERAGE HEAD ON TOP<br>OF LAYER 5      | 0.002 ( |          | 0.002)   |        |         |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 8 | 0.00000 | (        | 0.00000) | 0.000  | 0.00000 |
| CHANGE IN WATER STORAGE                | -0.005  | (        | 0.5491)  | -18.84 | -0.020  |
| *********                              | *****   | ***      | *****    | *****  | *****   |

| PEAK DAILY VALUES FOR YEARS                               | 1 THROUGH | 20        |
|-----------------------------------------------------------|-----------|-----------|
|                                                           | (INCHES)  | (CU. FT.) |
| PRECIPITATION                                             | 5.07      | 18404.102 |
| RUNOFF                                                    | 2.060     | 7476.7285 |
| DRAINAGE COLLECTED FROM LAYER 4                           | 0.16176   | 587.17737 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6                       | 0.000000  | 0.00006   |
| AVERAGE HEAD ON TOP OF LAYER 5                            | 0.057     |           |
| MAXIMUM HEAD ON TOP OF LAYER 5                            | 0.113     |           |
| LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN) | 2.4 FEET  |           |
| PERCOLATION/LEAKAGE THROUGH LAYER 8                       | 0.000000  | 0.00000   |
| SNOW WATER                                                | 0.00      | 0.0000    |
|                                                           |           |           |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.        | 3913      |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.        | 1490      |
|                                                           |           |           |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| 6       |            |                 |              |          |
|---------|------------|-----------------|--------------|----------|
| ******* | ******     | *****           | ******       | ******** |
|         |            |                 |              |          |
|         | FINAL WATE | R STORAGE AT EN | O OF YEAR 20 |          |
|         | LAYER      | (INCHES)        | (VOL/VOL)    |          |
|         |            |                 |              |          |
|         |            |                 | Page 6       |          |

|           |          | CASE3OL.OUT |
|-----------|----------|-------------|
| 1         | 1.4410   | 0.2402      |
| 2         | 298.3019 | 0.2907      |
| 3         | 7.7040   | 0.3210      |
| 4         | 0.0020   | 0.0100      |
| 5         | 0.0000   | 0.0000      |
| 6         | 0.1800   | 0.7500      |
| 7         | 9.6295   | 0.3210      |
| 8         | 129.6245 | 0.2919      |
| NOW WATER | 0.000    |             |
|           |          |             |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# APPENDIX B.16 HELP OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 4OLLOCATION 4



CASE40L.OUT

| •      |                                                 |        |
|--------|-------------------------------------------------|--------|
| *****  | ****************                                | ****** |
| ****** | ****************                                | *****  |
| **     |                                                 | **     |
| **     |                                                 | **     |
| **     | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **     | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **     | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **     | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **     | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **     |                                                 | **     |
| **     |                                                 | **     |
| ****** | ********************                            | *****  |
| ****** | *******************                             | ****** |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR20Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVTE20Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS020Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV20Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE40L.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE40L.OUT

TIME: 14:29 DATE: 3/6/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASE40L (LOCATION 4)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE

LAYER 1

COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

WDF 1 VERTICAL DEDCOLATION

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 13

THICKNESS = 6.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC
NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 18

THICKNESS = 1434.00 INCHES

CASE40L.OUT

POROSITY = 0.6710 VOL/VOL = 0.2920 VOL/VOL FIELD CAPACITY WILTING POINT 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2912 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# LAYER 3

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

24.00 INCHES THICKNESS 0.4300 VOL/VOL POROSTTY 0.3210 VOL/VOL FIELD CAPACITY 0.2210 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = 0.3246 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 4

### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

0.20 INCHES THICKNESS = 0.8500 VOL/VOL POROSITY = FIELD CAPACITY = 0.0100 VOL/VOL 0.0050 VOL/VOL 0.0185 VOL/VOL INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. = 10.0000000000

CM/SEC 2.00 PERCENT SLOPE DRAINAGE LENGTH 400.0 FEET

### LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35

= 0.06 INCHES THICKNESS POROSITY 0.0000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC 1.00 FML PINHOLE DENSITY HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

= 3 - GOOD FML PLACEMENT QUALITY

### LAYER 6

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

0.24 INCHES THICKNESS == 0.7500 VOL/VOL POROSITY 0.7470 VOL/VOL FIELD CAPACITY =

CASE40L.OUT

WILTING POINT = 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 7

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 30.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 8

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

 THICKNESS
 =
 192.00
 INCHES

 POROSITY
 =
 0.6710
 VOL/VOL

 FIELD CAPACITY
 =
 0.2920
 VOL/VOL

 WILTING POINT
 =
 0.0770
 VOL/VOL

 INITIAL SOIL WATER CONTENT
 =
 0.2919
 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

### GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 500. FEET.

88.00 SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF = 80.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES = 12.0 INCHES EVAPORATIVE ZONE DEPTH INITIAL WATER IN EVAPORATIVE ZONE = 1.920 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE = 6.606 INCHES 1.788 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 0.000 INCHES INITIAL SNOW WATER INITIAL WATER IN LAYER MATERIALS = 492.539 INCHES = 492,539 INCHES = 0.00 INCHES TOTAL INITIAL WATER INCHES/YEAR TOTAL SUBSURFACE INFLOW

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

|                                       |   | CASE40L.OUT |         |  |
|---------------------------------------|---|-------------|---------|--|
| STATION LATITUDE                      | = | 27.77       | DEGREES |  |
| MAXIMUM LEAF AREA INDEX               | = | 2.00        |         |  |
| START OF GROWING SEASON (JULIAN DATE) | = | 0           |         |  |
| END OF GROWING SEASON (JULIAN DATE)   | = | 367         |         |  |
| EVAPORATIVE ZONE DEPTH                | = | 12.0        | INCHES  |  |
| AVERAGE ANTIONE WITH STEED            | = |             |         |  |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 76.00       | %       |  |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY |   |             |         |  |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 76.00       | %       |  |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 76.00       | %       |  |
|                                       |   |             |         |  |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

| AVEDACE MONTHLY | MALLIES | TM | TNCHES | FOR | VEARS | 1 THROUGH | 20 |
|-----------------|---------|----|--------|-----|-------|-----------|----|

|                 | JAN/JUL      | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |  |
|-----------------|--------------|---------|---------|---------|---------|---------|--|
|                 |              |         |         |         |         |         |  |
| PRECIPITATION   |              |         |         |         |         |         |  |
| TOTALS          | 1.15         | 2.02    | 1.05    | 1.42    | 2.41    | 2.71    |  |
|                 | 2.43         | 2.37    | 5.38    | 2.30    | 1.33    | 1.18    |  |
| CTD DEVITATIONS | 0 62         | 1.18    | 0.55    | 1.20    | 1.88    | 2.04    |  |
| STD. DEVIATIONS | 0.63<br>2.55 | 1.63    | 3.12    | 1.75    | 1.17    | 0.85    |  |
| RUNOFF          |              |         |         |         |         |         |  |
|                 |              |         |         |         |         |         |  |
| TOTALS          | 0.010        | 0.044   | 0.002   | 0.080   | 0.229   | 0.222   |  |
|                 | 0.322        | 0.145   | 0.650   | 0.131   | 0.058   | 0.013   |  |
| STD. DEVIATIONS | 0.032        | 0.059   | 0.004   | 0.198   | 0.452   | 0.284   |  |
|                 |              |         |         | Page 4  | 1       |         |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                            | ASE40L.OU                  | IT                         |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.721                                | 0.160                      | 0.809                      | 0.208                      | 0.182                      | 0.047                                |
| EVAPOTRANSPIRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                            |                            |                            |                            |                                      |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.926                                | 2.091                      | 1.307                      | 1.259                      | 2.002                      | 2.140                                |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.063                                | 1.908                      | 3.649                      | 2.262                      | 1.101                      | 1.080                                |
| The second of th |                                      |                            |                            | 0.000                      |                            | 4 202                                |
| STD. DEVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.553<br>1.651                       | 0.908<br>1.324             | 0.722<br>1.215             | 0.938<br>1.209             | 1.315<br>0.795             | 1.392<br>0.582                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.031                                | 1.524                      | 1.213                      | 1.205                      | 0.755                      | 0.302                                |
| LATERAL DRAINAGE COLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECTED FROM                           | LAYER 4                    |                            |                            |                            |                                      |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0720                               | 0.0389                     | 0.0796                     | 0.0588                     | 0.0484                     | 0.0755                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1785                               | 0.2158                     | 0.1255                     | 0.4555                     | 0.4591                     | 0.2478                               |
| STD. DEVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0945                               | 0.0552                     | 0.1549                     | 0.1061                     | 0.0808                     | 0.1552                               |
| 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3193                               | 0.4566                     | 0.2773                     | 0.6167                     | 0.7573                     | 0.4462                               |
| PERCOLATION/LEAKAGE TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HROUGH LAYE                          | R 6                        |                            |                            |                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                            |                            |                            |                                      |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
| STD. DEVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
| PERCOLATION/LEAKAGE TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HROUGH LAYE                          | R 8                        |                            |                            |                            |                                      |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
| STD. DEVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
| SID. DEVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                               | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                     | 0.0000                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                            |                            |                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                            |                            |                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF MONTHLY                           |                            |                            | 2.0                        | ES)                        |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                            |                            |                            |                                      |
| DAILY AVERAGE HEAD ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOP OF LAY                           | ER 5                       | 8 8                        |                            |                            |                                      |
| DATEL AVERAGE DEAD ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                            |                            |                            |                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                            |                            |                            | 0 0000                               |
| AVERAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0008                               | 0.0005                     | 0.0009                     | 0.0007                     | 0.0006                     |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 0.0005<br>0.0025           | 0.0009<br>0.0015           | 0.0007<br>0.0052           | 0.0006<br>0.0054           |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0008                               |                            |                            |                            | 0.0054<br>0.0009           | 0.0028                               |
| AVERAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0008<br>0.0020                     | 0.0025                     | 0.0015                     | 0.0052                     | 0.0054                     | 0.0028                               |
| AVERAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0008<br>0.0020<br>0.0011<br>0.0036 | 0.0025<br>0.0007<br>0.0052 | 0.0015<br>0.0018<br>0.0033 | 0.0052<br>0.0012<br>0.0070 | 0.0054<br>0.0009<br>0.0089 | 0.0028<br>0.0018<br>0.0051           |
| AVERAGES STD. DEVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0008<br>0.0020<br>0.0011<br>0.0036 | 0.0025<br>0.0007<br>0.0052 | 0.0015<br>0.0018<br>0.0033 | 0.0052<br>0.0012<br>0.0070 | 0.0054<br>0.0009<br>0.0089 | 0.0009<br>0.0028<br>0.0018<br>0.0051 |

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20 CU. FEET PERCENT **INCHES** 100.00 PRECIPITATION 25.74 ( 5.706) 93448.9 1.907 ( 1.1083) 7.406 RUNOFF 6921.00 **EVAPOTRANSPIRATION** 21.787 ( 3.6980) 79085.98 84.630

2.05532 ( 1.61590)

R 4 6 2

LATERAL DRAINAGE COLLECTED

FROM LAYER 4

Page 5

7460.818

7.98385

|                                        |         |     | CASE     | 40L.OUT  |         |
|----------------------------------------|---------|-----|----------|----------|---------|
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 6 | 0.00000 | (   | 0.00000) | 0.004    | 0.00000 |
| AVERAGE HEAD ON TOP<br>OF LAYER 5      | 0.002 ( |     | 0.002)   |          |         |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 8 | 0.00000 | (   | 0.00000) | 0.000    | 0.00000 |
| CHANGE IN WATER STORAGE                | -0.005  | (   | 0.5751)  | -18.88   | -0.020  |
| **********                             | ******  | *** | ******** | ******** | ******  |

|   | PEAK DAILY VALUES FOR YEARS                                  | 1 THROUGH | 20        |
|---|--------------------------------------------------------------|-----------|-----------|
|   |                                                              | (INCHES)  | (CU. FT.) |
| F | PRECIPITATION                                                | 5.07      | 18404.102 |
| F | RUNOFF                                                       | 2.016     | 7318.0361 |
| [ | DRAINAGE COLLECTED FROM LAYER 4                              | 0.16526   | 599.88171 |
| F | PERCOLATION/LEAKAGE THROUGH LAYER 6                          | 0.000000  | 0.00006   |
| ļ | AVERAGE HEAD ON TOP OF LAYER 5                               | 0.058     |           |
| N | MAXIMUM HEAD ON TOP OF LAYER 5                               | 0.115     |           |
| I | LOCATION OF MAXIMUM HEAD IN LAYER 4<br>(DISTANCE FROM DRAIN) | 4.6 FEET  |           |
| F | PERCOLATION/LEAKAGE THROUGH LAYER 8                          | 0.000000  | 0.00000   |
| 9 | SNOW WATER                                                   | 0.00      | 0.0000    |
| ı | MAXIMUM VEG. SOIL WATER (VOL/VOL)                            | e         | 3947      |
| N | MINIMUM VEG. SOIL WATER (VOL/VOL)                            | e         | .1490     |
|   |                                                              |           |           |

\*\*\* Maximum heads are computed using McEnroe's equations. \*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| ******     | *******          | ********** | ******                   |
|------------|------------------|------------|--------------------------|
|            |                  |            |                          |
| FINAL WATE | R STORAGE AT END | OF YEAR 20 |                          |
|            |                  |            |                          |
| LAYER      | (INCHES)         | (VOL/VOL)  |                          |
|            |                  |            |                          |
|            |                  | Page 6     |                          |
|            |                  |            | LAYER (INCHES) (VOL/VOL) |

|            |          | CASE40L.OL | CASE40L.OUT |  |  |  |
|------------|----------|------------|-------------|--|--|--|
| 1          | 1.4410   | 0.2402     |             |  |  |  |
| 2          | 417.4379 | 0.2911     |             |  |  |  |
| 3          | 7.7040   | 0.3210     |             |  |  |  |
| 4          | 0.0020   | 0.0100     |             |  |  |  |
| 5          | 0.0000   | 0.0000     |             |  |  |  |
| 6          | 0.1800   | 0.7500     |             |  |  |  |
| 7          | 9.6289   | 0.3210     |             |  |  |  |
| 8          | 56.0412  | 0.2919     |             |  |  |  |
| SNOW WATER | 0.000    |            |             |  |  |  |
|            |          |            |             |  |  |  |

# APPENDIX B.17 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 5OL-LOCATION 1



CASE5OL.OUT

| A      |                                                 |         |
|--------|-------------------------------------------------|---------|
| *****  | **********************                          | ******  |
| ****** | *****************                               | ******  |
| **     |                                                 | **      |
| **     |                                                 | **      |
| **     | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **      |
| **     | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **      |
| **     | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **      |
| **     | USAE WATERWAYS EXPERIMENT STATION               | **      |
| **     | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **      |
| **     |                                                 | **      |
| **     |                                                 | **      |
| *****  | ******************                              | ******* |
| ****** | ********************                            | *****   |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS030Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE5OL.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE5OL.OUT

TIME: 16: 7 DATE: 3/ 6/2017

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE

LAYER 1

COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2719 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC
NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES

CASE5OL.OUT

 POROSITY
 =
 0.8500 VOL/VOL

 FIELD CAPACITY
 =
 0.0100 VOL/VOL

 WILTING POINT
 =
 0.0050 VOL/VOL

 INITIAL SOIL WATER CONTENT
 =
 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 250.0 FEET

# LAYER 3

# TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

THICKNESS = 0.04 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.39999993000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

# LAYER 4

# TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT, HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 5

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

THICKNESS = 12.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 6

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 144.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
Page 2

CASESOL.OUT

WILTING POINT = 0.0770 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

### LAYER 7

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

= 24.00 INCHES THICKNESS 0.4300 VOL/VOL **POROSITY** 

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20

= 0.20 INCHES **THICKNESS** POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL 0.8500 VOL/VOL

CM/SEC

2.00 PERCENT 250.0 FEET DRAINAGE LENGTH

### LAYER 9

# TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES

POROSITY = 0.0000 VOL/VOL

FIELD CAPACITY = 0.0000 VOL/VOL

WILTING POINT = 0.0000 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

### LAYER 10

### TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXTURE NUMBER 17

0.24 INCHES = THICKNESS 0.7500 VOL/VOL POROSITY 0.7470 VOL/VOL FIELD CAPACITY 0.4000 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

CASE5OL.OUT EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

### LAYER 11

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 30.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

LAYER 12

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 186.00 INCHES

POROSITY = 0.6710 VOL/VOL

FIELD CAPACITY = 0.2920 VOL/VOL

WILTING POINT = 0.0770 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 100. FEET.

SCS RUNOFF CURVE NUMBER = 85.60

FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES
EVAPORATIVE ZONE DEPTH = 12.0 INCHES
INITIAL WATER IN EVAPORATIVE ZONE = 2.674 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 5.160 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE = 2.652 INCHES
INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 124.412 INCHES
TOTAL INITIAL WATER = 124.412 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YEAR

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

STATION LATITUDE = 27.77 DEGREES MAXIMUM LEAF AREA INDEX = 3.50

Page 4

Revision: 0

CASE50L.OUT

START OF GROWING SEASON (JULIAN DATE) = 0
END OF GROWING SEASON (JULIAN DATE) = 367
EVAPORATIVE ZONE DEPTH = 12.0 INCHES
AVERAGE ANNUAL WIND SPEED = 12.00 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 76.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JUC/NAC | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

|                 | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------|---------|---------|---------|---------|---------|---------|
|                 |         |         |         |         |         |         |
| PRECIPITATION   |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 1.37    | 1.81    | 1.19    | 1.40    | 2.51    | 2.59    |
|                 | 2.36    | 2.86    | 5.39    | 2.99    | 1.49    | 1.25    |
| STD. DEVIATIONS | 0.81    | 1.21    | 0.57    | 1.05    | 1.80    | 1.82    |
|                 | 2.23    | 2.36    | 2.96    | 1.90    | 1.16    | 0.84    |
|                 |         |         |         |         |         |         |
| RUNOFF          |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 0.007   | 0.022   | 0.005   | 0.051   | 0.188   | 0.174   |
|                 | 0.342   | 0.218   | 0.608   | 0.191   | 0.067   | 0.007   |
| STD. DEVIATIONS | 0.022   | 0.041   | 0.026   | 0.171   | 0.500   | 0.243   |
|                 | 0.789   | 0.366   | 0.822   | 0.318   | 0.265   | 0.028   |
|                 |         |         |         |         |         |         |

Page 5

Part III, Attachment 5, Appendix B,17, p.g.-5

| EVAPOTRANSPIRATION     |                  |                  | (                | CASE5OL.OL       | JT               |                  |
|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| EVAPOTRANSPIRATION     |                  |                  |                  |                  |                  |                  |
| TOTALS                 | 1.093<br>1.754   | 1.768<br>2.186   | 1.331<br>3.474   | 1.252<br>2.435   | 1.966<br>1.312   | 2.071<br>1.107   |
| STD. DEVIATIONS        | 0.665<br>1.256   | 0.864<br>1.504   | 0.621<br>1.237   | 0.803<br>1.136   | 1.191<br>0.899   | 1.228<br>0.681   |
| LATERAL DRAINAGE COLL  | ECTED FROM       | LAYER 2          |                  |                  |                  |                  |
| TOTALC                 | 0.0698           | 0.2237           | 0.1155           | 0.0457           | 0.1805           | 0.3327           |
| TOTALS                 | 0.3318           | 0.3490           | 0.8839           | 0.7081           | 0.2403           | 0.0780           |
| STD. DEVIATIONS        | 0.1315<br>0.5455 | 0.2604<br>0.5857 | 0.1270<br>0.9977 | 0.1234<br>0.7204 | 0.2785<br>0.3203 | 0.4691<br>0.1153 |
| PERCOLATION/LEAKAGE TI | HROUGH LAYE      | R 4              |                  |                  |                  |                  |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000<br>0.0000 | 0.0000           |
| LATERAL DRAINAGE COLL  | ECTED FROM       | LAYER 8          |                  |                  |                  |                  |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| IOIALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000<br>0.0000 | 0.0000           |
| PERCOLATION/LEAKAGE T  | HROUGH LAYE      | R 10             |                  |                  |                  |                  |
| TOTALE                 | 0 0000           | 0 0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.0000<br>0.0000 | 0.0000           |
| PERCOLATION/LEAKAGE T  | HROUGH LAYE      | R 12             |                  |                  |                  |                  |
| TOTALC                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        |                  |                  |                  |                  |                  |                  |
|                        | OF MONTHLY       |                  |                  |                  |                  |                  |
| · Table of J. 14 A.    |                  |                  |                  |                  |                  |                  |
| DAILY AVERAGE HEAD ON  | TOP OF LAY       | ER 3             |                  |                  |                  |                  |
| AVERAGES               | a aaas           | 0.0017           | 0.0008           | 0.0003           | 0.0013           | 0.013            |
| AVERAGES               | 0.0206           | 0.0177           | 0.1061           |                  | 0.0018           | 0.000            |
| STD. DEVIATIONS        |                  | 0.0020<br>0.0537 | 0.0009<br>0.2641 | 0.0009<br>0.0529 | 0.0020<br>0.0024 | 0.041            |
| DAILY AVERAGE HEAD ON  | TOP OF LAY       | ER 9             |                  |                  |                  |                  |
| AVEDAGEC               | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| AVERAGES               | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                        |                  |                  |                  | Page 6           |                  |                  |
|                        |                  |                  |                  |                  |                  |                  |

| CESOI |  |
|-------|--|

| STD. DEVIATIONS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 6.6666 |
|-----------------|--------|--------|--------|--------|--------|--------|
|                 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

|                                            | INC     | HES |          | CU. FEET  | PERCENT  |
|--------------------------------------------|---------|-----|----------|-----------|----------|
| PRECIPITATION                              | 27.20   | (   | 5.704)   | 98722.7   | 100.00   |
| RUNOFF                                     | 1.880   | (   | 1.2157)  | 6825.49   | 6.914    |
| EVAPOTRANSPIRATION                         | 21.749  | (   | 3.7373)  | 78947.65  | 79.969   |
| LATERAL DRAINAGE COLLECTED FROM LAYER 2    | 3.55912 | (   | 1.91851) | 12919.604 | 13.08676 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 4     | 0.00001 | (   | 0.00001) | 0.023     | 0.00002  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.016 ( |     | 0.026)   |           |          |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00001 | (   | 0.00001) | 0.022     | 0.00002  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | (   | 0.00000) | 0.001     | 0.00000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |     | 0.000)   |           |          |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 12    | 0.00000 | (   | 0.00000) | 0.000     | 0.0000   |
| CHANGE IN WATER STORAGE                    | 0.008   | (   | 0.4489)  | 29.91     | 0.030    |

| PEAK DAILY VALUES FOR YEARS         | 1 THROUGH | 30         |
|-------------------------------------|-----------|------------|
|                                     | (INCHES)  | (CU. FT.)  |
| PRECIPITATION                       | 5.07      | 18404.102  |
| RUNOFF                              | 2.585     | 9382.1035  |
| DRAINAGE COLLECTED FROM LAYER 2     | 0.91251   | 3312.41650 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4 | 0.000012  | 0.04380    |
| AVERAGE HEAD ON TOP OF LAYER 3      | 14.568    |            |
| MAXIMUM HEAD ON TOP OF LAYER 3      | 18.997    |            |
| LOCATION OF MAXIMUM HEAD IN LAYER 2 |           |            |
| (DISTANCE FROM DRAIN)               | 87.9 FEET |            |
|                                     | Page      | 7          |

| CASI | <br>0.00 | MIT. |
|------|----------|------|
|      |          |      |

| DRAINAGE COLLECTED FROM LAYER 8                              | 0.00001  | 0.03665 |
|--------------------------------------------------------------|----------|---------|
| PERCOLATION/LEAKAGE THROUGH LAYER 10                         | 0.000000 | 0.00002 |
| AVERAGE HEAD ON TOP OF LAYER 9                               | 0.000    |         |
| MAXIMUM HEAD ON TOP OF LAYER 9                               | 0.000    |         |
| LOCATION OF MAXIMUM HEAD IN LAYER 8<br>(DISTANCE FROM DRAIN) | 0.0 FEET |         |
| PERCOLATION/LEAKAGE THROUGH LAYER 12                         | 0.000000 | 0.00000 |
| SNOW WATER                                                   | 0.02     | 73.7433 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                            | 0.4285   | 7.      |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                            | 0.2210   | ) and   |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| TTRIAL | LIATED | CTODACE | AT | CILIA | OF | VE AD | 20 |
|--------|--------|---------|----|-------|----|-------|----|
| FINAL  | WAIFR  | STORAGE | AI | EMD   | UF | YEAR  | 30 |

| LAYER      | (INCHES) | (VOL/VOL) |
|------------|----------|-----------|
|            |          |           |
| 1          | 6.7730   | 0.2822    |
| 2          | 0.0020   | 0.0100    |
| 3          | 0.0000   | 0.0000    |
| 4          | 0.1800   | 0.7500    |
| 5          | 3.8520   | 0.3210    |
| 6          | 42.0480  | 0.2920    |
| 7          | 7.7040   | 0.3210    |
| 8          | 0.0020   | 0.0100    |
| 9          | 0.0000   | 0.0000    |
| 10         | 0.1800   | 0.7500    |
| 11         | 9.6289   | 0.3210    |
| 12         | 54.2892  | 0.2919    |
| SNOW WATER | 0.000    |           |
|            |          |           |

|        |         | CASESOL.OUT    |
|--------|---------|----------------|
| ****** | *****   | *************  |
| *****  | ******* | ************** |

# APPENDIX B.18 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 6OL-LOCATION 2



### CASEGOL.OUT

| •       |                                                 |        |      |
|---------|-------------------------------------------------|--------|------|
| *****   | ******************                              | ****** | **** |
| ******  | ****************                                | *****  | **** |
| **      |                                                 |        | **   |
| **      |                                                 |        | **   |
| **      | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   |        | **   |
| **      | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       |        | **   |
| **      | DEVELOPED BY ENVIRONMENTAL LABORATORY           |        | **   |
| **      | USAE WATERWAYS EXPERIMENT STATION               |        | **   |
| **      | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY |        | **   |
| **      |                                                 |        | **   |
| **      |                                                 |        | **   |
| ******* | **************                                  | ****** | **** |
| ******  | ********************                            | ****** | **** |

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVS030Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE6OL.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE6OL.OUT

TIME: 16:16 DATE: 3/ 6/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

TITLE: CITY OF KINGSVILLE SOLID WASTE LANDFILL-CASEGOL (LOCATION 2)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

# LAYER 1

# TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.2722 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.33000003000E-04 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES

CASEGOL.OUT

POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.000000000000 SLOPE = 2.00 PERC CM/SEC

2.00 PERCENT = 250.0 FEET DRAINAGE LENGTH

### LAYER 3

### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

THICKNESS = 0.04 INCHES

POROSITY = 0.0000 VOL/VOL

FIELD CAPACITY = 0.0000 VOL/VOL

WILTING POINT = 0.0000 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC

FML PINHOLE DENSITY = 1.00 HOLES/ACRE

FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

#### LAYER 4 ----

### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

0.24 INCHES **THICKNESS** 0.7500 VOL/VOL POROSITY POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 5

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

= 12.00 INCHES THICKNESS 0.4300 VOL/VOL 

 POROSITY
 =
 0.4300 VOL/VOL

 FIELD CAPACITY
 =
 0.3210 VOL/VOL

 WILTING POINT
 =
 0.2210 VOL/VOL

 INITIAL SOIL WATER CONTENT
 =
 0.3210 VOL/VOL

 POROSITY

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

#### LAYER 6 -----

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

990.00 INCHES THICKNESS = POROSITY = 0.6710 VOL/VOL 0.2920 VOL/VOL FIELD CAPACITY Page 2

Part III, Attachment 5, Appendix B,18, p.g.-2

Part III

CASEGOL.OUT

0.0770 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

#### LAYER 7 -----

### TYPE 1 - VERTICAL PERCOLATION LAYER

### MATERIAL TEXTURE NUMBER 13

24.00 INCHES **THICKNESS** 0.4300 VOL/VOL POROSITY FIELD CAPACITY 0.3210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT HVD COND

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER

# MATERIAL TEXTURE NUMBER 20

0.20 INCHES THICKNESS POROSITY = 0.8500 VOL/VOL 0.0100 VOL/VOL FIELD CAPACITY WILTING POINT 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH 250.0 FEET

#### LAYER 9

### TYPE 4 - FLEXIBLE MEMBRANE LINER

### MATERIAL TEXTURE NUMBER 35

0.06 INCHES THICKNESS = 0.0000 VOL/VOL POROSITY POROSITY = 0.0000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

### LAYER 10

### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS 0.24 INCHES = 0.7500 VOL/VOL POROSITY · I FIELD CAPACITY 0.7470 VOL/VOL WILTING POINT 0.4000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

CASEGOL.OUT
EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

# LAYER 11

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 30.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

# LAYER 12

# TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 408.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

# GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.%

AND A SLOPE LENGTH OF 356. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 84.60   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 100.0   | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.681   | INCHES      |
|                                    | = | 5.160   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.652   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 436.275 | INCHES      |
| TOTAL INITIAL WATER                | = | 436.275 | INCHES      |
| TOTAL SUBSURFACE THELOW            | = | 0.00    | INCHES/YEAR |

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

STATION LATITUDE = 27.77 DEGREES
MAXIMUM LEAF AREA INDEX = 3.50
Page 4

#### CASEGOL.OUT

| START OF GROWING SEASON (JULIAN DATE) | = | 0     |        |
|---------------------------------------|---|-------|--------|
| END OF GROWING SEASON (JULIAN DATE)   | = | 367   |        |
| EVAPORATIVE ZONE DEPTH                | = | 12.0  | INCHES |
| AVERAGE ANNUAL WIND SPEED             | = | 12.00 | MPH    |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 76.00 | %      |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 78,00 | %      |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 76.00 | %      |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 76.00 | %      |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

#### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

## AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                 | JUC/NAC | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |  |
|-----------------|---------|---------|---------|---------|---------|---------|--|
|                 |         |         |         |         |         |         |  |
| PRECIPITATION   |         |         |         |         |         |         |  |
|                 |         |         |         |         |         |         |  |
| TOTALS          | 1.37    | 1.81    | 1.19    | 1.40    | 2.51    | 2.59    |  |
|                 | 2.36    | 2.86    | 5.39    | 2.99    | 1.49    | 1.25    |  |
| STD. DEVIATIONS | 0.81    | 1.21    | 0.57    | 1.05    | 1.80    | 1.82    |  |
|                 | 2.23    | 2.36    | 2.96    | 1.90    | 1.16    | 0.84    |  |
|                 |         |         |         |         |         |         |  |
| RUNOFF          |         |         |         |         |         |         |  |
| TOTALS          | 0.005   | 0.016   | 0.004   | 0.047   | 0.171   | 0.149   |  |
| TOTALS          |         |         |         |         |         | 0.005   |  |
|                 | 0.327   | 0.193   | 0.573   | 0.168   | 0.066   | 0.005   |  |
| STD. DEVIATIONS | 0.018   | 0.033   | 0.020   | 0.170   | 0.498   | 0.215   |  |
|                 | 0.772   | 0.343   | 0.823   | 0.315   | 0.283   | 0.021   |  |
|                 |         |         |         |         |         |         |  |

| CLAR DOTE AMERICA TRANS |                   |                  |                  | ASE60L.OU        | <i>3</i> 1       |                 |
|-------------------------|-------------------|------------------|------------------|------------------|------------------|-----------------|
| EVAPOTRANSPIRATION      |                   |                  |                  |                  |                  |                 |
| TOTALS                  | 1.096<br>1.756    | 1.761<br>2.192   | 1.331<br>3.492   | 1.252<br>2.429   | 1.971<br>1.316   | 2.085<br>1.104  |
| STD. DEVIATIONS         | 0.662<br>1.251    | 0.861<br>1.505   | 0.620<br>1.239   | 0.803<br>1.134   | 1.183<br>0.905   | 1.235<br>0.683  |
| LATERAL DRAINAGE COLLE  | CTED FROM         | LAYER 2          |                  |                  |                  |                 |
| TOTALS                  | 0.0775<br>0.3452  | 0.2338<br>0.3639 | 0.1173<br>0.9017 | 0.0485<br>0.7403 | 0.1907<br>0.2420 | 0.3438<br>0.076 |
| STD. DEVIATIONS         | 0.1419<br>0.5558  | 0.2767<br>0.6168 | 0.1258<br>1.0007 | 0.1298<br>0.7614 | 0.2881<br>0.3121 | 0.485<br>0.105  |
| PERCOLATION/LEAKAGE TH  | ROUGH LAYE        | R 4              |                  |                  |                  |                 |
| TOTALS                  | 0.0000            | 0.0000           | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.000           |
| STD. DEVIATIONS         | 0.0000<br>0.0000  | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000           |
| LATERAL DRAINAGE COLLE  | DEPLOYED NORMANDO | LAYER 8          |                  |                  |                  |                 |
| TOTALS                  | 0.0000            | 0.0000           | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.000           |
| STD. DEVIATIONS         | 0.0000<br>0.0000  | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000           |
| PERCOLATION/LEAKAGE TH  | ROUGH LAYE        | R 10             |                  |                  |                  |                 |
| TOTALS                  | 0.0000<br>0.0000  | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.0000           | 0.000           |
| STD. DEVIATIONS         | 0.0000            | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.0000           | 0.000           |
| PERCOLATION/LEAKAGE TH  | IROUGH LAYE       | R 12             |                  |                  |                  |                 |
| TOTALS                  | 0.0000            | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000           |
|                         | 0.0000            | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000           |
| STD. DEVIATIONS         | 0.0000<br>0.0000  | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.0000           | 0.000           |
|                         |                   |                  |                  |                  |                  |                 |
| AVERAGES                | OF MONTHLY        |                  | DAILY HE         | ADS (INCH        | ES)<br>          |                 |
|                         |                   |                  |                  |                  |                  |                 |
| DAILY AVERAGE HEAD ON   | TOP OF LAY        | ER 3             |                  |                  |                  |                 |
| AVERAGES                | 0.0006<br>0.0205  | 0.0018<br>0.0202 | 0.0008<br>0.1047 | 0.0004<br>0.0279 |                  | 0.016           |
| STD. DEVIATIONS         |                   | 0.0022<br>0.0598 |                  | 0.0010<br>0.0609 |                  |                 |
| DAILY AVERAGE HEAD ON   | TOP OF LAY        | ER 9             |                  |                  |                  |                 |
| AVERAGES                |                   | 0.0000<br>0.0000 | 0.0000<br>0.0000 | 0.0000           | 0.0000           | 0.000           |
|                         |                   |                  |                  | Page 6           |                  |                 |

Part III, Attachment 5, Appendix B,18, p.g.-6

CASEGOL.OUT

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                                            |         |   |          | CU. FEET  | PERCENT  |
|--------------------------------------------|---------|---|----------|-----------|----------|
| PRECIPITATION                              |         |   | 5.704)   | 98722.7   | 100.00   |
| RUNOFF                                     | 1.723   | ( | 1.2076)  | 6253.77   | 6.335    |
| EVAPOTRANSPIRATION                         | 21.785  | ( | 3.7320)  | 79078.27  | 80.101   |
| LATERAL DRAINAGE COLLECTED FROM LAYER 2    | 3.68090 | ( | 1.95906) | 13361.677 | 13.53456 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4        | 0.00001 | ( | 0.00001) | 0.024     | 0.00002  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.016 ( |   | 0.026)   |           |          |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00001 | ( | 0.00001) | 0.023     | 0.00002  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | ( | 0.00000) | 0.002     | 0.00000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |   | 0.000)   |           |          |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 12    | 0.00000 | ( | 0.00000) | 0.000     | 0.00000  |
| CHANGE IN WATER STORAGE                    | 0.008   | ( | 0.4598)  | 28.94     | 0.029    |

| PEAK DAILY VALUES FOR YEARS                               | 1 THROUGH | 30         |
|-----------------------------------------------------------|-----------|------------|
| ***************************************                   | (INCHES)  | (CU. FT.)  |
| PRECIPITATION                                             | 5.07      | 18404.102  |
| RUNOFF                                                    | 2.585     | 9382.1035  |
| DRAINAGE COLLECTED FROM LAYER 2                           | 0.91340   | 3315.63574 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4                       | 0.000012  | 0.04489    |
| AVERAGE HEAD ON TOP OF LAYER 3                            | 14.828    |            |
| MAXIMUM HEAD ON TOP OF LAYER 3                            | 19.279    |            |
| LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) | 88.6 FEET |            |
|                                                           | Page      | 7          |

| CAS |  |  |
|-----|--|--|
|     |  |  |

| DRAINAGE COLLECTED FROM LAYER 8                           | 0.00001  | 0.03755 |
|-----------------------------------------------------------|----------|---------|
| PERCOLATION/LEAKAGE THROUGH LAYER 10                      | 0.000000 | 0.00002 |
| AVERAGE HEAD ON TOP OF LAYER 9                            | 0.000    |         |
| MAXIMUM HEAD ON TOP OF LAYER 9                            | 0.006    |         |
| LOCATION OF MAXIMUM HEAD IN LAYER 8 (DISTANCE FROM DRAIN) | 0.0 FEET |         |
| PERCOLATION/LEAKAGE THROUGH LAYER 12                      | 0.000000 | 0.00000 |
| SNOW WATER                                                | 0.02     | 73.7433 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.4270   |         |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.2210   |         |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|            | LAYER | (INCHES) | (VOL/VOL) |  |
|------------|-------|----------|-----------|--|
|            | 1     | 6.7725   | 0.2822    |  |
|            | 2     | 0.0020   | 0.0100    |  |
|            | 3     | 0.0000   | 0.0000    |  |
|            | 4     | 0.1800   | 0.7500    |  |
| The second | 5     | 3.8520   | 0.3210    |  |
|            | 6     | 289.0800 | 0.2920    |  |
|            | 7     | 7.7040   | 0.3210    |  |
|            | 8     | 0.0020   | 0.0100    |  |
|            | 9     | 0.0000   | 0.0000    |  |
|            | 10    | 0.1800   | 0.7500    |  |
|            | 11    | 9.6295   | 0.3210    |  |
|            | 12    | 119.1125 | 0.2919    |  |

|           | CASEBUL.001     |
|-----------|-----------------|
| *******   | *************   |
| ********* | *************** |

## APPENDIX B.19 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 7OL-LOCATION 3



#### CASE7OL.OUT

PRECIPITATION DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D4
TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVPR30Y.D7
SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO30Y.D13
EVAPOTRANSPIRATION DATA: C:\HELP3\MDATA\KGVEV30Y.D11
SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE7OL.D10
OUTPUT DATA FILE: C:\HELP3\MDATA\CASE7OL.OUT

TIME: 16:25 DATE: 3/ 6/2017

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

## LAYER 1

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2758 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES

CASE7OL.OUT

POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE 2.00 PERCENT DRAINAGE LENGTH 250.0 FEET

## LAYER 3

#### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

= 0.04 INCHES THICKNESS POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.39999993000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD

## LAYER 4

#### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

## LAYER 5

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

= 12.00 INCHES THICKNESS POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

## LAYER 6

## TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

= 1026.00 INCHES THICKNESS 0.6710 VOL/VOL POROSITY = 0.2920 VOL/VOL FIELD CAPACITY

CASE70L.OUT

0.0770 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

## LAYER 7

## TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 13

THICKNESS 24.00 INCHES = POROSITY 0.4300 VOL/VOL 0.3210 VOL/VOL FIELD CAPACITY 0.2210 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

## LAYER 8

#### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

0.20 INCHES THICKNESS = 0.8500 VOL/VOL POROSITY 0.0100 VOL/VOL = ' FIELD CAPACITY WILTING POINT 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE 2.00 PERCENT DRAINAGE LENGTH 250.0 FEET

### LAYER 9

#### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS 0.06 INCHES = 0.0000 VOL/VOL POROSITY = 0.0000 VOL/VOL = 0.0000 VOL/VOL FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = FML INSTALLATION DEFECTS = = 1.00 HOLES/ACRE

= 3 - GOOD FML PLACEMENT QUALITY

## LAYER 10

2.00

#### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

THICKNESS 0.24 INCHES 0.7500 VOL/VOL POROSITY 0.7470 VOL/VOL FIELD CAPACITY 0.4000 VOL/VOL WILTING POINT INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

Page 3

HOLES/ACRE

CASE70L.OUT

EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

#### LAYER 11

#### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 30.00 INCHES

POROSITY = 0.4300 VOL/VOL

FIELD CAPACITY = 0.3210 VOL/VOL

WILTING POINT = 0.2210 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

## LAYER 12

#### TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

= 444.00 INCHES = 0.6710 VOL/VOI THICKNESS POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

#### GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A

GOOD STAND OF GRASS, A SURFACE SLOPE OF 3.%

AND A SLOPE LENGTH OF 220. FEET.

SCS RUNOFF CURVE NUMBER 84.10 FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES EVAPORATIVE ZONE DEPTH = 12.0 INCHES EVAPORATIVE ZONE DEPTH 12.0 INCHES INITIAL WATER IN EVAPORATIVE ZONE = 2.768 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE = 5.160 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE = 2.652 INCHES INITIAL SNOW WATER = 0.000 INCHES INITIAL SNOW WATER = 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS = 457.386 INCHES
TOTAL INITIAL WATER = 457.386 INCHES
TOTAL SUBSURFACE INFLOW = 0.00 INCHES/ 0.00 INCHES/YEAR

#### EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

CORPUS CHRISTI TEXAS

= 27.77 DEGREES STATION LATITUDE

MAXIMUM LEAF AREA INDEX = 3.50

#### CASE7OL.OUT

| START OF GROWING SEASON (JULIAN DATE) |    |       |        |
|---------------------------------------|----|-------|--------|
| END OF GROWING SEASON (JULIAN DATE)   | =  | 367   |        |
|                                       |    |       | INCHES |
| AVERAGE ANNUAL WIND SPEED             | =  | 12.00 | MPH    |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY |    |       |        |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | =  | 78.00 | %      |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | == | 76.00 | %      |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | =  | 76.00 | %      |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

#### NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 1.63    | 1.69    | 1.20    | 1.57    | 3.29    | 3.12    |
| 2.26    | 2.78    | 5.31    | 2.92    | 1.61    | 1.17    |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

### NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

AND STATION LATITUDE = 27.77 DEGREES

## AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                 | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |  |
|-----------------|---------|---------|---------|---------|---------|---------|--|
|                 |         |         |         |         |         |         |  |
| PRECIPITATION   |         |         |         |         |         |         |  |
|                 |         |         |         |         |         |         |  |
| TOTALS          | 1.37    | 1.81    | 1.19    | 1.40    | 2.51    | 2.59    |  |
|                 | 2.36    | 2.86    | 5.39    | 2.99    | 1.49    | 1.25    |  |
|                 |         |         |         |         |         |         |  |
| STD. DEVIATIONS | 0.81    | 1.21    | 0.57    | 1.05    | 1.80    | 1.82    |  |
|                 | 2.23    | 2.36    | 2.96    | 1.90    | 1.16    | 0.84    |  |
|                 |         |         |         |         |         |         |  |
| RUNOFF          |         |         |         |         |         |         |  |
| ()=======(      |         |         |         |         |         |         |  |
| TOTALS          | 0.004   | 0.013   | 0.003   | 0.044   | 0.164   | 0.137   |  |
|                 | 0.325   | 0.178   | 0.562   | 0.159   | 0.064   | 0.004   |  |
|                 |         |         |         |         |         |         |  |
| STD. DEVIATIONS | 0.016   | 0.029   | 0.018   | 0.166   | 0.498   | 0.200   |  |
|                 | 0.770   | 0.331   | 0.824   | 0.315   | 0.281   | 0.018   |  |
|                 |         |         |         |         |         |         |  |

| EVAPOTRANSPIRATION                     |                  |                  | (                | CASE7OL.OL       | JT               |                  |
|----------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                        |                  |                  |                  |                  |                  |                  |
| TOTALS                                 | 1.095<br>1.754   | 1.769<br>2.181   | 1.332<br>3.481   | 1.252<br>2.435   | 1.978<br>1.313   | 2.082            |
| STD. DEVIATIONS                        | 0.663<br>1.244   | 0.860<br>1.501   | 0.624<br>1.235   | 0.803<br>1.138   | 1.187<br>0.902   | 1.231<br>0.681   |
| LATERAL DRAINAGE COLL                  | ECTED FROM       | LAYER 2          |                  |                  |                  |                  |
| TOTALS                                 | 0.0767           | 0.2331           | 0.1179           | 0.0493           | 0.1925           | 0.3537           |
| TOTALS                                 | 0.3548           | 0.3828           | 0.9254           | 0.7490           | 0.2449           | 0.0806           |
| STD. DEVIATIONS                        | 0.1439<br>0.5774 | 0.2713<br>0.6301 | 0.1269<br>1.0117 | 0.1333<br>0.7734 | 0.2928<br>0.3251 | 0.4967<br>0.1272 |
| PERCOLATION/LEAKAGE T                  | HROUGH LAYE      | R 4              |                  |                  |                  |                  |
| TOTALS                                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| IOTALS                                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| LATERAL DRAINAGE COLL                  | ECTED FROM       | LAYER 8          |                  |                  |                  |                  |
|                                        |                  |                  | 0.0000           | 0.0000           | 0.0000           | 0 0000           |
| TOTALS                                 | 0.0000           | 0.0000           | 0.0000           | 0.0000<br>0.0000 | 0.0000           | 0.0000           |
| STD. DEVIATIONS                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| PERCOLATION/LEAKAGE T                  | HROUGH LAYE      | R 10             |                  |                  |                  |                  |
| TOTALS                                 | 0.0000           | 0.0000           | 0.0000           |                  | 0.0000           | 0.000            |
|                                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| STD. DEVIATIONS                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| PERCOLATION/LEAKAGE T                  | HROUGH LAYE      | R 12             |                  |                  |                  |                  |
| TOTALS                                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| STD. DEVIATIONS                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
| CONTENT COGNICATION ONLY CARTEST TRAIN | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                                        |                  |                  |                  |                  |                  |                  |
| AVERAGES                               | OF MONTHLY       | AVERAGED         | DAILY HE         | ADS (INCH        | ES)              |                  |
|                                        | * -              |                  |                  |                  |                  |                  |
| DAILY AVERAGE HEAD ON                  | TOP OF LAY       | ER 3             |                  |                  |                  |                  |
| AVERAGES                               | 0.0005           | 0.0018           | 0.0008           | 0.0004           | 0.0014           | 0.018            |
|                                        | 0.0223           | 0.0241           | 0.1085           | 0.0318           | 0.0018           | 0.000            |
| STD. DEVIATIONS                        | 0.0010           |                  | 0.0009           | 0.0010           | 0.0021           | 0.062            |
|                                        | 0.1021           | 0.0699           | 0.2572           | 0.0681           | 0.0024           | 0.000            |
| DAILY AVERAGE HEAD ON                  | TOP OF LAY       | ER 9             |                  |                  |                  |                  |
| AVERAGES                               | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.000            |
|                                        |                  |                  |                  | Page 6           |                  |                  |
|                                        |                  |                  |                  | 01               |                  |                  |

CASE70L.OUT

| STD. DEVIATIONS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|-----------------|--------|--------|--------|--------|--------|--------|
|                 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

| *********** | ************ |
|-------------|--------------|
|             |              |

|                                            |         |   |          | CU. FEET  | PERCENT  |  |
|--------------------------------------------|---------|---|----------|-----------|----------|--|
| PRECIPITATION                              |         |   |          | 98722.7   | 100.00   |  |
| RUNOFF                                     | 1.657   | ( | 1.2106)  | 6015.83   | 6.094    |  |
| EVAPOTRANSPIRATION                         | 21.773  | ( | 3.7354)  | 79036.62  | 80.059   |  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 2 | 3.76085 | ( | 1.98336) | 13651.874 | 13.82851 |  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 4     | 0.00001 | ( | 0.00001) | 0.025     | 0.00003  |  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.018 ( |   | 0.026)   |           |          |  |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00001 | ( | 0.00001) | 0.024     | 0.00002  |  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | ( | 0.00000) | 0.002     | 0.0000   |  |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |   | 0.000)   |           |          |  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 12    | 0.00000 | ( | 0.00000) | 0.000     | 0.0000   |  |
| CHANGE IN WATER STORAGE                    | 0.005   | ( | 0.4439)  | 18.34     | 0.019    |  |

|                                  |     | (INCHES) | (CU. FT.)  |
|----------------------------------|-----|----------|------------|
| PRECIPITATION                    |     | 5.07     | 18404.102  |
| RUNOFF                           |     | 2.585    | 9382.1035  |
| DRAINAGE COLLECTED FROM LAYER 2  |     | 0.91351  | 3316.05835 |
| PERCOLATION/LEAKAGE THROUGH LAYE | R 4 | 0.000012 | 0.04505    |
| AVERAGE HEAD ON TOP OF LAYER 3   |     | 14.866   |            |
| MAXIMUM HEAD ON TOP OF LAYER 3   |     | 19.319   |            |
| LOCATION OF MAXIMUM HEAD IN LAYE | R 2 |          |            |

| CASE 70 |  |
|---------|--|
|         |  |

| DRAINAGE COLLECTED FROM LAYER 8                           | 0.00001 0.03769   |
|-----------------------------------------------------------|-------------------|
| PERCOLATION/LEAKAGE THROUGH LAYER 10                      | 0.000000 0.00002  |
| AVERAGE HEAD ON TOP OF LAYER 9                            | 0.000             |
| MAXIMUM HEAD ON TOP OF LAYER 9                            | 0.006             |
| LOCATION OF MAXIMUM HEAD IN LAYER 8 (DISTANCE FROM DRAIN) | 0.0 FEET          |
| PERCOLATION/LEAKAGE THROUGH LAYER 12                      | 0.000000 0.000000 |
| SNOW WATER                                                | 0.02 73.7433      |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.4264            |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.2210            |

<sup>\*\*\*</sup> Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| ETMAI | MATER | STORAGE | ΔT | FND | OF | VFAR | 30 |
|-------|-------|---------|----|-----|----|------|----|

| <br>LAYER  | (INCHES) | (VOL/VOL) |     |
|------------|----------|-----------|-----|
|            | 5        |           |     |
| 1          | 6.7715   | 0.2821    |     |
| 2          | 0.0020   | 0.0100    |     |
| 3          | 0.0000   | 0.0000    |     |
| 4          | 0.1800   | 0.7500    |     |
| 5          | 3.8520   | 0.3210    |     |
| 6          | 299.5920 | 0.2920    |     |
| 7          | 7.7040   | 0.3210    |     |
| 8          | 0.0020   | 0.0100    |     |
| 9          | 0.0000   | 0.0000    |     |
| 10         | 0.1800   | 0.7500    |     |
| 11         | 9.6295   | 0.3210    |     |
| 12         | 129.6245 | 0.2919    |     |
| SNOW WATER | 0.000    |           |     |
|            |          | Dage      | . 0 |

Page 8

Revision: 0

|         | CASE/01.001     |
|---------|-----------------|
| ******* | *************** |
| ******  | *************   |

# APPENDIX B.20 HELP OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 8OL-LOCATION 4



#### CASE8OL.OUT

| ጥ    |                                                 |        |
|------|-------------------------------------------------|--------|
| **** | ***********************                         | *****  |
| **** | ******************                              | *****  |
| **   |                                                 | **     |
| **   |                                                 | **     |
| **   | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   | **     |
| **   | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)       | **     |
| **   | DEVELOPED BY ENVIRONMENTAL LABORATORY           | **     |
| **   | USAE WATERWAYS EXPERIMENT STATION               | **     |
| **   | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | **     |
| **   |                                                 | **     |
| **   |                                                 | **     |
| **** | *********************                           | ****** |
| **** | *********************                           | *****  |

C:\HELP3\MDATA\KGVPR30Y.D4 PRECIPITATION DATA FILE: TEMPERATURE DATA FILE: C:\HELP3\MDATA\KGVTE30Y.D7 SOLAR RADIATION DATA FILE: C:\HELP3\MDATA\KGVSO30Y.D13 C:\HELP3\MDATA\KGVEV30Y.D11 EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE: C:\HELP3\MDATA\CASE80L.D10 OUTPUT DATA FILE: C:\HELP3\MDATA\CASE80L.OUT

TIME: 16:36 DATE: 3/6/2017

TITLE: ITY OF KINGSVILLE SOLID WASTE LANDFILL-CASESOL (LOCATION 4)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

## LAYER 1

## TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

24.00 INCHES THICKNESS POROSITY 0.4300 VOL/VOL 0.3210 VOL/VOL FIELD CAPACITY WILTING POINT 0.2210 VOL/VOL 0.2757 VOL/VOL INITIAL SOIL WATER CONTENT =

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

THICKNESS

0.20 INCHES

CASE8OL.OUT

POROSITY = 0.8500 VOL/VOL

FIELD CAPACITY = 0.0100 VOL/VOL

WILTING POINT = 0.0050 VOL/VOL

INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 250.0 FEET

## LAYER 3

## TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 36

THICKNESS = 0.04 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY = 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

## LAYER 4

## TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

## LAYER 5

## TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13

THICKNESS = 12.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

## LAYER 6

#### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 18

THICKNESS = 1434.00 INCHES
POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
Page 2

CASE80L.OUT

WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

## LAYER 7

### TYPE 1 - VERTICAL PERCOLATION LAYER

#### MATERIAL TEXTURE NUMBER 13

THICKNESS = 24.00 INCHES
POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

### LAYER 8

## TYPE 2 - LATERAL DRAINAGE LAYER

## MATERIAL TEXTURE NUMBER 20

THICKNESS = 0.20 INCHES
POROSITY = 0.8500 VOL/VOL
FIELD CAPACITY = 0.0100 VOL/VOL
WILTING POINT = 0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 250.0 FEET

#### LAYER 9

#### -----

## TYPE 4 - FLEXIBLE MEMBRANE LINER

## MATERIAL TEXTURE NUMBER 35

THICKNESS = 0.06 INCHES
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
FEEECTIVE SAT HYD COND = 0.19999996000E-12

EFFECTIVE SAT. HYD. COND. = 0.199999996000E-12 CM/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE

FML PLACEMENT QUALITY = 3 - GOOD

#### LAYER 10

## TYPE 3 - BARRIER SOIL LINER

#### MATERIAL TEXTURE NUMBER 17

THICKNESS = 0.24 INCHES
POROSITY = 0.7500 VOL/VOL
FIELD CAPACITY = 0.7470 VOL/VOL
WILTING POINT = 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL

CASE8OL.OUT EFFECTIVE SAT. HYD. COND. = 0.300000003000E-08 CM/SEC

#### LAYER 11 ------

### TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 13 = 30.00 INCHES THICKNESS POROSITY = 0.4300 VOL/VOL
FIELD CAPACITY = 0.3210 VOL/VOL
WILTING POINT = 0.2210 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.3210 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.330000003000E-04 CM/SEC

## LAYER 12

#### TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

= 192.00 INCHES THICKNESS POROSITY = 0.6710 VOL/VOL
FIELD CAPACITY = 0.2920 VOL/VOL
WILTING POINT = 0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2919 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000005000E-02 CM/SEC

## GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #13 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER            | = | 83.40   |             |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF   | = | 100.0   | PERCENT     |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000   | ACRES       |
| EVAPORATIVE ZONE DEPTH             | = | 12.0    | INCHES      |
| INITIAL WATER IN EVAPORATIVE ZONE  | = | 2.765   | INCHES      |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 5.160   | INCHES      |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.652   | INCHES      |
| INITIAL SNOW WATER                 | = | 0.000   | INCHES      |
| INITIAL WATER IN LAYER MATERIALS   | = | 502.935 | INCHES      |
| TOTAL INITIAL WATER                | = | 502.935 | INCHES      |
| TOTAL SUBSURFACE THELOW            | = | 0.00    | INCHES/YEAR |

#### EVAPOTRANSPIRATION AND WEATHER DATA \_\_\_\_\_\_

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM CORPUS CHRISTI TEXAS

= 27.77 DEGREES STATION LATITUDE MAXIMUM LEAF AREA INDEX = 3.50 Page 4

CASE80L.OUT

START OF GROWING SEASON (JULIAN DATE) = 0
END OF GROWING SEASON (JULIAN DATE) = 367
EVAPORATIVE ZONE DEPTH = 12.0 INCHES
AVERAGE ANNUAL WIND SPEED = 12.00 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 76.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 76.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
|         |         |         |         |         |         |

 1.63
 1.69
 1.20
 1.57
 3.29
 3.12

 2.26
 2.78
 5.31
 2.92
 1.61
 1.17

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |
| 56.30   | 59.30   | 65.90   | 73.00   | 78.10   | 82.70   |
| 84.90   | 85.00   | 81.50   | 74.00   | 65.00   | 59.10   |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR CORPUS CHRISTI TEXAS AND STATION LATITUDE = 27.77 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

|                 | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------|---------|---------|---------|---------|---------|---------|
|                 |         |         |         |         |         |         |
| PRECIPITATION   |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 1.37    | 1.81    | 1.19    | 1.40    | 2.51    | 2.59    |
|                 | 2.36    | 2.86    | 5.39    | 2.99    | 1.49    | 1.25    |
|                 |         |         |         |         |         |         |
| STD. DEVIATIONS | 0.81    | 1.21    | 0.57    | 1.05    | 1.80    | 1.82    |
|                 | 2.23    | 2.36    | 2.96    | 1.90    | 1.16    | 0.84    |
|                 |         |         |         |         |         |         |
| RUNOFF          |         |         |         |         |         |         |
|                 |         |         |         |         |         |         |
| TOTALS          | 0.003   | 0.010   | 0.003   | 0.042   | 0.156   | 0.122   |
| 70              | 0.316   | 0.163   | 0.535   | 0.147   | 0.061   | 0.003   |
|                 |         |         |         |         |         |         |
| STD. DEVIATIONS | 0.013   | 0.024   | 0.015   | 0.164   | 0.497   | 0.184   |
|                 | 0.758   | 0.318   | 0.809   | 0.320   | 0.279   | 0.014   |

| EVAPOTRANSPIRATION     |                  |                  | C                | ASE80L.OL        | JΤ               |                  |
|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                        |                  |                  |                  |                  |                  |                  |
| TOTALS                 | 1.098<br>1.756   | 1.771<br>2.189   | 1.335<br>3.487   | 1.250<br>2.438   | 1.982<br>1.317   | 2.083<br>1.099   |
| STD. DEVIATIONS        | 0.661<br>1.255   | 0.863<br>1.518   | 0.626<br>1.230   | 0.802<br>1.138   | 1.189<br>0.905   | 1.239<br>0.685   |
| LATERAL DRAINAGE COLL  | ECTED FROM       | LAYER 2          |                  |                  |                  |                  |
|                        |                  | 0.2224           | 0 1160           | 0 0533           | 0 1055           | 0.3680           |
| TOTALS                 | 0.0759           | 0.2321<br>0.3858 | 0.1168<br>0.9507 | 0.0532<br>0.7510 | 0.1955<br>0.2525 | 0.0787           |
| STD. DEVIATIONS        | 0.1410<br>0.5970 | 0.2677<br>0.6265 | 0.1258<br>1.0470 | 0.1423<br>0.7857 | 0.2933<br>0.3241 | 0.5138<br>0.1151 |
| PERCOLATION/LEAKAGE TH | ROUGH LAYE       | R 4              |                  |                  |                  |                  |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| LATERAL DRAINAGE COLL  | ECTED FROM       | LAYER 8          |                  |                  |                  |                  |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| PERCOLATION/LEAKAGE T  | HROUGH LAYE      | R 10             |                  |                  |                  |                  |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| PERCOLATION/LEAKAGE T  | HROUGH LAYE      | R 12             |                  |                  |                  |                  |
| TOTALS                 | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
| STD. DEVIATIONS        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 3.0000           | _,,,,,,,         |                  |                  | -                |                  |
|                        |                  |                  |                  |                  |                  |                  |
|                        | OF MONTHLY       |                  |                  |                  | ES)<br>          |                  |
|                        |                  |                  |                  |                  |                  |                  |
| DAILY AVERAGE HEAD ON  | TOP OF LAY       | ER 3             |                  |                  |                  |                  |
| AVERAGES               |                  | 0.0018           |                  | 0.0004           |                  | 0.0187           |
|                        | 0.0273           | 0.0201           | 0.1213           | 0.0321           | 0.0019           | 0.0006           |
| STD. DEVIATIONS        |                  |                  |                  |                  | 0.0021           | 0.0583           |
|                        | 0.1291           | 0.0571           | 0.2670           | 0.0798           | 0.0024           | 0.0008           |
| DAILY AVERAGE HEAD ON  | TOP OF LAY       | ER 9             |                  |                  |                  |                  |
| AVERAGES               | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           |
|                        |                  |                  |                  | D                |                  |                  |

CASEROL OUT

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

|                                            |         |   |          | CU. FEET  |          |
|--------------------------------------------|---------|---|----------|-----------|----------|
| PRECIPITATION                              |         |   |          |           |          |
| RUNOFF                                     | 1.562   | ( | 1.2013)  | 5669.92   | 5.743    |
| EVAPOTRANSPIRATION                         | 21.805  | ( | 3.7516)  | 79151.28  | 80.175   |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 2 | 3.82437 | ( | 2.05115) | 13882.466 | 14.06208 |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 4     | 0.00001 | ( | 0.00001) | 0.027     | 0.00003  |
| AVERAGE HEAD ON TOP<br>OF LAYER 3          | 0.019 ( |   | 0.029)   |           |          |
| LATERAL DRAINAGE COLLECTED<br>FROM LAYER 8 | 0.00001 | ( | 0.00001) | 0.025     | 0.00003  |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 10    | 0.00000 | ( | 0.00000) | 0.002     | 0.00000  |
| AVERAGE HEAD ON TOP<br>OF LAYER 9          | 0.000 ( |   | 0.000)   |           |          |
| PERCOLATION/LEAKAGE THROUGH<br>LAYER 12    | 0.00000 | ( | 0.00000) | 0.000     | 0.00006  |
| CHANGE IN WATER STORAGE                    | 0.005   | ( | 0.4494)  | 19.00     | 0.019    |

| (INCHES)  | (CU. FT.)                                        |
|-----------|--------------------------------------------------|
|           |                                                  |
| 5.07      | 18404.102                                        |
| 2.585     | 9382.1035                                        |
| 0.91331   | 3315.29883                                       |
| 0.000012  | 0.04488                                          |
| 14.828    |                                                  |
| 19.277    |                                                  |
| 88.6 FEET |                                                  |
|           | 2.585<br>0.91331<br>0.000012<br>14.828<br>19.277 |

|    | - | _ | - | 40  | G 300 | -  | - |  |
|----|---|---|---|-----|-------|----|---|--|
| CA |   |   | w | 101 | k(1)  | rν |   |  |
|    |   |   |   |     |       |    |   |  |

| DRAINAGE COLLECTED FROM LAYER 8                           | 0.00001  | 0.03850 |
|-----------------------------------------------------------|----------|---------|
| PERCOLATION/LEAKAGE THROUGH LAYER 10                      | 0.000000 | 0.00002 |
| AVERAGE HEAD ON TOP OF LAYER 9                            | 0.000    |         |
| MAXIMUM HEAD ON TOP OF LAYER 9                            | 0.006    |         |
| LOCATION OF MAXIMUM HEAD IN LAYER 8 (DISTANCE FROM DRAIN) | 0.0 FEET |         |
| PERCOLATION/LEAKAGE THROUGH LAYER 12                      | 0.000000 | 0.00000 |
| SNOW WATER                                                | 0.02     | 73.7433 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.4265   |         |
| MINIMUM VEG. SOIL WATER (VOL/VOL)                         | 0.2210   |         |

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| FINAL WATER | STORAGE AT EN | D OF YEAR 30 |  |
|-------------|---------------|--------------|--|
| <br>LAYER   | (INCHES)      | (VOL/VOL)    |  |
| 1           | 6.7738        | 0.2822       |  |
| 2           | 0.0020        | 0.0100       |  |
| 3           | 0.0000        | 0.0000       |  |
| 4           | 0.1800        | 0.7500       |  |
| 5           | 3.8520        | 0.3210       |  |
| 6           | 418.7280      | 0.2920       |  |
| 7           | 7.7040        | 0.3210       |  |
| 8           | 0.0020        | 0.0100       |  |
| 9           | 0.0000        | 0.0000       |  |
| 10          | 0.1800        | 0.7500       |  |
| 11          | 9.6289        | 0.3210       |  |
| 12          | 56.0412       | 0.2919       |  |
| SNOW WATER  | 0.000         |              |  |

|        |          | CASE80L.OUT |            |        |
|--------|----------|-------------|------------|--------|
| ****** | ******** | ********    | ******     | ****** |
| ****** | ******   | ********    | ********** | ****** |

# APPENDIX C MULTIMED MODEL ANALYSIS



# APPENDIX C.1 CONTENTS



## **CONTENTS**

| MULTIMED Chemical-Specific Data                        | Appendix C.2 |
|--------------------------------------------------------|--------------|
| MULTIMED Source-Specific Data                          | Appendix C.3 |
| MULTIMED Source-Specific Data-Overliner Demonstration  | Appendix C.4 |
| MULTIMED Unsaturated Zone Data                         | Appendix C.5 |
| MULTIMED Aquifer-Specific Data                         | Appendix C.6 |
| MULTIMED Aquifer-Specific Data-Overliner Demonstration | Appendix C.7 |
| Calculations of the Dilution Attenuation Factor        | Appendix D   |
| Leachate Data                                          | Appendix E   |
| MULTIMED Model Output                                  | Appendix F   |



# APPENDIX C.2 MULTIMED CHEMICAL-SPECIFIC DATA



## **MULTIMED CHEMICAL - SPECIFIC DATA**

| Variable Name                       | Units     | Value | Comments                                                     |  |
|-------------------------------------|-----------|-------|--------------------------------------------------------------|--|
| Solid phase decay coefficient       | 1/yr      | 0     | decay not used                                               |  |
| Dissolved phase decay coefficient   | 1/yr      | 0     | decay not used                                               |  |
| Chemical decay coefficient          | 1/yr      | 0     | decay not used                                               |  |
| Acid catalyst hydrolysis constant   | 1/m-yr    | 0     | hydrolysis not used                                          |  |
| Neutral hydrolysis rate constant    | 1/yr      | 0     | hydrolysis not used                                          |  |
| Base catalyst hydrolysis constant   | 1/m-yr    | 0     | hydrolysis not used                                          |  |
| Reference temperature               | degrees C | 20    | not used in model since decay not used                       |  |
| Normalized distribution coefficient | ml/g      | 0     | O because simulation is steady state, with no chemical decay |  |
| Distribution coefficient            | ml/g      |       | derived by MULTIMED from normalized distribution coefficient |  |
| Biodegradation coefficient          | 1/yr      | 0     | biodegradation not allowed by TCEQ                           |  |

# APPENDIX C.3 MULTIMED SOURCE-SPECIFIC DATA



## **MULTIMED SOURCE - SPECIFIC DATA**

| Variable Name                                       | Units          | Value   | Comments                                                      |
|-----------------------------------------------------|----------------|---------|---------------------------------------------------------------|
| Infiltration rate                                   | m/yr           | varies  | See table below.                                              |
| Area of waste disposal unit                         | m <sup>2</sup> | 485,623 | 120 acres                                                     |
| Spread of contaminant source                        | m              | 0       | Derived by MULTIMED                                           |
| Recharge rate                                       | m/yr           | 0.0368  | Five percent of average annual precipitation (1.45 inches/yr) |
| Initial concentration at landfill (C <sub>0</sub> ) | mg/L           | 1.0     | Set at 1.0 to find DAF                                        |
| Length scale of facility                            | m              |         | Derived by MULTIMED                                           |
| Width scale of facility                             | m              |         | Derived by MULTIMED                                           |

| Case Infiltration Comments |                                                 |  |  |  |
|----------------------------|-------------------------------------------------|--|--|--|
|                            | Comments                                        |  |  |  |
| nace (m, y, y              |                                                 |  |  |  |
| *4.20 40-7                 | Calculated using peak daily percolation/        |  |  |  |
| *1.28 X 10                 | leakage rate through GCL. See Appx. B.2         |  |  |  |
| _                          | Calculated using peak daily percolation/        |  |  |  |
| 1.79 x 10 <sup>-7</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
|                            | Calculated using peak daily percolation/        |  |  |  |
| 1.79 x 10 <sup>-7</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
| _                          | Calculated using peak daily percolation/        |  |  |  |
| 1.79 x 10 <sup>-7</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
|                            |                                                 |  |  |  |
|                            | Calculated using peak daily percolation/        |  |  |  |
| 5.11 x 10 <sup>-8</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
| ۰                          | Calculated using peak daily percolation/        |  |  |  |
| 5.11 x 10 <sup>-8</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
|                            | Calculated using peak daily percolation/        |  |  |  |
| 5.11 x 10 <sup>-8</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
|                            | Calculated using peak daily percolation/        |  |  |  |
| 5.11 x 10 <sup>-8</sup>    | leakage rate through GCL. See Appx. B.2         |  |  |  |
|                            | 5.11 x 10 <sup>-8</sup> 5.11 x 10 <sup>-8</sup> |  |  |  |

<sup>\*</sup> Determined Using Peak Daily Percolation/Leakage Rate Through GCL and Converted to (M/YR) Example:  $((.00005 \, \text{FT}^3/\text{Day-Acre})x(1 \, \text{Acre}/43,560 \, \text{FT}^2)/(1 \, \text{Meter}/3.28 \, \text{FT})) \times (365 \, \text{Days}/1 \, \text{YR}) = 1.28 \times 10^{-7} \, \text{M/YR}$ 

Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

# APPENDIX C.4 MULTIMED SOURCE-SPECIFIC DATA-OVERLINER DEMONSTRATION



### **MULTIMED SOURCE - SPECIFIC DATA**

#### **Overliner Demonstration**

| Variable Name                                       | Units          | Value   | Comments                                                      |
|-----------------------------------------------------|----------------|---------|---------------------------------------------------------------|
| Infiltration rate                                   | m/yr           | varies  | See table below.                                              |
| Area of waste disposal unit                         | m <sup>2</sup> | 485,623 | 120 acres                                                     |
| Spread of contaminant source                        | m              | 0       | Derived by MULTIMED                                           |
| Recharge rate                                       | m/yr           | 0.0368  | Five percent of average annual precipitation (1.45 inches/yr) |
| Initial concentration at landfill (C <sub>0</sub> ) | mg/L           | 1.0     | Set at 1.0 to find DAF                                        |
| Length scale of facility                            | m              |         | Derived by MULTIMED                                           |
| Width scale of facility                             | m              |         | Derived by MULTIMED                                           |

| Case Infiltration Comments        |                          |                                           |  |  |
|-----------------------------------|--------------------------|-------------------------------------------|--|--|
| Case                              | Rate (m/yr)              | Comments                                  |  |  |
| Interim Cases with Overliner      | nate (m, yr,             |                                           |  |  |
|                                   |                          |                                           |  |  |
| Location 1 (Case 1OL)             |                          |                                           |  |  |
| • 12 feet of waste above liner    |                          |                                           |  |  |
| • 15.5 feet of waste below liner  |                          | Calculated using peak daily percolation/  |  |  |
| 20 yr                             | *1.79 x 10 <sup>-7</sup> | leakage rate through GCL. See Appx. B.12  |  |  |
|                                   |                          |                                           |  |  |
| Location 2 (Case 2OL)             |                          |                                           |  |  |
| 82.5 feet of waste above liner    |                          |                                           |  |  |
| 34 feet of waste below liner      | _                        | Calculated using peak daily percolation/  |  |  |
| 20 yr                             | 1.53 x 10 <sup>-7</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
| Location 3 (Case 3OL)             |                          |                                           |  |  |
| • 85.5 feet of waste above liner  |                          |                                           |  |  |
| 37 feet of waste above liner      |                          | Calculated using peak daily percolation/  |  |  |
| 20 yr                             | 1.53 x 10 <sup>-7</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
| 20 7.                             | 2.55 X 25                | leanage rate through decide 7,ppx. B.12   |  |  |
| Location 4 (Case 4OL)             |                          |                                           |  |  |
| • 119.5 feet of waste above liner |                          |                                           |  |  |
| 16 feet of waste above liner      |                          | Calculated using peak daily percolation/  |  |  |
| 20 yr                             | 1.53 x 10 <sup>-7</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
|                                   |                          |                                           |  |  |
| Closed cases with Overliner       |                          |                                           |  |  |
| Location 1 (Case 5OL)             |                          |                                           |  |  |
| • 12 feet of waste above liner    |                          |                                           |  |  |
| 15.5 feet of waste below liner    |                          | Calculated using peak daily percolation/  |  |  |
| 30 yr                             | 5.11 x 10 <sup>-8</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
| ,                                 |                          |                                           |  |  |
| Location 2 (Case 6OL)             |                          |                                           |  |  |
| 82.5 feet of waste above liner    |                          |                                           |  |  |
| 34 feet of waste below liner      |                          | Calculated using peak daily percolation/  |  |  |
| 30 yr                             | 5.11 x 10 <sup>-8</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
| Location 3 (Case 7OL)             |                          |                                           |  |  |
| 85.5 feet of waste above liner    |                          |                                           |  |  |
| • 37 feet of waste above liner    |                          | Calculated using peak daily percolation/  |  |  |
| 30 yr                             | 5.11 x 10 <sup>-8</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
| 30 yi                             | J.11 X 10                | leakage rate tillough OCL. See Appx. B.12 |  |  |
| Location 4 (Case 8OL)             |                          |                                           |  |  |
| • 119.5 feet of waste above liner |                          |                                           |  |  |
| 16 feet of waste below liner      |                          | Calculated using peak daily percolation/  |  |  |
| 30 yr                             | 5.11 x 10 <sup>-8</sup>  | leakage rate through GCL. See Appx. B.12  |  |  |
|                                   | 1                        | 1                                         |  |  |

<sup>\*</sup> Determined Using Peak Daily Percolation/Leakage Rate Through GCL and Converted to (M/YR) Example:  $((.00007 \text{ FT}^3/\text{Day-Acre})x(1 \text{ Acre}/43,560 \text{ FT}^2)/(1 \text{ Meter}/3.28 \text{ FT})) x (365 \text{ Days}/1 \text{ YR}) = 1.79 \text{ x } 10^{-7} \text{ M/YR}$ 

# APPENDIX C.5 UNSATURATED ZONE DATA



## MULTIMED UNSATURATED ZONE DATA

Note that the unsaturated zone was not modeled as part of this point of compliance demonstration. The attenuating effects of the unsaturated zone were conservativeley disregarded.

# APPENDIX C.6 MULTIMED AQUIFER-SPECIFIC DATA



#### **MULTIMED AQUIFER - SPECIFIC DATA**

| Variable Name                | Units    | Value  | Comments                                                         |
|------------------------------|----------|--------|------------------------------------------------------------------|
| Particle Diameter*           | cm       | 0.0381 | From Permit 235-B Amendment Volume II of V                       |
|                              |          |        | Pages 36-39 (PDF)-1998                                           |
|                              |          |        | Material ranges from fine to coarse. Use an average              |
|                              |          |        | for medium sand (0.010-0.020 in); 0.015 in or 0.0381 cm          |
| Aquifer porosity*            | unitless | 0.43   | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
| Bulk density                 | g/cc     | 1.65   | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
| Aquifer thickness            | m        | 10     | From Permit 235-B Amendment Volume V of V Pgs.                   |
|                              |          |        | 467-473 (PDF)-1998 Avg depth of uppermost aquifer                |
| Mixing zone depth            | m        |        | Derived by MULTIMED                                              |
| Hydraulic conductivity       | m/yr     | 130    | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
|                              |          |        | Average hydraulic conductivity of 4.12 x 10 <sup>-4</sup> cm/sec |
| Hydraulic gradient           | unitless | 0.0031 | From Groundwater Contour Map (January 2016)                      |
| Groundwater seepage velocity | m/yr     |        | Derived by MULTIMED                                              |
| Retardation coefficient      | unitless |        | Derived by MULTIMED                                              |
| Longitudinal dispersivity    | m        |        | Derived by MULTIMED                                              |
| Transveral dispersivity      | m        |        | Derived by MULTIMED                                              |
| Vertical dispersivity        | m        |        | Derived by MULTIMED                                              |
| Organic carbon content       | %        | 0.003  | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
| Receptor distance from well  | m        | Varies | Distance from analysis location to point of                      |
|                              |          |        | compliance.                                                      |
| Z-distance from water table  | m        | 0      | Assume water table is at bottom of liner.                        |

Note: According to Amendment Application (1998) the Evangeline Aquifer is the principal aquifer in the region and is considered one of the most prolific aquifers in the Texas Coastal Plain. The aquifer is composed of at least the Goliad Sand and includes sections of sand in the Fleming Formation. The Goliad consists of fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored clay. (assume medium sand (0.015 in) particle diamter or (0.0381 cm)

\* If Aquifer porosity is known MULTIMED will not use particle diameter.

# APPENDIX C.7 MULTIMED AQUIFER-SPECIFIC DATA-OVERLINER DEMONSTRATION



#### **MULTIMED AQUIFER - SPECIFIC DATA**

#### **Overliner Demonstration**

| Variable Name                | Units    | Value  | Comments                                                         |
|------------------------------|----------|--------|------------------------------------------------------------------|
| Particle Diameter*           | cm       | 0.0381 | From Permit 235-B Amendment Volume II of V                       |
|                              |          |        | Pages 36-39 (PDF)-1998                                           |
|                              |          |        | Material ranges from fine to coarse. Use an average              |
|                              |          |        | for medium sand (0.010-0.020 in); 0.015 in or 0.0381 cm          |
| Aquifer porosity*            | unitless | 0.43   | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
| Bulk density                 | g/cc     | 1.65   | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
| Aquifer thickness            | m        | 10     | From Permit 235-B Amendment Volume V of V Pgs.                   |
|                              |          |        | 467-473 (PDF)-1998 Avg depth of uppermost aquifer                |
| Mixing zone depth            | m        |        | Derived by MULTIMED                                              |
| Hydraulic conductivity       | m/yr     | 130    | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
|                              |          |        | Average hydraulic conductivity of 4.12 x 10 <sup>-4</sup> cm/sec |
| Hydraulic gradient           | unitless | 0.002  | From Groundwater Contour Map (January 2016)                      |
| Groundwater seepage velocity | m/yr     |        | Derived by MULTIMED                                              |
| Retardation coefficient      | unitless |        | Derived by MULTIMED                                              |
| Longitudinal dispersivity    | m        |        | Derived by MULTIMED                                              |
| Transveral dispersivity      | m        |        | Derived by MULTIMED                                              |
| Vertical dispersivity        | m        |        | Derived by MULTIMED                                              |
| Organic carbon content       | %        | 0.003  | From Permit 235-B Amendment Volume V of V                        |
|                              |          |        | Pages 467-473 (PDF)-1998                                         |
| Receptor distance from well  | m        | Varies | Distance from analysis location to point of                      |
|                              |          |        | compliance.                                                      |
| Z-distance from water table  | m        | 0      | Assume water table is at bottom of liner.                        |

Note: According to Amendment Application (1998) the Evangeline Aquifer is the principal aquifer in the region and is considered one of the most prolific aquifers in the Texas Coastal Plain. The aquifer is composed of at least the Goliad Sand and includes sections of sand in the Fleming Formation. The Goliad consists of fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored clay. (assume medium sand (0.015 in) particle diamter or (0.0381 cm)

\* If Aquifer porosity is known MULTIMED will not use particle diameter.

'APPENDIX E ALTERNATE LINER DESIGN REPORT-CITY OF KINGSVILLE MUNICIPAL SOLID WASTE DISPOSAL FACILITY PERMIT AMENDMENT APPLICATION MSW 235-B', PAGES 467-473 FROM PERMIT 235-B AMENDMENT VOLUME V OF V



#### APPENDIX E

# ALTERNATE LINER DESIGN REPORT

City of Kingsville Municipal Solid Waste Disposal Facility Permit Amendment Application MSW 235-B



THIS CERTIFICATION IS INTENDED FOR PERMITTING PURPOSES ONLY AND INCLUDES PAGES 1 THROUGH 7.

November 1997

Pages 467 from Permit 235-B Amendment Volume V of V

# ALTERNATE LINER DESIGN REPORT

The City of Kingsville, Texas is proposing a municipal solid waste landfill facility and wishes to consider an alternate design. The proposed site has an expected life of 29 years, area of approximately 120 acres in size, an excavation depth of 20 feet to the bottom of the liner, and an estimated horizontal projection of the leachate collection layer from the top to the collector of 155 ft. Through an extensive ground-water characterization study, the following information was acquired:

|                                                                                                                                                                  | Aquifer Specific Data                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aquifer porosity Bulk density Aquifer thickness Average hydraulic conductivity Hydraulic gradient Seepage velocity Aquifer temperature pH Organic carbon content | 0.43 (Silty Clay Loam) 1.65 g/cc = 103 lbm/ft <sup>3</sup> 10m = 32.81 ft. 4.12 X 10 <sup>4</sup> cm/sec 0.00331 ft/ft = 0.00331 m/m 3.3 ft/yr 21°C 7.2 0.003 |

Four scenarios were considered in evaluating this proposed site:

Case 1 - A closed landfill with a synthetic GeoClay barrier liner (3.0 X 10<sup>9</sup> cm/sec), a 60 mil HDPE membrane liner (2 x 10<sup>12</sup> cm/sec), a Geocomposite drainage layer (10 cm/sec), a 24 inch protective soil layer, 60 feet of waste, an 18 inch soil cover layer, a 60 mil HDPE membrane, a Geocomposite drainage layer, and a 24 inch infiltration and vegetative erosion control layer.

Case 2 - A closed landfill with a standard composite Subtitle "D" Liner with a Geocomposite drainage layer, 60 feet of waste, and a standard Subtitle "D" cover.

Case 3 - An open landfill with a synthetic GeoClay barrier liner (3.0 X 10<sup>9</sup> cm/sec), a 60 mil HDPE membrane liner (2 x 10<sup>12</sup> cm/sec), a Geocomposite drainage layer (10 cm/sec), a 24 inch protective soil layer, 30 feet of waste (open face 2 acres w/ 320 foot drain length at 4H:1V), and 12 inches of daily soil cover.

Case 4 - An open landfill with a standard composite Subtitle "D" Liner with a Geocomposite drainage layer, 30 feet of waste (open face 2 acres w/ 320 foot drain length at 4H:1V), and 12 inches of daily soil cover.

|        | Avg. Impingement on<br>Drainage Layer,<br>inches | Average Annual<br>Head on Barrier Layer,<br>inches | Avg. Percolation Thru<br>Barrier Layer,<br>ft <sup>3</sup> /yr |
|--------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| Case 1 | 0.00002                                          | 0.000                                              | 0.003                                                          |
| Case 2 | 0.00002                                          | 0.000                                              | 0.003                                                          |
| Case 3 | 1.00798                                          | 0.000                                              | 0.007                                                          |
| Case 4 | 0.88389                                          | 0.000                                              | 0.009                                                          |

#### Results of HELP Model

# Evaluation of Leakage Through a Composite Liner

0.88389

To calculate the leakage rate through a composite liner, it is necessary to determine the impingement rate e (volume of leachate reaching the leachate collection system). From the HELP3 model printout for Case 4, the average annual precipitation is 40.590 inches (295,000 cubit feet), the average annual evapotranspiration is 20.510 inches (148,900 cubic feet), and the peak daily impingement onto the drainage layer is 0.07075 inches/day (513.7 ft3/day).

Maximum thickness of leachate in the leachate collection system T<sub>max</sub> must be less than the thickness of the leachate collection system, and T<sub>max</sub> must be less than 30 cm as per 31 TAC 330.203.

Thus:

Case 4

e = 
$$0.07075$$
 inches/day =  $2.1 \times 10^8$  m/s  
k =  $1.0 \times 10^1$  cm/sec =  $1.0 \times 10^1$  m/s  
tan  $\beta$  =  $2.0\%$   
L =  $155$  ft =  $47.2$  meters

$$T_{\text{max}} = \frac{47.2 * \sqrt{0.0000008.4 + 0.0004} - 0.020}{1.9996}$$

 $T_{\text{max}} = 0.000495 \text{ meters} = 0.0195 \text{ inches}$ 

This value compares well with 0.019 inches calculated in Case 4 and is less than the maximum allowed head of 30 cm (12 inches).

However, when evaluating leakage through a liner to use in a fate and transport model (i.e., Multimed), a more conservative value is recommended. One reasonably conservative estimate would be to assume the sand drainage layer is saturated, or h = Pages 469 from Permit 235-B Amendment Volume V of V 12 inches.

Leakage through a composite liner:

$$a = 0.16 \text{ sq. in.} = 0.0001 \text{ m}^2$$
  
 $h_{tb} = 12.0 \text{ in.} = 0.305 \text{ m.}$   
 $k_{st} = 1.0 \times 10^7 \text{ cm/sec} = 1.0 \times 10^9 \text{ m/s}$ 

For good contact:

$$Q_{tb} = 0.21*(1.0 \text{ X } 10^4 \text{m}^2)^{0.1}*(0.305\text{m})^{0.9}*(1.0 \text{ X } 10^9 \text{m/sec})^{0.74}$$
  
 $Q_{tb} = 0.63 \text{ X } 10^8 \text{ m}^3/\text{sec/hole} = 0.1438 \text{ gal/day/hole}$ 

For poor contact:

$$Q_{tb} = (1.15/0.21)*0.1438 = 0.7875 \text{ gal/hole/day}$$

Assuming 7 holes per acre, the estimated leakage through a composite liner with poor contact would be:

# Evaluation of Leakage Through a GeoClay Synthetic Liner

To calculate the leakage rate through a synthetic GeoClay liner, it is necessary to determine the impingement rate e (volume of leachate reaching the leachate collection system). From the HELP3 model printout for Case 2, the average annual precipitation is 40.590 inches (295,000 cubit feet), the average annual evapotranspiration is 20.882 inches (151,600 cubic feet), and the peak daily impingement onto the drainage layer is 0.07850 inches/day (570.0 ft³/day).

Maximum thickness of leachate in the leachate collection system  $T_{max}$  must be less than the thickness of the leachate collection system, and  $T_{max}$  must be less than 30 cm as per 31 TAC 330.203.

Thus:

e = 0.0785 inches/day = 2.3 X 
$$10^8$$
 m/s k = 1.0 X  $10^1$  cm/sec = 1.0 X  $10^1$  m/s tan  $\beta$  = 2.0% L = 155 ft = 47.2 meters

$$T_{\text{max}} = \frac{47.2 * \sqrt{0.00000092 + 0.0004} - 0.020}{1.9996}$$

Pages 470 from Permit 235-B Amendment Volume V of V E-3

$$T_{max} = 0.0005426 \text{ meters} = 0.0214 \text{ inches}$$

This value compares well with 0.022 inches calculated in Case 3 and is less than the maximum allowed head of 30 cm (12 inches).

However, when evaluating leakage through a liner to use in a fate and transport model (i.e., Multimed), a more conservative value is recommended. One reasonably conservative estimate would be to assume the sand drainage layer is saturated, or h = 12 inches.

Leakage through a composite liner:

$$a = 0.16 \text{ sq. in.} = 0.0001 \text{ m}^2$$
  
 $h_{tb} = 12.0 \text{ in.} = 0.305 \text{ m.}$   
 $k_{st} = 3.0 \times 10^9 \text{ cm/sec} = 3.0 \times 10^{11} \text{ m/s}$ 

For good contact:

$$Q_{tb} = 0.21*(1.0 \text{ X } 10^4 \text{m}^2)^{0.1}*(0.305\text{m})^{0.9}*(3.0 \text{ X } 10^{11\text{m/sec}})^{0.74}$$
  
 $Q_{tb} = 4.677 \text{ X } 10^{10} \text{ m}^3/\text{sec/hole} = 0.01068 \text{ gal/day/hole}$ 

For poor contact:

$$Q_{b} = (1.15/0.21)*0.01068 = 0.05847 \text{ gal/hole/day}$$

Assuming 7 holes per acre, the estimated leakage through a composite liner with poor contact would be:

$$Q = (7 \text{ holes/acre})*(2 \text{ acres})*(0.05847\text{gal/day/hole})$$
  
 $Q = 0.8185 \text{ gal/day} = \text{INFiltration Rate} = 0.000140\text{m/yr}$ 

# Analysis of the 30 cm (12 inches) head on High Drainage Layers:

The 12 inch head on these synthetic liners with Geocomposite drainage layers seems unreasonable. Therefore, let's answer some questions prior to proceding to input the MultiMed Model.

First, What flow would be required to create a 12" head on the drainage layer?

Solving the Head Equation in reverse for impingement rate:

$$T_{max} = 12" = 0.3048 \text{ meters}$$

#### Pages 471 from Permit 235-B Amendment Volume V of V

$$0.3048m = \frac{47.2 * (\sqrt{4 * (\frac{e}{0.1}) + 0.0004 - 0.020)}}{1.9996}$$

e = 0.00001708 m/sec = 58.10 inches/day!!!!!!

This impingement rate is more than the max annual rainfall coming in one day; more than a 25 year, 24 hour storm; more than a 100 year, 24 hour storm; and equals 3,155,530 gallons/day impingement

just to create 12 inches of head on the drainage layer! Nevertheless, the two compartive cases (cases 11&12) have been run. They illustrate that the Subtitle D Liner will not pass the criteria under 12" head, but that the alternateve GeoClay liner will.

A better conservative estimate for this type of system would be an assumption of a 25 year, 24 hour storm (9 inches/day) hitting the landfill, and using the HELP3 model to estimate the drainage layer impingement in each case. The peak daily precipitation rate for the HELP3 model cases was 7.92 inches. Therefore, we shall increase the impingement on the lower synthetic liner by the ratio of (9.00"/7.92") This generates the following impingement rates on the liners for cases 1 through 4:

| Case No.                     | 25 yr, 24 hr Storm<br>HELP Perc'n thru<br>Barrier Layer,<br>ft3/day | 25 yr, 24 hr Storm<br>HELP Perc'n thru<br>Barrier Layer,<br>inch/day | 25 yr, 24 hr Storm<br>HELP Perc'n thru<br>Barrier Layer,<br>meter/year |
|------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
| 1 - COK Alt. Liner<br>Closed | 0.0000114                                                           | 0.000000571                                                          | 0.0000053                                                              |
| 2 - STD Liner<br>Closed      | 0.0000114                                                           | 0.000000571                                                          | 0.0000053                                                              |
| 3 - COK Alt. Liner<br>Open   | 0.0000682                                                           | 0.00000343                                                           | 0.0000318                                                              |
| 4 - STD Liner<br>Open        | 0.00025                                                             | 0.0000126                                                            | 0.000117                                                               |

These infiltration rates were used as input to the MultiMed Model and produced the following results:

Pages 472 from Permit 235-B Amendment Volume V of V

## Evaluation of leachate concentration at Point of Compliance

Based on the above calculations, the infiltration rate to be input into the Mulitmed models are:

For GeoClay Barrier Liner(Closed): Infiltration = 0.031 gal/day = 0.0000053 m/yr For Std Subtitle "D" Liner(Open): Infiltration = 0.031 gal/day = 0.0000053 m/yr For GeoClay Barrier Liner(Open): Infiltration = 0.1862 gal/day = 0.0000318 m/yr For Std Subtitle "D" Liner(Open): Infiltration = 0.6826 gal/day = 0.000117 m/yr

The first Mulitmed model was run for Case 1 (Closed landfill, alternate design, steady state). The second model run for Case 2 (Closed landfill, Subtitle "D", steady state). The third model run for Case 3 (Open landfill, alternate design, steady state). The fourth model run for Case 4 (Open landfill, Subtitle "D", steady state). Results of these models are tabulated below:

#### **Results of Multimed Models**

|                       | Concentration at POC | Dilution Attenuation<br>Factor |
|-----------------------|----------------------|--------------------------------|
| Case 1 (steady state) | 0.0002089            | 4,787                          |
| Case 2 (steady state) | 0.0002089            | 4,787                          |
| Case 3 (steady state) | 0.001253             | 798                            |
| Case 4 (steady-state) | 0.0004606            | 217                            |

#### Conclusions

As can be seen by comparing the Dilution Attenuation Factors (DAF's) for the alternate design scenarios, Case 1 and Case 3 (4,787 and 798, respectively) with the minimum required DAF's listed in Table 2, is has been demonstrated through the use of the HELP and Multimed models that the alternate design is sufficient for all constituents.

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B ATTACHMENT 4-GEOLOGY REPORT, 4.0 REGIONAL AQUIFERS', PAGES 36-39 FROM 235-B AMENDMENT VOLUME II OF V



City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

## 4.0 Regional Aquifers

The Evangeline Aquifer is the principal aquifer in the region and is considered one of the most prolific aquifers in the Texas Coastal Plain. The aquifer is composed of at least the Goliad Sand and includes sections of sand in the Fleming Formation. Only in South Texas the base of the Evangeline coincides with the base of the Goliad. The upper boundary of the Evangeline probably follows closely the top of the Goliad Sand where present, but this relationship is somewhat speculative (Muller, 1979). (See Figure 4.11) Ground water flow direction in the Evangeline is in a Northerly direction based on a water level map of the Goliad sand. There are two very significant cones of depression in the Evangeline (Goliad) aquifer located to the northwest of the City of Kingsville MSWLF site. These depressions are primarily due to large groundwater production rates by the City of Kingsville and the Exxon King Ranch Gas Plant. The extent of salt water intrusion from the Gulf of Mexico into the Evangeline (Goliad) aquifer is shown on Figure 4.16.

The Goliad consists of fine to coarse, mostly gray calcareous sand interbedded with sandstone and varicolored clay. Recharge within the site area occurs along the outcrop which is located in western Hidalgo, central-eastern Starr, central Jim Hogg, Duval, southeastern Webb, northeastern Brooks, northern Jim Wells, and extreme northeast Zapata counties, as well as other counties to the north. The maximum width of the outcrop is west of Falfurrias where the Goliad Sand extends for nearly 50 miles at the surface and completely overlaps the underlying Lagarto Clay and Oakville Sandstone and nearly overlaps the Catahoula Tuff (Shafer, 1973). (See Figure 4.12)

The water of the Goliad is under artesian pressure and is yielded to flowing and nonflowing wells. The average coefficient of transmissibility determined during drawdown of the fresh to slightly saline water section of the Goliad Sand in southwestern Kleberg County measured in well no. RR-83-41-803, was about 34,400 gpd per foot. The specific capacity of the well was 17.8 gpm per foot. This was derived from a screened interval of 126 feet near the north boundary of Kenedy and south boundary of Kleberg Counties.

Fresh water of domestic use quality in the Evangeline is found in well developed sands at depths of 500 feet and greater in the MSWLF area. From surface to the fresh water sands in the Evangeline the lithology is predominately a clay described as silty, calcareous, firm to hard with occasionally silty sands.

The regional Chicot aquifer lies approximately 220 feet below ground surface in the vicinity of the MSWLF according to two deep well logs obtained from a local mineral company. (See Section 4.2) The Light Olive Green Clay layer serves as aquiclude between the uppermost aquifer below the landfill site and the Chicot aquifer. In Kleberg County, and specifically the MSWLF, the waters from the Chicot aquifer are generally slightly-saline to saline and yield only marginal quantities of water.

Pages 36 from Permit 235-B Amendment Volume II of V

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

The local unconfined water table aquifer tends to flow in all directions away from the landfill site. The only exception is that for a period of time after excessive rainfall events, ground water in this local uppermost aquifer tends to flow toward the site from the northwest. This determination is based on water levels recorded in wells completed for use in the current expansion phase. However, the largest gradients for ground water flow are in the northeast and southwest directions. The flow toward the southwest is along a caliche channel which slopes to the southwest toward some lower elevation caliche pits. The flow toward the northeast is toward the Santa Gertrudis creek. However, the ground water tends to flow through some fairly tight clay in that direction. The high point of ground water at the MSWLF site is at least partially a following of the surface topography and influenced by direct recharge from any ponding which is not promptly removed. Attachment 5, Appendix E gives a more thorough analysis of ground water direction and rate of ground water flow.

The initial interpretation, based on available data and monitor well density and location, indicated a predominate flow to the north or west. Completion of monitor and observation wells in the current expansion program indicate a northeast flow direction. Later analysis shows that ground water flows slowly away from MSWLF in all directions. This is based on measurements of the top of the saturated zone as evidence by water levels in wells. The initial flow direction determined by REI when the landfill was started was toward the northeast.

#### 4.1 Water Quality

The water quality of the Goliad is highly variable. Chloride contents in the wells sampled ranged from 94 to 9,100 mg/l, exceeding 250 mg/l in 60% of the samples. Sulfate content ranged from 26 to 4,630 mg/l. In Kleberg County, 33% of the samples exceeded 250 mg/l sulfate. Dissolved-solids content ranged from 601 to 49,900 mg/l. Over 75% exceeded 1,000 mg/l dissolved-solids. In summary, ground water that meets most of the quality standards of the U.S. Public Health Service is available from wells less than 1,000 feet deep in the Goliad Sand, Principally in southern Jim Wells County, the western one-half of Kleberg County, and in a few other relatively small areas throughout the report area. Shallow, moderately saline to very saline water overlies the fresh to slightly saline water at most places (Shafer, 1973). (See Figure 4.13)

The Beaumont Clay and Lissie Formation, undifferentiated, (Chicot Aquifer) yields small quantities of slightly to moderately saline water to a few shallow wells used mostly for stock needs in eastern Kleberg and Kenedy Counties. Test wells drilled near Riviera, 15 miles south of Kingsville, in southern Kleberg County show that in this area the shallow sands of the Beaumont and Lissie (Chicot) usually contain very saline water. This group is not considered a supply of useable water because of the highly mineralized water associated with formations in most places. The casings of many wells are cemented through these

Pages 37 from Permit 235-B Amendment Volume II of V

formations. (Shafer, 1973)

Water held in the Beaumont Clay and Lissie Formation, undifferentiated, (Chicot) is under water-table (unconfined) conditions. There were no recoverable aquifer tests from reference material on this formation as it occurs in the area of the site. This formation is not recognized as a useable source of ground water.

Historical ground water monitoring from in-place monitor wells indicates that the sulfates range approximately from 45 to 500 mg/l, chlorides from approximately 50 to 500 mg/l, and dissolved-solids from approximately 500 to 6,000 mg/l. Values of pH have consistently ranged between 7.00 and 8.00. More detailed analytical data from the ground water monitor wells at the site is given in Table 5.1 in Attachment 5.

#### 4.2 Hydraulic Connection

No hydraulic connection was found between the uppermost fluvial-deltaic beds which will host the MSWLF and the deeper Chicot and Evangeline (Goliad) aquifers.

Deep elevations prepared from water well data located in the vicinity show that the Chicot aquifer is located approximately 200 feet below ground surface in the MSWLF vicinity. This data is confirmed by electric logs from two (2) deep uranium tests located on the southeast side and adjacent to the MSWLF acreage block ( URI, Inc. well nos. 2001 & 2016). These wells exhibit the top of the main Chicot sand body at depths of 220 & 225' of measured depth, respectively. The top of the deeper Evangeline (Goliad) sands are found at approximately 500' MD. A confining clay, at the base of the fluvial—deltaic section which will host the MSWLF, is indicated in both URI wells to depths of 120' and 130' respectively. In addition, four deep borings (wells 21,23,24,25) at the MSWLF confirm that the "light olive green clay" is ubiquitous under the site with a minimum proven thickness of 38'.

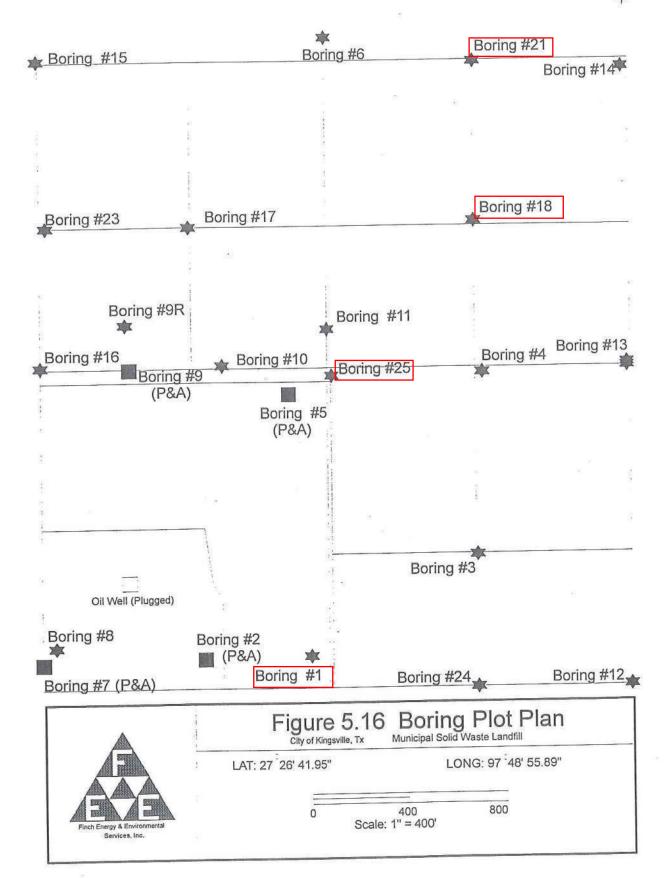
**TABLE 4.2.1** 

| WELL# | ELEVATION (feet) | TOTAL DEPTH (feet) | TOP LT OLIVE GRN CLAY (ft.,+M.S.L.) | FOOTAGE OF<br>CLAY |
|-------|------------------|--------------------|-------------------------------------|--------------------|
| 21    | 52.4             | 84                 | +6.4                                | 38                 |
| 23    | 49.5             | 86                 | +13.5                               | 38                 |
| 24    | 47.4             | 72                 | +15.4                               | 40                 |
| 25    | 61.1             | 88                 | +11.1                               | 38                 |

The "light olive green clay" is the aquiclude for the MSWLF facility.

City of Kingsville MSWLF - Permit 235 B Attachment 4 - Geology Report

#### 4.3 Recharge


Recharge within a 5 mile radius is from downward percolation of surface water, infiltration from streams, impoundments and water retained in abandoned caliche pits. (Figure 4.14) Flow through the soils is very slow.

#### 4.4 Water Use

A survey of, and for, water wells within a 1 mile radius of the MSWLF site was prepared by Agency Information Consultants (AIC). All known water wells within the survey area produce water for domestic use from the Evangeline Aquifer (Goliad Sand). Thirty one wells were identified in the survey area. (See Figure 4.15) Depth to the top of the perforated or screened interval varies from 524 feet to 726 feet, with an average depth of 621 feet. (See Figures 4.12 & 4.13) There are no known water wells completed in the Chicot aquifer for potable water. There are a few stock wells. The water from the Chicot is mostly very saline. This salinity causes casing corrosion problems with the good fresh water wells in the Goliad aquifer unless they are cemented properly through the Chicot.

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'FIGURE 5.16 BORING PLOT PLAN', PAGE 197 FROM PERMIT 235-B AMENDMENT VOLUME II OF V





Page 197 from Permit 235-B Amendment Volume II of V

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'SUBSURFACE EXPLORATION RECORD B/W NO. 21', PAGE 371 FROM PERMIT 235-B AMENDMENT VOLUME II OF V



PAGE\_1\_ OF \_1\_

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073

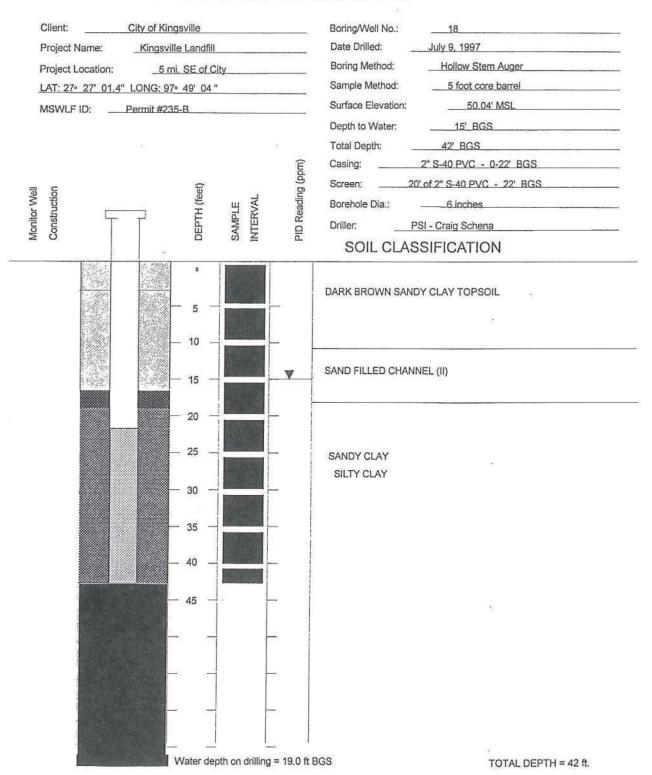


#### SUBSURFACE EXPLORATION RECORD

|          | Client:                      | City of      | Kingsville      |                    |                   | Boring/Well No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                     | -  |
|----------|------------------------------|--------------|-----------------|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|
|          | Project N                    | ame: K       | ingsville Landf | ill                |                   | Date Drilled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | April 27, 1998                         | _  |
|          | Project Lo                   | ocation:     | 5 mi SE of City |                    |                   | Boring Method: HOLLOW STEM AUGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |    |
|          | LAT: 27°                     | 26' 09" LONG | G: 97° 48′ 47.  | 6"                 | Sample Method:    | Shelby Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -00                                    |    |
|          | MSWLFI                       | D: Pe        | rmit #235-B     |                    |                   | Surface Elevation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.41' MSL                             | _  |
|          |                              |              |                 |                    |                   | Depth to Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.8' BGS                              |    |
|          |                              |              |                 |                    |                   | Total Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84' BGS                                | _5 |
|          |                              |              |                 |                    | (md               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000                                   | _  |
|          | on 'ell                      |              | (Feet)          | 4                  | d) Bu             | Screen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | _  |
|          | or V                         |              | H.              | Y.E.               | eadi              | Borehole Dia.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 inch                                 | _  |
|          | Monitor Well<br>Construction | TT           | DEPTH (feet)    | SAMPLE             | PID Reading (ppm) | Driller ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSI - Craig Schena                     |    |
|          | 2 0                          |              | _               | 0) <u>2</u>        | о.                | SOIL CLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SIFICATION                             |    |
|          |                              |              | 0               | MC Harporton       | Sugg              | Dark Brown Sand Clay -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Topsoil                                |    |
|          |                              |              | 10 —            |                    |                   | Caliche Bearing Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)                                    |    |
|          |                              |              |                 |                    |                   | Sand Filled Channel (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |    |
| stalled; | ; boring only                |              | 20 —            |                    |                   | Sandy Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ###################################### |    |
|          |                              |              |                 | MAN CO             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #E                                     |    |
|          |                              |              | — x —           |                    |                   | South Control of the |                                        |    |
|          |                              |              |                 |                    |                   | Clayey Sand (Clay Dune)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |    |
|          |                              |              | - 40 -          |                    | i                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | 50              |                    |                   | LT OLIVE GREEN CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |    |
|          |                              |              |                 |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | - 60 -          |                    | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              |                 | E STATE OF         | i                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | 70 —            |                    | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              |                 |                    | Ì                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | - 60 -          |                    | ĺ                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              | 9            |                 | TDH                | . !               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | 90 —            | -                  | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              |                 |                    | -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | 100             |                    | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      |    |
|          | İ                            |              |                 |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              | J. E         |                 |                    | i                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              |                 |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              |                 |                    | i                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          | 1.                           |              |                 | L                  | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
|          |                              |              | Water depth     | on Drilling = 25.0 | ft. B             | GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL DEPTH = 84 feet                  |    |

Page 371 from Permit 235-B Amendment Volume II of V

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'SUBSURFACE EXPLORATION RECORD B/W NO. 18', PAGE 369 FROM PERMIT 235-B AMENDMENT VOLUME II OF V




FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073 (512) 592-9810 (512) 592-5552 FAX

PAGE\_1\_OF\_1\_



#### SUBSURFACE EXPLORATION RECORD



Page 369 from Permit 235-B Amendment Volume II of V

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'SUBSURFACE EXPLORATION RECORD B/W NO. 25', PAGE 374 FROM PERMIT 235-B AMENDMENT VOLUME II OF V



PAGE\_1\_ OF \_1\_

FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073



#### SUBSURFACE EXPLORATION RECORD

| Client:                      | City of k                              | (ingsville          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Boring/Well No.:   | 25                    |
|------------------------------|----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-----------------------|
| Project Na                   |                                        | Kingsville Landfill |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Date Drilled: _    | April 29, 1998        |
|                              | Project Location: 5 mi SE of City      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Boring Method:     | HOLLOW STEM AUGER     |
|                              | LAT: 27° 26' 55.2" LONG: 97° 48' 41.8" |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Method:    | SPLIT SPOON        |                       |
|                              |                                        | mit #235-B          | +1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Surface Elevation: | 61.12' MSL            |
| MSWLF II                     | DFei                                   | 1111(#233-6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Depth to Water:    | 21.1' BGS             |
|                              |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Total Depth:       | 88' BGS               |
|                              |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                 |                    |                       |
|                              |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dd)               | Screen:            |                       |
| Well                         |                                        | (feel               | m ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ading             | Borehole Dia.:     | 6 inch                |
| Monitor Well<br>Construction | <b>午</b>                               | DEPTH (feet)        | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PID Reading (ppm) | Driller ID:        | PSI - Craig Schena    |
| Mor                          |                                        | DE                  | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PI                |                    | SSIFICATION           |
|                              |                                        | 0                   | S DESCRIPTION OF THE PERSON OF |                   | TOP SOIL & DARK BF | ROWN CLAY             |
|                              |                                        | 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CALICHE BEARING CH | HANNEL (I)            |
| stalled; boring only         |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | SAND FILLED CHANNI | EL (II)               |
| ,                            |                                        | 20                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                       |
|                              |                                        | 30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |                    |                       |
|                              |                                        | 40                  | 27.502.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | SANDY CLAY         |                       |
| 2                            |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                       |
|                              |                                        | 50 -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 | LT OLIVE GREEN CLA | Y                     |
| 71                           |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |                    |                       |
|                              |                                        | 70                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    | 8                     |
|                              |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 32                 |                       |
| 7                            |                                        | - 60 -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                       |
|                              |                                        | - 60 -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TDH               |                    |                       |
|                              |                                        | 100 —               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                       |
|                              |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                       |
|                              | 1 [                                    | F -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 |                    |                       |
| 25                           |                                        | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |                    |                       |
|                              | -                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                       |
|                              |                                        | Mater den           | th on Drilling =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3100              | RGS                | TOTAL DEPTH = 88 feet |

Hanson Professional Services Inc. Submittal Date: September 2018

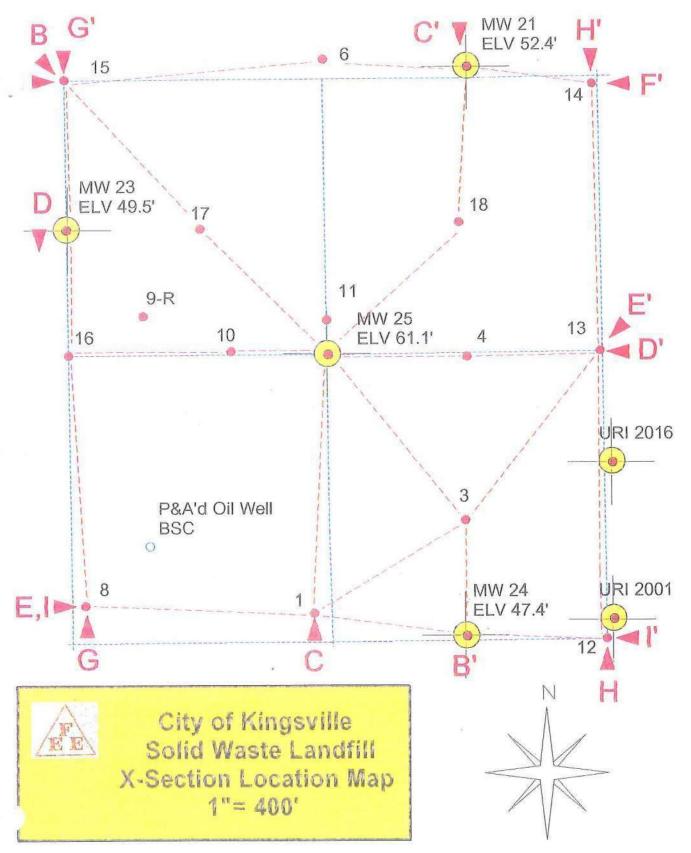
Revision: 0

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'SUBSURFACE EXPLORATION RECORD B/W NO. 1', PAGE 351 FROM PERMIT 235-B AMENDMENT VOLUME II OF V



PAGE\_1\_ OF \_1\_

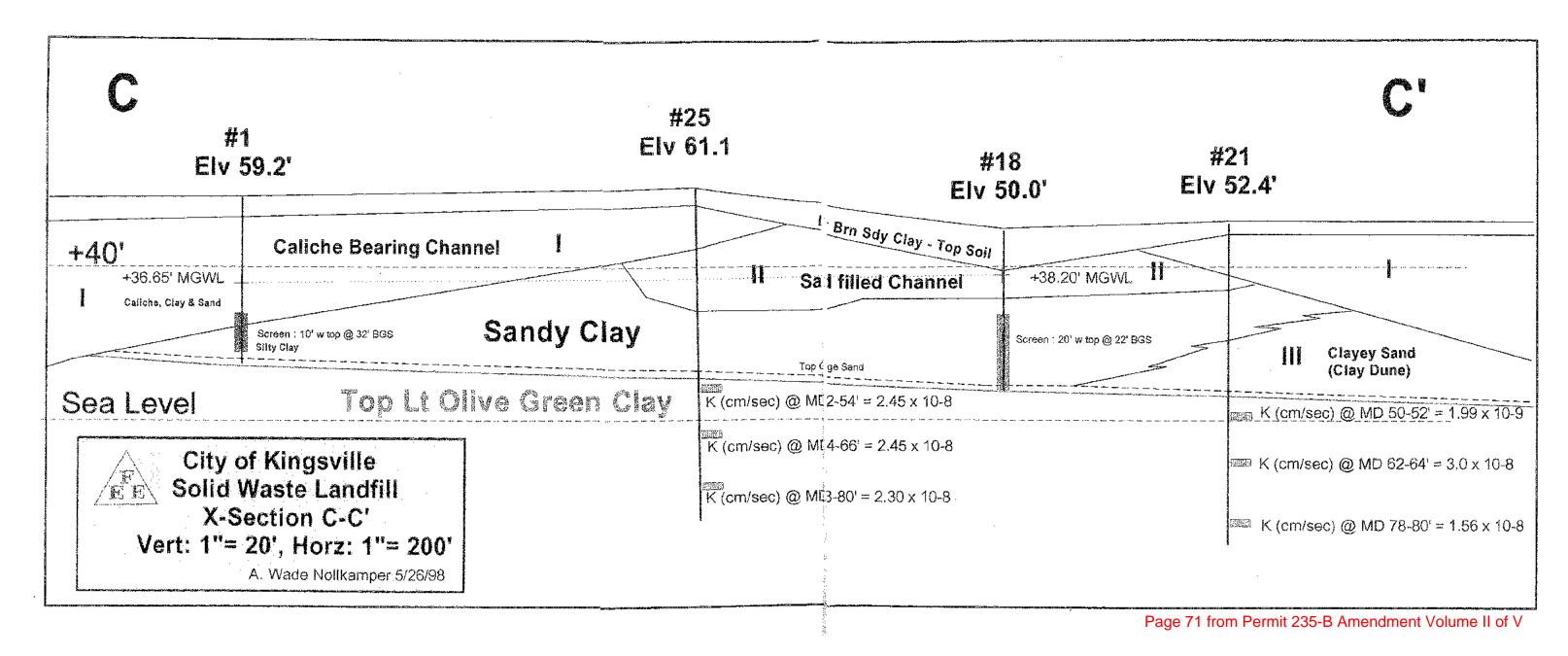
FINCH ENERGY AND ENVIRONMENTAL SERVICES, Inc. P.O. Box 73, Kingsville, Texas 78364-0073




# SUBSURFACE EXPLORATION RECORD

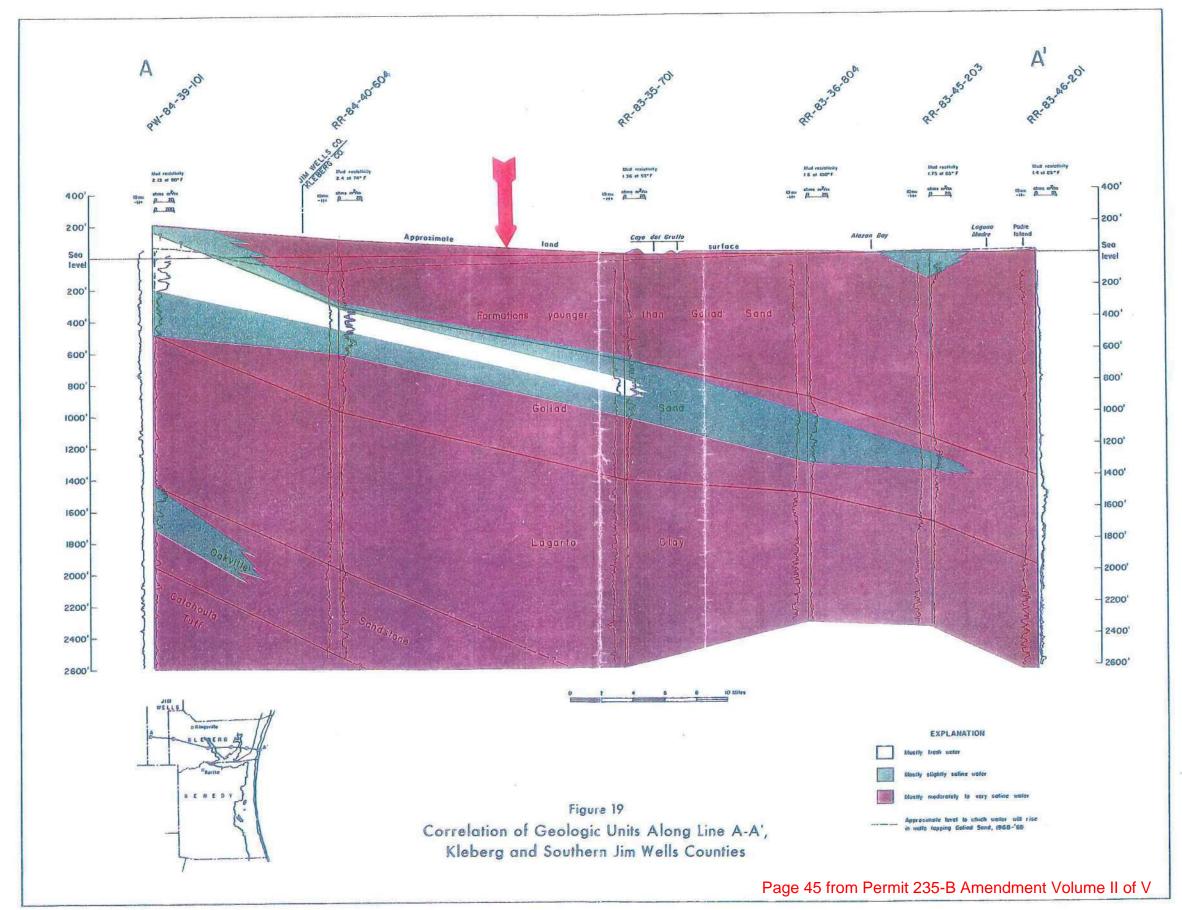
| Client:<br>Project Name:<br>Project Location:<br>LAT: 27° 26' 42.2"<br>MSWLF ID: | City of Kingsville  Kingsville Landfil  5 mi SE of City  LONG: 97• 49: 10.6"  Permit #235-B |                                   | Boring/Well No.:1  Date Drilled:June 19, 1984  Boring Method:Hollow_Stem Auger  Sample Method: SHELBY_TUBE & SPLIT_SPOON  Surface Elevation:59.25' MSL  Depth to Water:31 0' BGS  Total Depth:42' BGS  Casing:2" S-40 PVC - 0-32' BGS |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitor Well Construction                                                        | DEPTH (feet)                                                                                | SAMPLE INTERVAL PID Reading (ppm) | Screen:         10'of 2" S-40 PVC - 32' RGS           Borehole Dia.:         6 inch           Driller ID:         TETCO           SOIL CLASSIFICATION                                                                                 |
|                                                                                  | 0                                                                                           |                                   | TOP SOIL & DARK BROWN CLAY                                                                                                                                                                                                            |
|                                                                                  | 20                                                                                          |                                   | CALICHE, CLAY & SAND (I)                                                                                                                                                                                                              |
|                                                                                  | - 35<br>- 49<br>- 45<br>- 50                                                                |                                   | SILTY CLAY                                                                                                                                                                                                                            |
|                                                                                  |                                                                                             | h on Drilling = 30.19             | ft. BGS TOTAL DEPTH = 42 feet                                                                                                                                                                                                         |

'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'X-SECTION LOCATION MAP', PAGE 68 FROM PERMIT 235-B AMENDMENT VOLUME II OF V



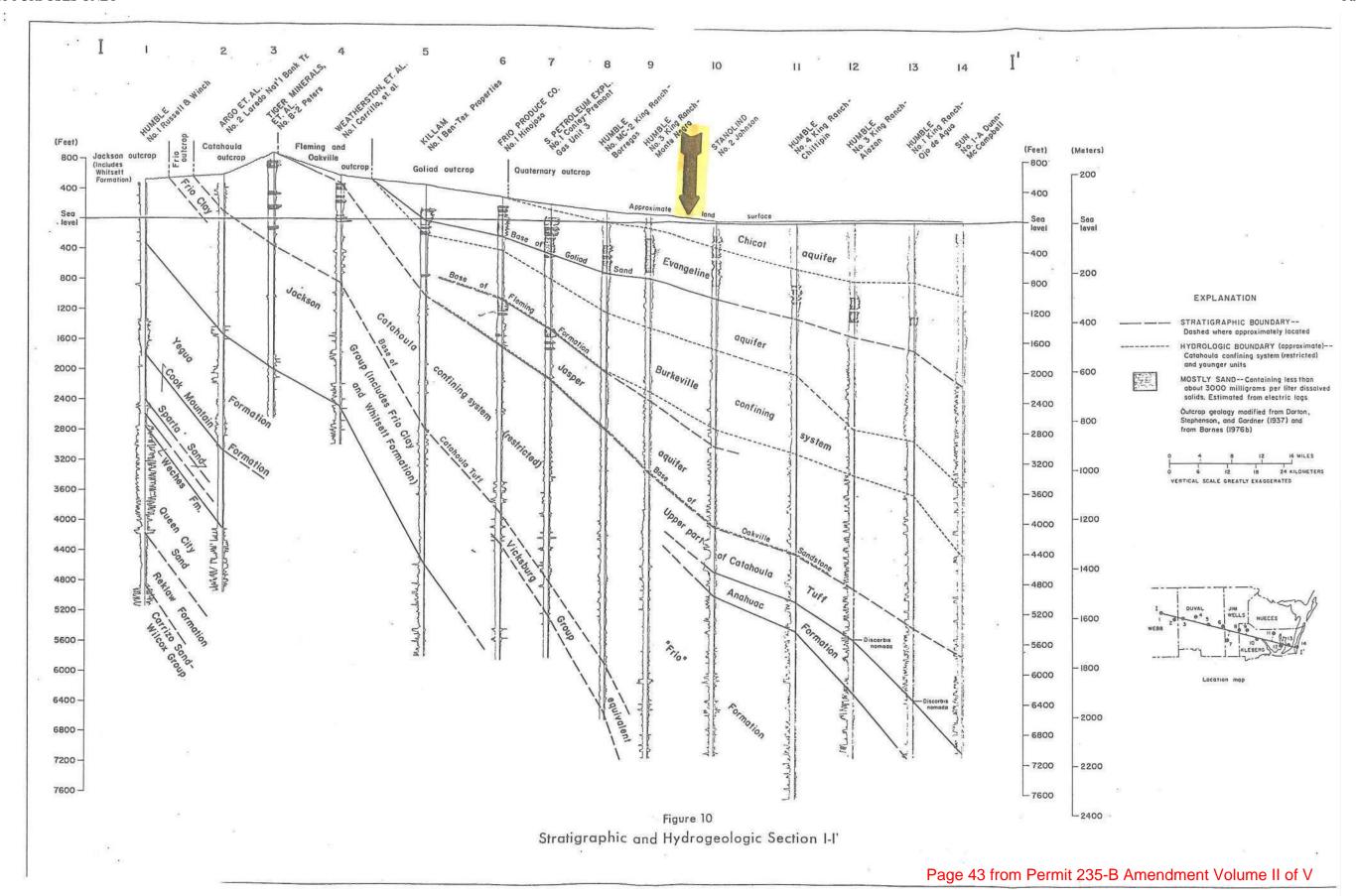



Page 68 from Permit 235-B Amendment Volume II of V REVISION 1


'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'X-SECTION C-C", PAGE 71 FROM PERMIT 235-B AMENDMENT VOLUME II OF V






'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'CORRELATION OF GEOLOGIC UNITS ALONG A-A KLEBERG AND SOUTHERN JIM WELLS COUNTIES", PAGE 45 FROM PERMIT 235-B AMENDMENT VOLUME II OF V





'CITY OF KINGSVILLE MSWLF-PERMIT 235-B 'STRATIGRAPHIC AND HYDROGEOLOGIC SECTION I-I", PAGE 43 FROM PERMIT 235-B AMENDMENT VOLUME II OF V





Part III

# APPENDIX D CALCULATIONS OF THE DILUTION ATTENUATION FACTOR (DAF)



#### CALCULATIONS OF THE DILUTION ATTENUATION FACTOR

Example Calculation for the Interim Case with Alternative Liner

Result from MULTIMED model:

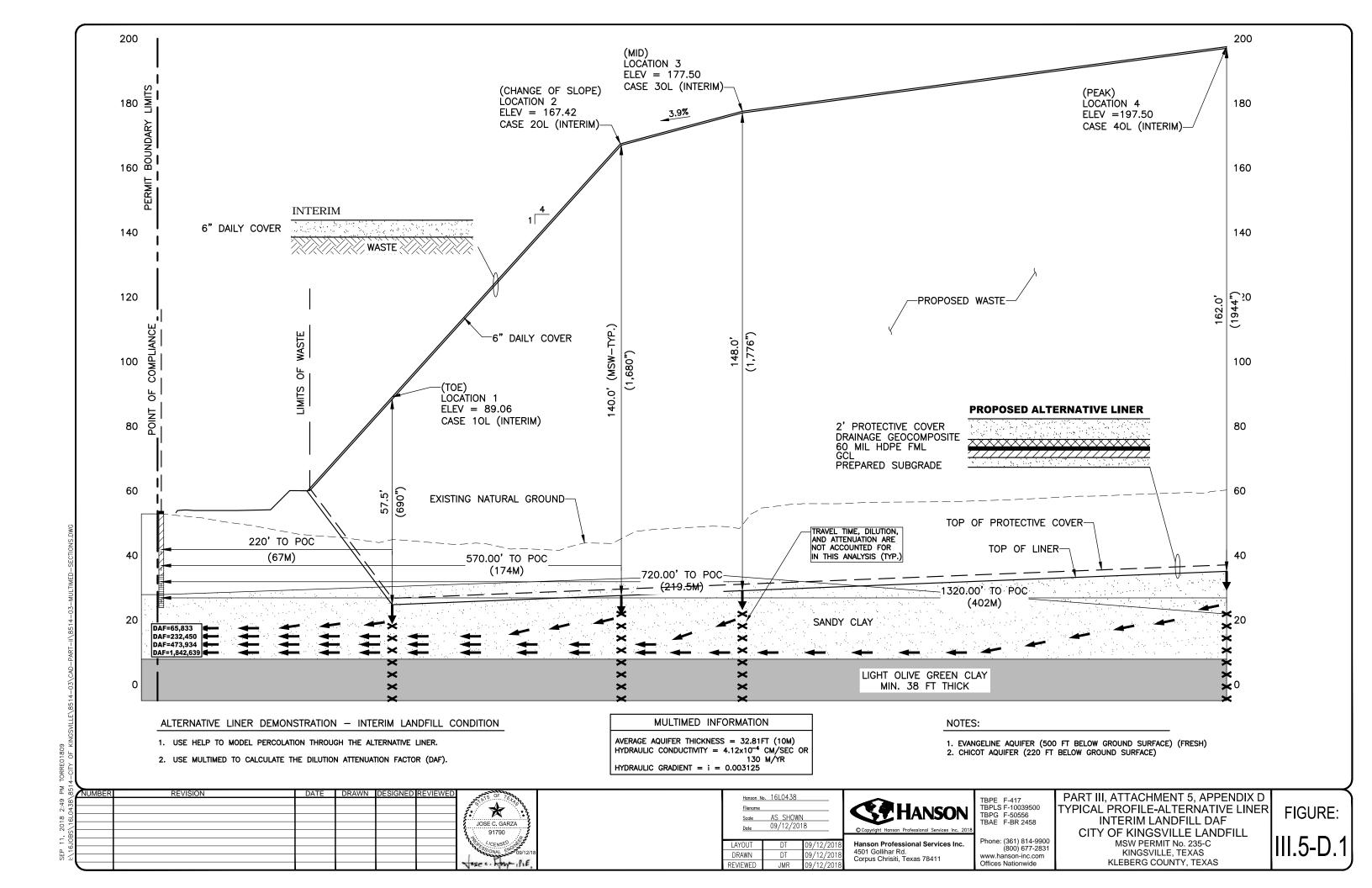
Chemical concentration at the point of compliance =  $0.2943 \times 10^{-4} \text{ mg/l}$  (see MULTIMED model output)

To find the resulting DAF, take the recipricol:

DAF= 1/0.2943 x 10<sup>-4</sup> mg/1

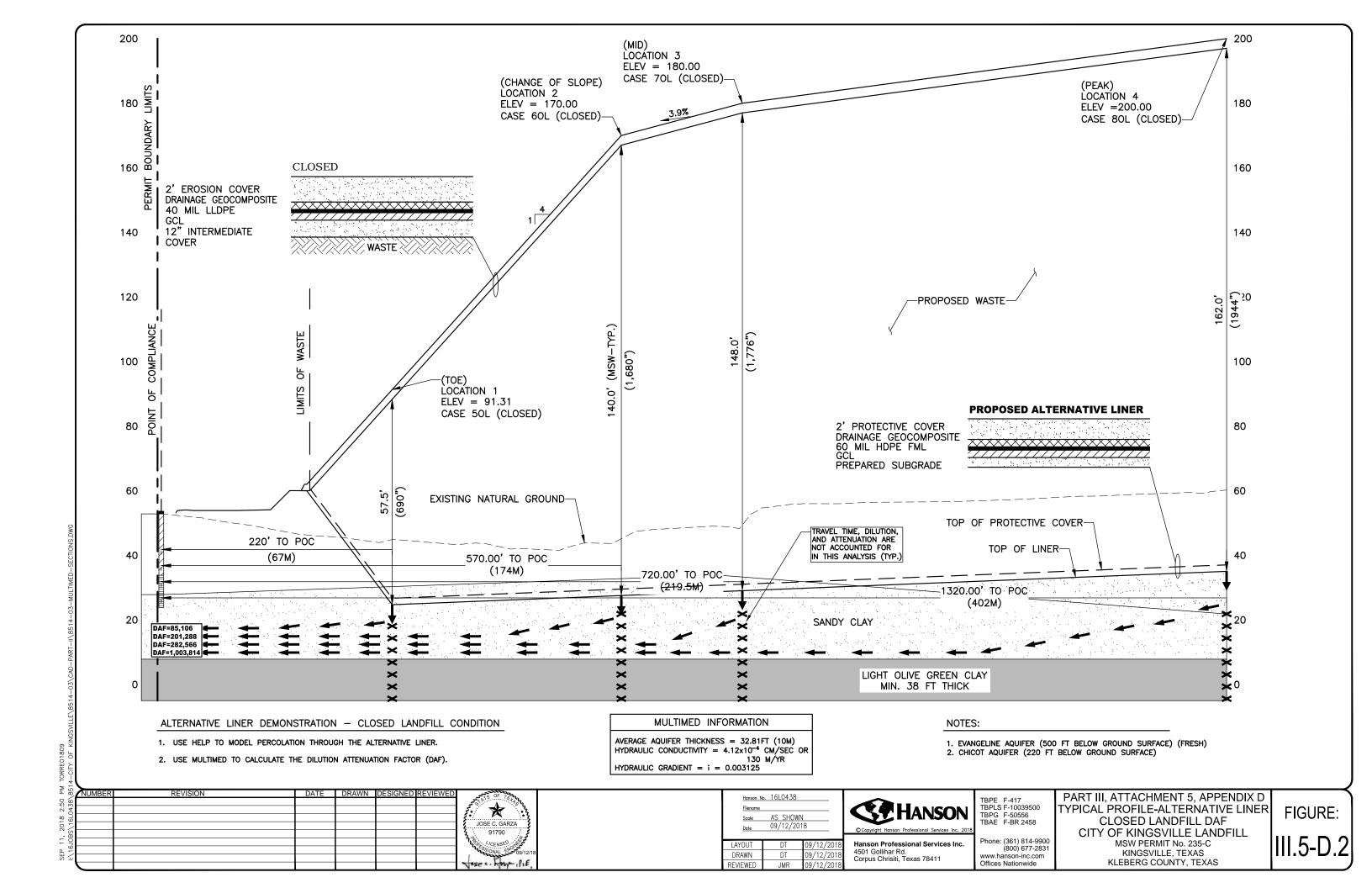
DAF= 33,979

Table 1


| Location                     | Interim Case DAF | Closed Case DAF |
|------------------------------|------------------|-----------------|
| Alternative Liner Location 1 | 33,979           | 85,106          |
| Alternative Liner Location 2 | 57,471           | 201,288         |
| Alternative Liner Location 3 | 80,645           | 282,566         |
| Alternative Liner Location 4 | 286,533          | 1,003,814       |

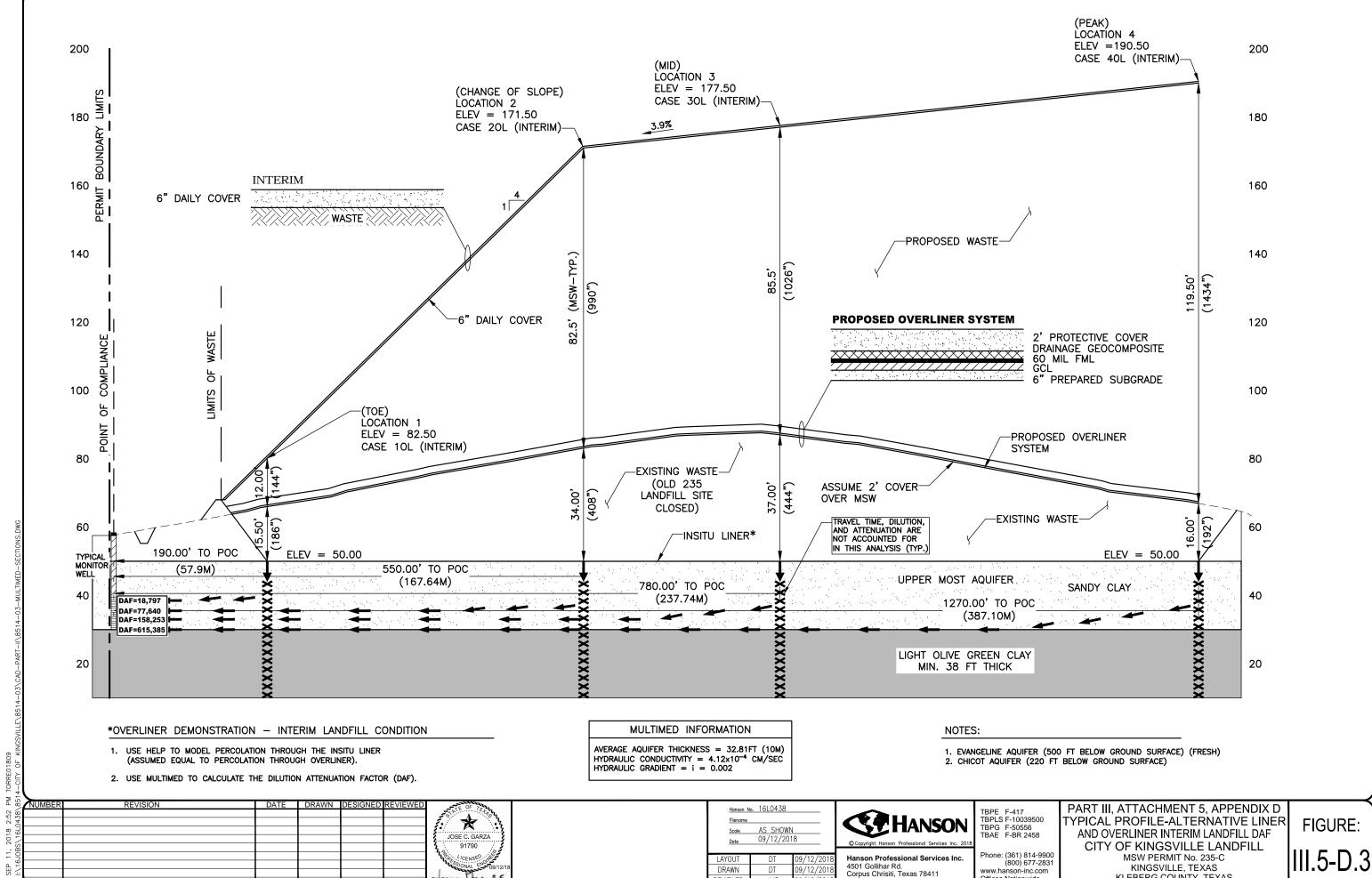
| Location             | Interim Case DAF | Closed Case DAF |
|----------------------|------------------|-----------------|
| Overliner Location 1 | 18,797           | 65,833          |
| Overliner Location 2 | 77,640           | 232,450         |
| Overliner Location 3 | 158,253          | 473,934         |
| Overliner Location 4 | 615,385          | 1,842,639       |

#### APPENDIX D.1 TYPICAL PROFILE-ALTERNATIVE LINER INTERIM LANDFILL DAF


FOR PERMIT PURPOSES ONLY






#### APPENDIX D.2 TYPICAL PROFILE-ALTERNATIVE LINER CLOSED LANDFILL DAF



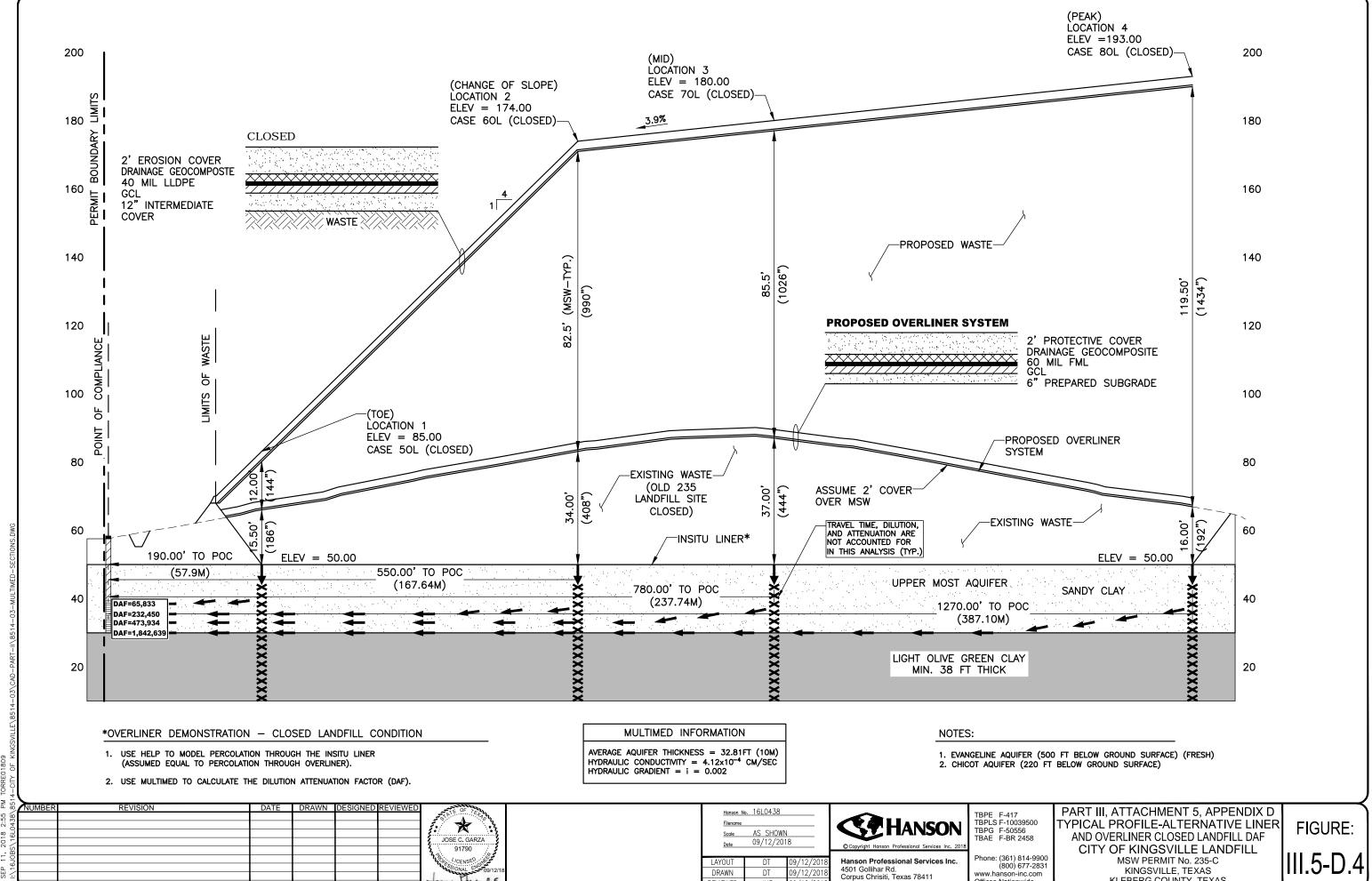


#### APPENDIX D.3 TYPICAL PROFILE-ALTERNATIVE LINER AND OVERLINER INTERIM LANDFILL DAF





DRAWN


DT

KLEBERG COUNTY, TEXAS

Offices Nationwide

# APPENDIX D.4 TYPICAL PROFILE-ALTERNATIVE LINER AND OVERLINER CLOSED LANDFILL DAF





DRAWN

KLEBERG COUNTY, TEXAS

Offices Nationwide

#### APPENDIX E LEACHATE DATA



#### **LEACHATE DATA**

An initial concentration ( $C_0$ ) equal to 1.0 mg/L was used for MULTIMED modeling, as detailed in Input Leachate Requirements (page 23) of the TCEQ's Alternate Liner Design Handbook (1993).

#### APPENDIX F MULTIMED MODEL OUTPUT



## APPENDIX F.1 MULTIMED OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 1LOCATION 1



|       | A G E         |
|-------|---------------|
| CASE1 | PROTECTION    |
|       | ENVIRONMENTAL |
|       | s.            |

Ü,

#### E N S S M ASS EXPOSURE

# MODEL MULTIMEDIA

(Version 1.01, June 1991)

MULTIMED

Case 1

1 Run options

Location 1 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Option Chosen

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model Run was Infiltration input by user Run was steady-state

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS      | TERS                | LIMITS    | TS        |
|-----------------------------------------|-----------|--------------|-----------------|---------------------|-----------|-----------|
|                                         |           |              | MEAN            | STD DEV             | MIN       | MAX       |
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999. | -999.               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0            | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | 1         | DERIVED      | -666-           | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | M/B       | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | I         | CONSTANT     | 0.000E+00 -999  | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999. | -666-               | 0.100E-09 | 1.00      |
| cay sat. zone                           | 1/yr      | DERIVED      | 0.000E+00       | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      |           | CONSTANT     | -666-           | -666-               | 0.000E+00 | 1.00      |

| 11  |
|-----|
|     |
| (I) |
| ni  |
| -   |
| 10  |

| Not currently used                   |        | CASE1<br>CONSTANT          | *666-      | .666-     | 0.000E+00 | 1.00      |             |
|--------------------------------------|--------|----------------------------|------------|-----------|-----------|-----------|-------------|
|                                      | SOURCI | SOURCE SPECIFIC VARIABLES  |            |           |           |           |             |
| VARIABLE NAME                        | UNITS  | DISTRIBUTION               | PARAMETERS | ETERS     | LIMITS    | TS        | 1           |
|                                      | 6      |                            | MEAN       | STD DEV   | MIN       | MAX       |             |
| Infiltration rate                    | m/yr   | CONSTANT                   | 0.128E-06  | -999.     | 0.100E-09 | 0.100E+11 |             |
| Area of waste disposal unit          | m^2    | CONSTANT                   | 0.486E+06  | -666-     | 0.100E-01 | -666-     |             |
| Duration of pulse                    | yr     | CONSTANT                   | -666-      | -666-     | 0.100E-08 | -666-     |             |
| Spread of contaminant source         | E      | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+11 |             |
| Recharge rate                        | m/yr   | CONSTANT                   | 0.368E-01  | -666-     | 0.000E+00 | 0.100E+11 |             |
| Source decay constant                | 1/yr   | CONSTANT                   | 0.000E+00  | -666-     | 0.000E+00 | -666-     |             |
| Initial concentration at landfill    | mg/1   | CONSTANT                   | 1.00       | -666-     | 0.000E+00 | -666-     |             |
| Length scale of facility             | E      | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+11 |             |
| Width scale of facility              | E      | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+11 |             |
| Near field dilution                  |        | DERIVED                    | 1.00       | 0.000E+00 | 0.000E+00 | 1.00      |             |
|                                      | AQUIFE | AQUIFER SPECIFIC VARIABLES | 10         |           |           |           |             |
| VARIABLE NAME                        | UNITS  | DISTRIBUTION               | PARAMETERS | ETERS     | LIMITS    | TS        | 1<br>1<br>1 |
|                                      |        |                            | MEAN       | STD DEV   | MIN       | MAX       |             |
| Particle diameter                    | E B    | CONSTANT                   | 0.381E-01  | -999.     | 0.100E-08 | 100.      | !           |
| Aquifer porosity                     | 3      | CONSTANT                   | 0.430      | -666-     | 0.100E-08 | 0.990     |             |
| Bulk density                         | g/cc   | CONSTANT                   | 1.65       | -666-     | 0.100E-01 | 5.00      |             |
|                                      | E      | CONSTANT                   | 10.0       | -666-     | 0.100E-08 | 0.100E+06 |             |
| Source thickness (mixing zone depth) | E      | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+06 |             |
| Conductivity (hydraulic)             | m/yr   | CONSTANT                   | 130.       | -666-     | 0.100E-06 | 0.100E+09 |             |
| Gradient (hydraulic)                 | •      | CONSTANT                   | 0.310E-02  | -999.     | 0.100E-07 | -999,     |             |
| Groundwater seepage Velocity         | m/yr   | DEKIVED                    | -888-      | -888-     | 0.100E-09 | 0.100E+09 |             |
| Retardation coefficient              | 1      |                            | -999       | -666-     | 1.00      | 0.100E+09 |             |
| Longitudinal dispersivity            | W      | 9                          | -666-      | -666-     | - 666-    | -666-     |             |
| Transverse dispersivity              | E      | OF.                        | -666-      | -666-     | -666-     | -666-     |             |
| Vertical dispersivity                | E      | FUNCTION OF X              | -666-      | -666-     | -666-     | -666-     |             |
| Temperature of aquifer               | U      | CONSTANT                   | 21.0       | -666-     | 0.000E+00 | 100.      |             |
|                                      | ł      | CONSTANT                   | 7.20       | -666-     | 0.300     | 14.0      |             |
| Organic carbon content (fraction)    |        | CONSTANT                   | 0.300E-02  | -666-     | 0.100E-05 | 1.00      |             |
| Well distance from site              | E      | CONSTANT                   | 67.0       |           | 1.00      | -666-     |             |
| Angle off center                     | degree | CONSTANT                   | 0.000E+00  |           | 0.000E+00 | 360.      |             |
| Well vertical distance               | E      | CONSTANT                   | 0.000E+00  | -666-     | 0.000E+00 | 1.00      |             |

CONCENTRATION AFTER SATURATED ZONE MODEL 0.2943E-04

# APPENDIX F.2 MULTIMED OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 2LOCATION 2



#### AGENCY ECTION PR0 ENVIRONMENTAL Š

'n.

#### EN Σ E S S S A ш EXPOSUR

MODEL MULTIMEDIA

(Version 1.01, June 1991) MULTIMED

1 Run options

Case 2

Location 2 Chemical simulated is DEFAULT CHEMICAL

Run was Infiltration input by user Option Chosen

Saturated zone model DETERMIN

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model Run was steady-state

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | TERS<br>STD DEV     | LIMITS    | TS<br>MAX |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|
| Solid phase decay coefficient           | 1/vr      | CONSTANT     | 0.000E+00 -999.        | -966-               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999         | -999.               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | ,<br>U    | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | 1         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666                | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | u         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |
| cay sat. zone                           | 1/yr      | DERIVED      | 0.000E+00              | 9.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      | 9)        | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |

|  | ١ |   | 7 |
|--|---|---|---|
|  |   | c | L |
|  |   | t | 2 |
|  |   | ľ | C |
|  | 1 | ٦ | ٧ |

| Not currently used                   |        | CASE2                      | -666-      | -666-                      | 0.000E+00                               | 1.00                                    |                                       |
|--------------------------------------|--------|----------------------------|------------|----------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|
|                                      | SOURCE | SOURCE SPECIFIC VARIABLES  | S          |                            |                                         |                                         |                                       |
|                                      | 1      |                            |            | ;<br>;<br>;<br>;<br>;<br>; | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                                     |
| VARIABLE NAME                        | UNITS  | DISTRIBUTION               | PARAMETERS | TERS                       | LIMITS                                  | TS                                      |                                       |
|                                      |        |                            | MEAN       | STD DEV                    | MIN                                     | MAX                                     |                                       |
| Infiltration rate                    | m/yr   | CONSTANT                   | 0.179E-06  | -999.                      | 0.100E-09                               | 0.100E+11                               |                                       |
| Area of waste disposal unit          | m^2    | CONSTANT                   | 0.486E+06  | -666-                      | 0.100E-01                               | -666-                                   |                                       |
| Duration of pulse                    | yr     | CONSTANT                   | -666-      | -666-                      | 0.100E-08                               | -666-                                   |                                       |
| Spread of contaminant source         | E      | DERIVED                    | -666-      | -666-                      | 0.100E-08                               | 0.100E+11                               |                                       |
| Recharge rate                        | m/yr   | CONSTANT                   | 0.368E-01  | -666-                      | 0.000E+00                               | 0.100E+11                               |                                       |
| Source decay constant                | 1/yr   | CONSTANT                   | 0.000E+00  | -666-                      | 0.000E+00                               | -666-                                   |                                       |
| Initial concentration at landfill    | mg/1   | CONSTANT                   | 1.00       | -666-                      | 0.000E+00                               | -666-                                   |                                       |
| Length scale of facility             | E      | DERIVED                    | -666-      | -666-                      | 0.100E-08                               | 0.100E+11                               |                                       |
| Width scale of facility              | E      | DERIVED                    | -666-      | -666-                      | 0.100E-08                               | 0.100E+11                               |                                       |
| Near field dilution                  |        | DERIVED                    | 1.00       | 0.000E+00                  | 0.000E+00                               | 1.00                                    |                                       |
|                                      | AÇOIFE | AQUIFEK SPECIFIC VAKIABLES | n          |                            |                                         |                                         |                                       |
| VARTABLE NAME                        | UNITS  | DISTRIBUTION               | PARAMETERS | TERS                       | LIMITS                                  | TS                                      | E E E E E E E E E E E E E E E E E E E |
|                                      |        |                            | MEAN       | STD DEV                    | MIN                                     | MAX                                     |                                       |
| Particle diameter                    | 85     | CONSTANT                   | 0.381E-01  | -999.                      | 0.100E-08                               | 100.                                    | 1                                     |
| Aquifer porosity                     | ;      | CONSTANT                   | 0.430      | -666-                      | 0.100E-08                               | 0.990                                   |                                       |
| Bulk density                         | g/cc   | CONSTANT                   | 1.65       | -666-                      | 0.100E-01                               | 5.00                                    |                                       |
| kness                                | E      | CONSTANT                   | 10.0       | -666-                      | 0.100E-08                               | 0.100E+06                               |                                       |
| Source thickness (mixing zone depth) | E      | DERIVED                    | -666-      | -666-                      | 0.100E-08                               | 0.100E+06                               |                                       |
| Conductivity (hydraulic)             | m/yr   | CONSTANT                   | 130.       | -666-                      | 0.100E-06                               | 0.100E+09                               |                                       |
| Gradient (hydraulic)                 |        | CONSTANT                   | 0.310E-02  | -666-                      | 0.100E-07                               | -666-                                   |                                       |
| Groundwater seepage velocity         | m/yr   | DERIVED                    | -666-      | -666-                      | 0.100E-09                               | 0.100E+09                               |                                       |
| Retardation coefficient              | 1      | DERIVED                    | -666-      | -666-                      | 1.00                                    | 0.100E+09                               |                                       |
| Longitudinal dispersivity            | ш      |                            | -666-      | -666-                      | -666-                                   | -666-                                   |                                       |
| Transverse dispersivity              | E      | OF                         | -666-      | -666-                      | -666-                                   | -666-                                   |                                       |
| Vertical dispersivity                | E      | FUNCTION OF X              | -666-      | -666-                      | -666-                                   | -666-                                   |                                       |
| Temperature of aquifer               | U      | CONSTANT                   | 21.0       | -666-                      | 0.000E+00                               | 100.                                    |                                       |
| Hd                                   | i      | CONSTANT                   | 7.20       | -666-                      | 0.300                                   | 14.0                                    |                                       |
| Organic carbon content (fraction)    |        | CONSTANT                   | 0.300E-02  | -666-                      | 0.100E-05                               | 1.00                                    |                                       |
| Well distance from site              | E      | CONSTANT                   | 174.       | -666-                      | 1.00                                    | -666-                                   |                                       |
| Angle off center                     | degree | CONSTANT                   | 0.000E+00  |                            | 0.000E+00                               | 360.                                    |                                       |
| Well vertical distance               | E      | CONSTANT                   | 0.000E+00  | -666-                      | 0.000E+00                               | 1.00                                    |                                       |
|                                      |        |                            |            |                            |                                         |                                         |                                       |

CONCENTRATION AFTER SATURATED ZONE MODEL 0.1740E-04

## APPENDIX F.3 MULTIMED OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 3LOCATION 3



#### AGENCY ECTION PROT NVIRONMENTAL s. 'n.

#### MEN MODEL S E S S MULTIMEDIA S A ш EXPOSUR

(Version 1.01, June 1991)

MULTIMED

1 Run options

Location 3 Chemical simulated is DEFAULT CHEMICAL

Case 3

Saturated zone model DETERMIN Run was Infiltration input by user Option Chosen

Gaussian source used in saturated zone model Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Run was steady-state

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | ETERS<br>STD DEV    | LIMITS    | TS<br>MAX |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -966-               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | Ĭ         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999.        | .666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |
| cay sat. zone                           | 1/yr      | DERIVED      | 0.000E+00              | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      |           | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |

Page 1

| *** |
|-----|
| 10  |
| 4   |
| u   |
| æ   |

|                                      | SOURC           | SOURCE SPECIFIC VARIABLES  |            |         | LIMITS    |           |
|--------------------------------------|-----------------|----------------------------|------------|---------|-----------|-----------|
|                                      |                 | ŭ.                         |            |         | £31       |           |
|                                      |                 |                            |            |         |           |           |
| VARIABLE NAME                        | UNITS           | DISTRIBUTION               | PARAMETERS | TERS    | MIM       |           |
|                                      |                 |                            | MEAN       | STD DEV | 100000000 | MAX       |
| Infiltration rate                    | m/yr            | CONSTANT                   | 0.179E-06  | -966-   | 0.100E-09 | 0.100E+11 |
| Area of waste disposal unit          | m^2             | CONSTANT                   | 0.486E+06  | -666-   | 0.100E-01 | -999.     |
| Duration of pulse                    | ۸L              | CONSTANT                   | -999       | -666-   | 0.100E-08 | -666-     |
| Spread of contaminant source         | , E             | DERTVED                    | 666-       | 666-    | 9.100F-08 | 0.100F+11 |
| Recharge rate                        | m/vr            | CONSTANT                   | 0.368E-01  | -999.   | 0.000E+00 | 0.100E+11 |
| Source decay constant                | 1/vr            | CONSTANT                   | 0.000E+00  | -666-   | 0.000E+00 | -666-     |
| Triffial concentration at landfill   | L/am            | CONSTANT                   | 1 88       | - 666-  | B BBBE+BB | -666-     |
|                                      | 1<br>  0<br>  E | DERTVED                    | 000-       | - 666   | 0 100E-08 | 0 100F+11 |
| LATE COST OF BOARDS                  | ≣ 8             | DEBTYED                    | .000       | . 000   | 0 100E 00 | 0 1005-11 |
| Middle Scale Of Tacilly              | E               | DERIVED                    | -999.      | 999.    | O GOOF GO | 1 99      |
|                                      | AQUIFE          | AQUIFER SPECIFIC VARIABLES |            |         |           |           |
| VARTABLE NAME                        | UNITS           | DISTRIBUTION               | PARAMETERS | TERS    | LIMITS    | TS        |
|                                      |                 |                            | MEAN       | STD DEV | MIN       | MAX       |
| Particle diameter                    | E               | CONSTANT                   | 0.381E-01  | -989.   | 0.100E-08 | 100.      |
| Adulter noposity                     | ì               | TONSTANT                   | 0 430      | 666-    | 9 100F-08 | 866 8     |
| Bulk density                         | 9/60            | CONSTANT                   | 1.65       | -666-   | 0.100E-01 | 5.00      |
| Aguifer thickness                    | ĎE              | CONSTANT                   | 10.0       | -666-   | 0.100E-08 | 0.100E+06 |
| Source thickness (mixing zone depth) | E               | DERIVED                    | -999.      | -666-   | 0.100E-08 | 0.100E+06 |
| raulic)                              | m/yr            | CONSTANT                   | 130.       | -666-   | 0.100E-06 | 0.100E+09 |
| Gradient (hydraulic)                 | (i)             | CONSTANT                   | 0.310E-02  | -666-   | 0.100E-07 | -999.     |
| Groundwater seepage velocity         | m/yr            | DERIVED                    | -999.      | -666-   | 0.100E-09 | 0.100E+09 |
| Retardation coefficient              | 1               | DERIVED                    | -666-      | -666-   | 1.00      | 0.100E+09 |
| Longitudinal dispersivity            | E               | FUNCTION OF X              | -666-      | -666-   | -666-     | -666-     |
| Transverse dispersivity              | E               | FUNCTION OF X              | -666-      | -666-   | -666-     | -666-     |
| Vertical dispersivity                | E               | FUNCTION OF X              | -666-      | -666-   | -666-     | -666-     |
| Temperature of aquifer               | U               | CONSTANT                   | 21.0       | -666-   | 0.000E+00 | 100.      |
| . Ho                                 | 1               | CONSTANT                   | 7.20       | -666-   | 0.300     | 14.0      |
| Organic carbon content (fraction)    |                 | CONSTANT                   | 0.300E-02  | -666-   | 0.100E-05 | 1.00      |
| Well distance from site              | E               | CONSTANT                   | 219.       | -666-   | 1.00      | -666-     |
| Angle off center                     | degree          | CONSTANT                   | 0.000E+00  | -666-   | 0.000E+00 | 360.      |
|                                      |                 |                            |            |         |           |           |

#### APPENDIX F.4 MULTIMED OUTPUT FOR ALTERNATIVE LINER INTERIM CASE 4LOCATION 4



|       | AGENCY        |
|-------|---------------|
| CASE4 | PROTECTION    |
|       | ENVIRONMENTAL |
|       | 'n            |

j

#### ASSESSMENT MULTIMEDIA EXPOSURE

(Version 1.01, June 1991) MULTIMED

1 Run options

Case 4

Location 4 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Option Chosen

Infiltration input by user

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS    | DIŞTRIBUTION | PARAMETERS<br>MEAN STD | TERS<br>STD DEV | LIMITS    | TS<br>MAX |
|-----------------------------------------|----------|--------------|------------------------|-----------------|-----------|-----------|
| Solid phase decay coefficient           | 1/yr     | CONSTANT     | 9.000E+00 -999.        | -999,           | 0.690E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr     | CONSTANT     | 9.000E+00 -999.        | -666-           | 9.680E+06 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr     | CONSTANT     | 9.880E+88 -999,        | -666-           | 9.686E+66 | 0.1005+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr   | CONSTANT     | 0.000E+00 -939.        | -989.           | 0.600E+00 | -666-     |
| Meutral hydrolysis rate constant        | 1/yr     | CONSTANT     | 9.000E+00 -999         | -666-           | 0.696E+66 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr   | CONSTANT     | 6.000E+00 -999,        | -999.           | 0.600E+08 | -686-     |
| Reference temperature                   | U        | CONSTANT     | 20.0                   | .999.           | 9.880E+08 | 199.      |
| Normalized distribution coefficient     | m1/g     | CONSTANT     | 6.666E+88 -889.        | -666-           | 9-896E+88 | -999-     |
| Distribution coefficient                | ;        | DERIVED      | -686-                  | -989.           | 9-696E+66 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr     | CONSTANT     | 0.086E+00 -999.        | -666-           | 9.880E+88 | -666-     |
| Air diffusion coefficient               | cm2/s    | CONSTANT     | 6.000E+00 -999.        | -999.           | 0-600E+60 | 10.0      |
| Reference temperature for air diffusion | υ        | CONSTANT     | 0.000E+00 -999         | .999.           | 0.800E+90 | 100.      |
| Molecular weight                        | 8/M      | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.000E+00 | -666°     |
| Mole fraction of solute                 | 1        | CONSTANT     | 8.886E+88 -999,        | -666-           | 9.190E-08 | 1.00      |
| Vapor pressure of solute                | man Tage | CONSTANT     | 0.000E+80 -999.        | -666-           | 9.888E+88 | 160.      |
| Henry's law constant an                 | tm-m^3/M | CONSTANT     | 6.080E+08 -999.        | -666-           | 0.180E-09 | 1.90      |
| Overall 1st order decay sat. zone       | 1/yr     | DERIVED      | 9.000E+00              | 0.000E+00       | 9.090E+08 | 1.99      |
| Not currently used                      |          | CONSTANT     | .666-                  | -999.           | 9.888E+88 | 1.00      |

| 2 |
|---|
| a |
| Ø |
| T |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOURC             | SOURCE SPECIFIC VARIABLES | - 10       |           |                                         |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------|-----------|-----------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 1                         |            |           |                                         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |           |                                         |            |
| VARIABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNITS             | DISTRIBUTION              | PARAMETERS | TERS      | LIMITS                                  | TS         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           | MEAN       | STD DEV   | MIN                                     | MAX        |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m/yr              | CONSTANT                  | 0.179E-06  | -999.     | 0.100E-09                               | 0.100E+11  |
| Area of waste disposal unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CVM               | CONSTANT                  | 0.486F+06  | -666-     | 0.100E-01                               | -666-      |
| Dination of miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1/2             | TNATANO                   | - 999      | - 666     | 9 100F-08                               | 666-       |
| מבוסו ס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Š                 |                           |            |           | 2001.0                                  | 1000       |
| Spread of contaminant source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                 | DERIVED                   | -999.      | -888-     | 0.100E-08                               | 0.100E+11  |
| Recharge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m/yr              | CONSTANT                  | 0.368E-01  | -666-     | 0.000E+00                               | 0.100E+11  |
| Source decay constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/vr              | CONSTANT                  | 0.000E+00  | -666-     | 0.000E+00                               | -666-      |
| Tritial concentration at landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L/0m              | TUNCTANT                  | 1 00       | -000      | A BABETAB                               | -000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 /0 1            | divited of                | 0 0        |           | 200000000000000000000000000000000000000 | 1000.11    |
| Length scale of facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E                 | DEKIVED                   | - 777      | . 777.    | D. TODE-05                              | O. LOGE+II |
| Width scale of facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E                 | DERIVED                   | -666-      | -666-     | 0.100E-08                               | 0.100E+11  |
| Near field dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | DERIVED                   | 1.00       | 0.000E+00 | 0.000E+00                               | 1.00       |
| VARTABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LINTTS            | DISTRIBITION              | PARAMETERS | TERS      | STIMII                                  | TS         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                 | 0                         |            | 1         |                                         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 1 1 1 1 1 1 1 |                           | MEAN       | STD DEV   | MIN                                     | MAX        |
| Particle diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                 | CONSTANT                  | 0.381E-01  | -666-     | 0.100E-08                               | 100.       |
| Aguifer porosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                 | CONSTANT                  | 0.430      | -666-     | 0.100E-08                               | 0.990      |
| Bulk density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27/0              | CONSTANT                  | 1.65       | - 666     | 0.100F-01                               | 5.00       |
| Admiter thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )<br>)<br>E       | TONSTANT                  | 10.01      | - 666     | 0 100F-08                               | 0 100F+06  |
| Compared the Control of the control |                   | DEBTVED                   | 000        | 000       | a 100E-00                               | A 100E±06  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I .               | CONCTANT                  |            |           | 1001.0                                  | 1001.00    |
| conductivity (nyaraulic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m/yr              | CONSTANT                  | 130.       | .999.     | 0.100E-00                               | 0.100E+09  |
| Gradient (hydraulic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | CONSTANT                  | 0.310E-02  | -888-     | 0.100E-0/                               | -888-      |
| Groundwater seepage velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m/yr              | DERIVED                   | -666-      | -666-     | 0.100E-09                               | 0.100E+09  |
| Retardation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i                 | DERIVED                   | -666-      | -666-     | 1.00                                    | 0.100E+09  |
| Longitudinal dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                 | FUNCTION OF X             | -666-      | -666-     | -999                                    | -999.      |
| Transverse dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E                 | AO.                       | 666-       | 666-      | -999                                    | -666       |
| Vostanol Annooniet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 2 0                       | 000        | 000       | -000                                    | - 000      |
| cicai urspel sivicy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≣ (               | 5                         |            |           |                                         |            |
| Temperature of aquiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ں                 | CONSTANT                  | 71.6       | -888-     | D. BODE+DD                              | 100.       |
| Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                 | CONSTANT                  | 7.20       | -666-     | 0.300                                   | 14.0       |
| Organic carbon content (fraction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | CONSTANT                  | 0.300E-02  | -666-     | 0.100E-05                               | 1.00       |
| Well distance from site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E                 | CONSTANT                  | 402.       | -999.     | 1.00                                    | -666-      |
| Angle off center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degree            | CONSTANT                  | 9.000E+00  | -999      | A ARAFTAR                               | 360        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           | ֡          |           | 200000                                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 1                         | 1 0 0      |           | 0.0001.00                               |            |

CONCENTRATION AFTER SATURATED ZONE MODEL 0.3490E-05

## APPENDIX F.5 MULTIMED OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 5LOCATION 1



# S. ENVIRONMENTAL PROTECTION AGENCY

u.

# EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.01, June 1991)

1 Run options

Case 5

Location 1 Chemical simulated is DEFAULT CHEMICAL Option Chosen Saturated zone model Run was

nul was Infiltration input by user Run was steady-state

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS      | ETERS               | LIMITS    | TS        |
|-----------------------------------------|-----------|--------------|-----------------|---------------------|-----------|-----------|
|                                         |           |              | MEAN            | STD DEV             | MIN       | MAX       |
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999  | -966-               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999  | -999.               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999  | -999.               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0            | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | i         | DERIVED      | -666-           | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999  | *666-               | 0.000E+00 | 100.      |
| Molecular weight                        | M/B       | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999  | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999  | -666-               | 0.100E-09 | 1.00      |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00       | 9.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      |           | CONSTANT     | -666-           | -666-               | 0.000E+00 | 1.00      |

'age

| Э, | 7  |
|----|----|
| 38 | 1) |
| ì  | ĭ  |
| -  | U  |
| -  |    |

|                                         | SOURC   | SOURCE SPECIFIC VARIABLES |            |           |             |           |
|-----------------------------------------|---------|---------------------------|------------|-----------|-------------|-----------|
|                                         |         |                           |            |           |             |           |
| VARIABLE NAME                           | UNITS   | DISTRIBUTION              | PARAMETERS | ETERS     | LIMITS      |           |
|                                         |         |                           | MEAN       | STD DEV   | MIN         | MAX       |
| Infiltration rate                       | m/yr    | CONSTANT                  | 0.511E-07  | -999.     | 0.100E-09   | 0.100E+11 |
| Area of waste disposal unit             | m^2     | CONSTANT                  | 0.486E+06  | -666-     | 0.100E-01   | -666-     |
| Duration of pulse                       | yr      | CONSTANT                  | -666-      | -666-     | 0.100E-08   | -666-     |
| Spread of contaminant source            | . E     | DERIVED                   | -666-      | -666-     | 0.100E-08   | 0.100E+11 |
| Recharge rate                           | m/yr    | CONSTANT                  | 0.368E-01  | -999.     | 0.000E+00   | 0.100E+11 |
| Source decay constant                   | 1/yr    | CONSTANT                  | 0.000E+00  |           | 0.000E+00   | -666-     |
| Initial concentration at landfill       | mg/l    | CONSTANT                  | 1.00       | -666-     | 0.000E+00   | -666-     |
| Length scale of facility                | E       | DERIVED                   | -666-      | -999      | 0.100E-08   | 0.100E+11 |
| Width scale of facility                 | 8       | DERIVED                   | -989.      | -999.     | 0.100E-08   | 0.100E+11 |
| Near field dilution                     |         | DERIVED                   | 1.00       | 0.000E+00 | 0.000E+00   | 1.00      |
| VARIABLE NAME                           | UNITS   | DISTRIBUTION              | PARAMETERS | ETERS     | LIMITS      | TS        |
|                                         |         |                           | MEAN       | STD DEV   | MIN         | MAX       |
| Particle diameter                       | Ð       | CONSTANT                  | 0.381E-01  | -999.     | 0.100E-08   | 100.      |
| Aquifer porosity                        | 1       | CONSTANT                  | 0.430      | -999.     | 0.100E-08   | 0.990     |
| Bulk density                            | g/cc    | CONSTANT                  | 1.65       | -666-     | 0.100E-01   | 5.00      |
| Aquifer thickness                       | ) E     | CONSTANT                  | 10.0       | -666-     | 0.100E-08   | 0.100E+06 |
| Source thickness (mixing zone depth)    | E       | DERIVED                   | -666-      | -666-     | 0.100E-08   | 0.100E+06 |
|                                         | m/yr    | CONSTANT                  | 130.       | -999.     | 0.100E-06   | 0.100E+09 |
| Gradient (hydraulic)                    |         | CONSTANT                  | 0.310E-02  | -666-     | 0.100E-07   | -666-     |
| Groundwater seepage velocity            | m/yr    | DERIVED                   | -666-      | -666-     | 0.100E-09   | 0.100E+09 |
| Retardation coefficient                 | 1       | DERIVED                   | -666-      | -666-     | 1.00        | 0.100E+09 |
| Longitudinal dispersivity               | Е       | FUNCTION OF X             | -666-      | -999.     | -666-       | -666-     |
| Transverse dispersivity                 | E       | FUNCTION OF X             | -666-      | -666-     | -666-       | -666-     |
| Vertical dispersivity                   | Ε       | OF                        | -666-      | -666-     | -666-       | -666-     |
| Temperature of aquifer                  | U       | CONSTANT                  | 21.0       | -666-     | 0.000E+00   | 100.      |
|                                         | 1       | CONSTANT                  | 7.20       | -666-     | 0.300       | 14.0      |
| Organic carbon content (fraction)       |         | CONSTANT                  | 0.300E-02  | -999.     | 0.100E-05   | 1.00      |
| Well distance from site                 | E       | CONSTANT                  | 67.0       | -666-     | 1.00        | -666-     |
| Anala off center                        | donnah  | TNATZNOO                  | a gagetog  | 000       | O OOOE O    | 000       |
| 100 100 100 100 100 100 100 100 100 100 | acgi cc |                           | O. COOFTOO |           | D. DOOL TOO | .000      |

# APPENDIX F.6 MULTIMED OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 6LOCATION 2



|    | _        |
|----|----------|
|    | ш        |
|    | 9        |
|    | V        |
|    | z        |
|    | 0        |
| E6 | н        |
| AS | H        |
| O  | U        |
|    | ш        |
|    | $\vdash$ |
|    | 0        |
|    | ×        |
|    | ۵        |
|    |          |
|    | _        |
|    | A        |
|    | -        |
|    | Z        |
|    | н        |
|    | Σ        |
|    | Z        |
|    | 0        |
|    | K        |
|    | Н        |
|    | >        |
|    | Z        |
|    | ш        |
|    | S.       |
|    | 320      |
|    | -:       |

≻ ∪ N

# EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.01, June 1991)

1 Run options

Case 6

Location 2 Chemical simulated is DEFAULT CHEMICAL Option Chosen Saturated zone model Run was

Infiltration input by user Infiltration input by user Run was steady-state Reject runs if Y coordinate outside

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | ETERS<br>STD DEV    | LIMITS    | TS        |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|
|                                         |           |              | 100                    | 2                   |           |           |
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -999.               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -999.               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | ŀ         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999         | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999,        | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00              | 8.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      |           | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |

age 1

|                                    | SOURCE                                  | SOURCE SPECIFIC VARIABLES | 10                     |           |                                         |            |
|------------------------------------|-----------------------------------------|---------------------------|------------------------|-----------|-----------------------------------------|------------|
|                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                           |                        |           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |
| VARIABLE NAME                      | SITIO                                   | DISTRIBUTION              | PAKAMETEKS<br>MEAN STD | STD DEV   | NIN                                     | I.S<br>MAX |
| Infiltration rate                  | m/yr                                    | CONSTANT                  | 0.511E-07              | -999.     | 0.100E-09                               | 0.100E+11  |
| Area of waste disposal unit        | m^2                                     | CONSTANT                  | 0.486E+06              | -666-     | 0.100E-01                               | -999.      |
| Duration of pulse                  | ٧٢                                      | CONSTANT                  | -666-                  | -666-     | 0.100E-08                               | -666-      |
| Spread of contaminant source       | E                                       | DERTVED                   | -999                   | -666      | 9.100F-08                               | 0.100F+11  |
| Recharge rate                      | m/vn                                    | TNOTANT                   | A 368F-01              | 666-      | B BBBE+BB                               | 0.100F+11  |
| Source decay constant              | 1/vr                                    | CONSTANT                  | 0.000F+00              | -666-     | 0.000E+00                               | -666-      |
| Triffial concentration at landfill | L/om                                    | CONSTANT                  | 1.88                   | - 666     | A BABE+BB                               | -999.      |
|                                    | )<br>)<br>E                             | DERTVED                   | 666-                   | - 666     | 0.100F-08                               | 0.100F+11  |
|                                    | Ε Ε                                     | DEPTVED                   | 000                    | 000       | 0 100E-08                               | 0 100E±11  |
| Near field dilution                | 1                                       | DERIVED                   | 1.00                   | 0.000E+00 | 0.000E+00                               | 1.00       |
| VADTADI C MAME                     | IMTTC                                   | MATTIETOTOTO              | DADTHANADAD            | CTEBS     | OTTMT                                   | TC         |
| VANTABLE NAME                      | CITNO                                   | MOTIOGTVICTO              | IL FUFL                |           | 370                                     |            |
|                                    |                                         |                           | MEAN                   | STD DEV   | NIW                                     | MAX        |
| Particle diameter                  | CM                                      | CONSTANT                  | 0.381E-01              | -999.     | 0.100E-08                               | 100.       |
| Aquifer porosity                   | 1                                       | CONSTANT                  | 0.430                  | -666-     | 0.100E-08                               | 0.60.0     |
| Bulk density                       | g/cc                                    | CONSTANT                  | 1.65                   | -666-     | 0.100E-01                               | 5.00       |
| Aguifer thickness                  | E                                       | CONSTANT                  | 10.0                   | -666-     | 0.100E-08                               | 0.100E+06  |
| urce thickness (mixing zone depth) | E                                       | DERIVED                   | -666-                  | -666-     | 0.100E-08                               | 0.100E+06  |
| Conductivity (hydraulic)           | m/yr                                    | CONSTANT                  | 130.                   | -666-     | 0.100E-06                               | 0.100E+09  |
| Gradient (hydraulic)               |                                         | CONSTANT                  | 0.310E-02              | -666-     | 0.100E-07                               | -666-      |
| Groundwater seepage velocity       | m/yr                                    | DERIVED                   | -999.                  | -666-     | 0.100E-09                               | 0.100E+09  |
| Retardation coefficient            | · -                                     | DERIVED                   | -986                   | -666-     | 1.00                                    | 0.100E+09  |
| Longitudinal dispersivity          | E                                       | FUNCTION OF X             | -986-                  | -666-     | -666-                                   | -999.      |
| Transverse dispersivity            | Е                                       | FUNCTION OF X             | -666-                  | -666-     | -666-                                   | -666-      |
| Vertical dispersivity              | E                                       |                           | -999.                  | -666-     | -666-                                   | -666-      |
| Temperature of aquifer             | U                                       |                           | 21.0                   | -666-     | 0.000E+00                               | 100.       |
| -                                  |                                         | CONSTANT                  | 7.20                   | -999      | 0.300                                   | 14.0       |
| Organic carbon content (fraction)  |                                         | CONSTANT                  | 0.300E-02              | -999.     | 0.100E-05                               | 1.00       |
| Well distance from site            | E                                       | CONSTANT                  | 174.                   | -999      | 1.00                                    | -666-      |
|                                    |                                         |                           |                        |           |                                         |            |
| Angle off center                   | degree                                  | CONSTANT                  | 0.000E+00              | -666-     | 0.000E+00                               | 360.       |

CONCENTRATION AFTER SATURATED ZONE MODEL 0.4968E-05

#### APPENDIX F.7 MULTIMED OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 7LOCATION 3



|    | ш  |
|----|----|
|    | 9  |
|    | A  |
|    | z  |
|    | 0  |
| 1  | н  |
| SE | -  |
| 3  | U  |
|    | ш  |
|    | -  |
|    | 0  |
|    | 8  |
|    | Δ. |
|    | _  |
|    | A  |
|    | -  |
|    | Z  |
|    | ш  |
|    | Σ  |
|    | Z  |
|    | 0  |
|    | 00 |
|    | H  |
|    | >  |
|    | Z  |
|    | ш  |
|    | s. |

o.

#### ESSMENT A S S EXPOSURE

MODEL MULTIMEDIA

(Version 1.01, June 1991)

MULTIMED

Location 3 Chemical simulated is DEFAULT CHEMICAL 1 Run options

Case 7

Saturated zone model DETERMIN Run was Infiltration input by user Option Chosen

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model Run was steady-state

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS      | TERS                | LIMITS    | TS        |
|-----------------------------------------|-----------|--------------|-----------------|---------------------|-----------|-----------|
|                                         |           |              | MEAN            | STD DEV             | MIN       | MAX       |
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999. | -999.               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0            | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | 1         | DERIVED      | -666-           | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | ;         | CONSTANT     | 0.000E+00 -999. | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999. | -666-               | 0.100E-09 | 1.00      |
| Overall 1st order decay sat, zone       | 1/yr      | DERIVED      | 0.000E+00       | 9.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      | Ø.        | CONSTANT     | -666-           | -666-               | 0.000E+00 | 1.00      |

| 13 |
|----|
| a  |
| 6  |
| Œ  |
| ~  |

|                                      | SOURCE  | SOURCE SPECIFIC VARIABLES  | 12                     |                                      | ŭ                                    |                                                                                             |
|--------------------------------------|---------|----------------------------|------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|
| VARIABLE NAME                        | UNITS   | DISTRIBUTION               | PARAMETERS<br>MEAN STD | TERS<br>STD DEV                      | LIMITS                               | TS<br>MAX                                                                                   |
| Tofiltoation rate                    | m/vr    | CONSTANT                   | 0 511E_07              | 000                                  | D 100F-00                            | 0 100E±11                                                                                   |
| יון דדרו מרדסון ומרב                 | 16/11   | HAY HUNGO                  |                        |                                      | 0.100L-02                            | 000                                                                                         |
| Area or waste disposal unit          | 7.,Ш    | CONSTANT                   | 1400                   | . 77                                 | D. TODE-OI                           | . 222                                                                                       |
| Duration of pulse                    | yr      | CONSTANT                   | -666-                  | -666-                                | 0.100E-08                            | -666-                                                                                       |
| Spread of contaminant source         | E       | DERIVED                    | -666-                  | -666-                                | 0.100E-08                            | 0.100E+11                                                                                   |
| Recharge rate                        | m/vr    | CONSTANT                   | 0.368E-01              | -666-                                | 0.000E+00                            | 0.100E+11                                                                                   |
| Source decay constant                | 1/vr    | CONSTANT                   |                        | -666-                                | 8.800F+88                            | -666-                                                                                       |
| Tritial concentration at landfill    | 1/2     | TIVETANI                   | 1 00                   | 000                                  | O DOOL TOO                           | - 000                                                                                       |
|                                      | T /SIII | CONSTANT                   | 0000                   |                                      | 0 1001 00                            | 1007                                                                                        |
| Length scale of facility             | E       | DEKIVED                    | - 222.                 | -222.                                | 0.100E-08                            | 0.100E+11                                                                                   |
| Width scale of facility              | E       | DERIVED                    | -666-                  | -666-                                | 0.100E-08                            | 0.100E+11                                                                                   |
| Near field dilution                  |         | DERIVED                    | 1.00                   | 0.000E+00                            | 0.000E+00                            | 1.00                                                                                        |
|                                      | AQUIFE  | AQUIFER SPECIFIC VARIABLES |                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| VARIABLE NAME                        | UNITS   | DISTRIBUTION               | PARAMETERS             | TERS                                 | LIMITS                               | TS                                                                                          |
|                                      |         |                            | MEAN                   | STD DEV                              | MIN                                  | MAX                                                                                         |
| Particle diameter                    | E       | CONSTANT                   | 0.381E-01              | -989.                                | 0.100E-08                            | 100.                                                                                        |
| Aguifen poposity                     | 1       | TONSTANT                   | 02 / 20                | -000                                 | A 100F-08                            | 000                                                                                         |
| Addition policiation                 | 2/20    | FINATONO                   | מין ני                 | .000                                 | 0 100E 00                            | 0000                                                                                        |
| bulk density                         | 8/ cc   | CONSTANT                   | T.03                   | . 000                                | 0.1005-01                            | 00.00                                                                                       |
|                                      | E       | CONSTANT                   | 10.0                   | -888-                                | 9.100E-08                            | 0.100F+05                                                                                   |
| Source thickness (mixing zone depth) | Е       | DERIVED                    | -666-                  | -666-                                | 0.100E-08                            | 0.100E+06                                                                                   |
| Conductivity (hydraulic)             | m/yr    | CONSTANT                   | 130.                   | -666-                                | 0.100E-06                            | 0.100E+09                                                                                   |
| Gradient (hydraulic)                 |         | CONSTANT                   | 0.310E-02              | -666-                                | 0.100E-07                            | -666-                                                                                       |
| Groundwater seepage velocity         | m/yr    | DERIVED                    | -999.                  | -666-                                | 0.100E-09                            | 0.100E+09                                                                                   |
| Retardation coefficient              | 1       | DERIVED                    | -666-                  | -666-                                | 1.00                                 | 0.100E+09                                                                                   |
| Longitudinal dispersivity            | E       | FUNCTION OF X              | -666-                  | -666-                                | -666-                                | -666-                                                                                       |
| Transverse dispersivity              | E       | OF                         | -999                   | - 666                                | -999                                 | - 666                                                                                       |
| Vertical dispersivity                | E       |                            | -666                   | -666-                                | -666                                 | -666                                                                                        |
| Temperature of addition              | ١ ر     | i                          | 21.0                   | - 666                                | A ABAFTAR                            | 188                                                                                         |
| ביייוליני מינמי כי מקמדייני          | , ¦     | CONSTANT                   | 7 20                   | - 666                                | 9 388                                | 14.0                                                                                        |
| Juneania control (Lucation)          |         | THATCHOO                   | רט שממר מ              | . 000                                | 1001 0                               | 000                                                                                         |
| Organic carbon content (traction)    |         | CONSTANT                   | 0.388E-82              | .888-                                | 0.100E-05                            | T.00                                                                                        |
| Well distance from site              | E       | CONSTANT                   | 219.                   | -666-                                | 1.00                                 | -666-                                                                                       |
| Angle off center                     | degree  | CONSTANT                   | 0.000E+00              | -666-                                | 0.000E+00                            | 360.                                                                                        |
|                                      | )       |                            |                        |                                      |                                      |                                                                                             |

#### APPENDIX F.8 MULTIMED OUTPUT FOR ALTERNATIVE LINER CLOSED CASE 8LOCATION 4



AGENCY PROTECTION NVIRONMENTA S

o.

#### ENT SSI S A S URE EXPOS

MODEL MULTIMEDIA MULTIMED (Version 1.01, June 1991)

Case 8

Run options

Location 4 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Option Chosen

Infiltration input by user Run was steady-state

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS      | ETERS               | LIMITS    | TS        |
|-----------------------------------------|-----------|--------------|-----------------|---------------------|-----------|-----------|
|                                         |           |              | MEAN            | STD DEV             | MIN       | MAX       |
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999. | -999.               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0            | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | I         | DERIVED      | -666-           | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999. | -999.               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999. | -999.               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999. | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999. | -999.               | 0.000E+00 | 100.      |
| Henry's law constant                    | atm-m^3/M | CONSTANT     | 0.000E+00 -999. | -666-               | 0.100E-09 | 1.00      |
| Overall 1st order decay sat, zone       | 1/yr      | DERIVED      | 0.000E+00       | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      | 2000      | CONSTANT     | 666-            | 666-                | A BRAFTON | 1 88      |

| 7   |
|-----|
| (I) |
| DI  |
| La  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOURC    | SOURCE SPECIFIC VARIABLES | 992        |            |            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|------------|------------|------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |            |            |            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |            |            |            |           |
| VARTABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LINTTS   | DISTRIBITION              | PARAMETERS | TERS       | STIMI      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           | MEAN       | STD DEV    | MIN        | MAX       |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m/vr     | CONSTANT                  | 0.511E-07  | -966-      | 0.100E-09  | 0.100E+11 |
| Area of waste disposal unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CVM      | CONSTANT                  | 0.486F+06  | - 666      | B 188F-81  | - 999     |
| Duration of pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2      | CONSTANT                  | -666-      | -666-      | 0 100F-08  | -666-     |
| The second of th | 5 1      | CLATAGO                   |            |            | 1001       | 2001      |
| predu or contaminant source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>■</b> | CONCEANT                  | -999.      | .666-      | 0.100E-08  | 0.100E+11 |
| Recharge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m/yr     | CONSTANT                  | 0.358E-01  | -888-      | D. DODE+DO | 0.100E+11 |
| Source decay constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/yr     | CONSTANT                  | 0.000E+00  | -666-      | 0.000E+00  | -666-     |
| Initial concentration at landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/1     | CONSTANT                  | 1.00       | -666-      | 0.000E+00  | -666-     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E        | DERTVED                   | -666       | -666       | 8-100F-08  | 0.100F+11 |
| Width scale of facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ε        | DERTVEN                   | 000        | 000        | a 100E-08  | O TOOF 11 |
| Noon field dilition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | DEBTVED                   | .00        | a aggerage | O TOOK OO  | 1 99      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |            |            |            |           |
| VARIABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNITS    | DISTRIBUTION              | PARAMETERS | ETERS      | LIMITS     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           | MEAN       | STD DEV    | MIN        | MAX       |
| Particle diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CM       | CONSTANT                  | 0.381E-01  | -999.      | 0.100E-08  | 100.      |
| Aquifer porosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | CONSTANT                  | 0 430      | 666-       | 0 100F-08  | 866       |
| Bully donnists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/20     | THATSHOO                  | 200        | .000       | 0.100E 00  | 000       |
| יייי אויייי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 P      | HIS HUNGO                 | 1.00       | .000       | 0.1005-01  | 2001.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E        | CONSTANT                  | 10.0       | -888-      | 0.100E-08  | 0.100E+00 |
| Source thickness (mixing zone depth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E        | DERIVED                   | -666-      | -666-      | 0.100E-08  | 0.100E+06 |
| Conductivity (hydraulic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/yr     | CONSTANT                  | 130.       | -666-      | 0.100E-06  | 0.100E+09 |
| Gradient (hydraulic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | CONSTANT                  | 0.310E-02  | -666-      | 0.100E-07  | -666-     |
| Groundwater seepage velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m/vr     | DERIVED                   | -986-      | -666-      | 0.100E-09  | 0.100E+09 |
| Retardation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · ;      | DERTVED                   | -999       | - 666      | 1.00       | 0.100F+09 |
| opentudinal dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ε        | FINCTION OF X             | - 000      | -000       | - 000      | - 999     |
| מופורממיומי מוחלים מדגדר)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 5 6                       |            |            |            |           |
| Iransverse dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E        | 5                         | -888-      | -888-      | -888-      | -888-     |
| Vertical dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E        | FUNCTION OF X             | -666-      | -666-      | -666-      | -666-     |
| Temperature of aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U        | CONSTANT                  | 21.0       | -666-      | 0.000E+00  | 100.      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | CONSTANT                  | 7.20       | -666-      | 0.300      | 14.0      |
| Organic carbon content (fraction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | CONSTANT                  | 0.300E-02  | -999.      | 0.100E-05  | 1.00      |
| Well distance from site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E        | CONSTANT                  | 402.       | - 666      | 1.00       | -666      |
| Angle off center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dograp   | TNATANT                   | D DODETOD  |            | 00. TOOO C |           |
| ווצדר כון ככווכנו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                           |            |            | 2221+22    | 722       |
| ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-8-6    |                           | 0.0005+00  |            | 0.000E+00  | 300.      |

## APPENDIX F.9 MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER INTERIM CASE 10L-LOCATION 1



U.S. ENVIRONMENTAL PROTECTION AGENCY

## EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.01, June 1991)

1 Run options

CASE10L

Location 1 Chemical simulated is DEFAULT CHEMICAL Option Chosen Saturated zone model Run was

Infiltration input by user Run was steady-state

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | STD DEV             | LIMITS    | TS<br>MAX |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -999.               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | ml/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | !         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |
| Henry's law constant                    | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00              | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      |           | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |

age 1

| 7  |
|----|
| e  |
| ag |

| TANA TI GATONY                                | SOURCE  | SOLIBCE SPECTETS WARTABLES |                   |           |                   |               |
|-----------------------------------------------|---------|----------------------------|-------------------|-----------|-------------------|---------------|
| VADTADI E NAME                                |         | SPECIFIC VANIABLES         |                   |           |                   |               |
| VANTABLE IVALIE                               | UNITS   | DISTRIBUTION               | PARAMETERS        | TERS      | LIMITS            | rs<br>Ts      |
|                                               |         |                            | MEAN              | STD DEV   | MIN               | MAX           |
| Infiltration rate                             | m/yr    | CONSTANT                   | 0.179E-06         | -999.     | 0.100E-09         | 0.100E+11     |
| Area of waste disposal unit                   | m^2     | CONSTANT                   | 0.486E+06         | -666-     | 0.100E-01         | -666-         |
| Duration of pulse                             | yr      | CONSTANT                   | -666-             | -666-     | 0.100E-08         | -666-         |
| Spread of contaminant source                  | E       | DERIVED                    | -666-             | -666-     | 0.100E-08         | 0.100E+11     |
| Recharge rate                                 | m/yr    | CONSTANT                   | 0.368E-01         | -666-     | 0.000E+00         | 0.100E+11     |
| Source decay constant                         | 1/vr    | CONSTANT                   | 0.000E+00         | -666-     | 0.000E+00         | -666-         |
| Initial concentration at landfill             | me/l    | CONSTANT                   | 1.00              | -666-     | 0.000E+00         | -666-         |
|                                               | Ë       | DERTVED                    | -666-             | -999.     | 0.100F-08         | 0.100F+11     |
| Width scale of facility                       | E       | DERTVED                    | 666-              | - 999     | 0 100F-08         | 0 100F+11     |
| Near field dilution                           |         | DERIVED                    | 1.00              | 0.000F+00 | 0.000E+00         | 1.00          |
|                                               | AQUIFER | AQUIFER SPECIFIC VARIABLES |                   |           |                   |               |
|                                               |         |                            |                   |           |                   |               |
|                                               |         |                            |                   |           |                   |               |
| VARIABLE NAME                                 | UNITS   | DISTRIBUTION               | PARAMETERS        | ETERS     | LIMITS            | LS            |
|                                               |         |                            | MEAN              | STD DEV   | MIN               | MAX           |
| Particle diameter                             | Cm      | CONSTANT                   | 0.381E-01         | -999.     | 0.100E-08         | 100.          |
| Aquifer porosity                              | 3       | CONSTANT                   | 0.430             | -666-     | 0.100E-08         | 0.990         |
| Bulk density                                  | g/cc    | CONSTANT                   | 1.65              | -999.     | 0.100E-01         | 5.00          |
| Aquifer thickness                             | E       | CONSTANT                   | 10.0              | -666-     | 0.100E-08         | 0.100E+06     |
| Source thickness (mixing zone depth)          | E       | DERIVED                    | -986-             | -666-     | 0.100E-08         | 0.100E+06     |
|                                               | m/vr    | CONSTANT                   | 130.              | -666-     | 0.100E-06         | 0.100E+09     |
| Gradient (hydraulic)                          |         | CONSTANT                   | 0.200E-02         | -999.     | 0.100E-07         | -999.         |
| Groundwater seepage velocity                  | m/yr    | DERIVED                    | -666-             | -666-     | 0.100E-09         | 0.100E+09     |
| Retardation coefficient                       | ١       | DERIVED                    | -666-             | -666-     | 1.00              | 0.100E+09     |
| Longitudinal dispersivity                     | Е       | FUNCTION OF X              | -989.             | -666-     | -989.             | -999.         |
| Transverse dispersivity                       | В       | FUNCTION OF X              | -666-             | -666-     | -989.             | -666-         |
| Vertical dispersivity                         | 8       | FUNCTION OF X              | -999.             | -666-     | -999.             | -666-         |
| Temperature of aquifer                        | U       | CONSTANT                   | 21.0              | -666-     | 0.000E+00         | 100.          |
|                                               | 1       | CONSTANT                   | 7.20              | -666-     | 0.300             | 14.0          |
| Organic carbon content (fraction)             |         | CONSTANT                   | 0.300E-02         | -666-     | 0.100E-05         | 1.00          |
|                                               |         | THE POST OF                | (                 | 0         |                   | 000           |
| ll distance from site                         | E       | CONSTANT                   | 58.8              | -888-     | 1.00              | -888-         |
| Well distance from site<br>Angle off center d | degree  | CONSTANT                   | 58.8<br>0.000E+00 |           | 1.00<br>0.000E+00 | -999.<br>360. |

CONCENTRATION AFTER SATURATED ZONE MODEL 0.5320E-04

## APPENDIX F.10 MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER INTERIM CASE 2OL-LOCATION 2



## A G CASE2OL T E C T I O N P R O IRONMENTAL ENV s.

## MODEL MULTIMEDIA

SESSMENT

A S

EXPOSURE

MULTIMED (Version 1.01, June 1991)

Run options

CASE20L

Location 2 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Option Chosen

Reject runs if Y coordinate outside plume Infiltration input by user Run was steady-state

Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | STD DEV             | LIMITS    | TS<br>MAX |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|
| Solid phase decay coefficient           | 1/vr      | CONSTANT     | 0.000E+00 -999         | -999.               | 0.000E+00 | 0.100E+11 |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 |           |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Reference temperature                   | U         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Distribution coefficient                | -         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 100.      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |
| Mole fraction of solute                 | i         | CONSTANT     | 0.000E+00 -999         | -666-               | 0.100E-08 | 1.00      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00              | 9.000E+00 0.000E+00 | 0.000E+00 | 1.00      |
| Not currently used                      |           | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |

| 2  |
|----|
|    |
| Φ  |
| D1 |
| T  |
| 0  |

| Not currently used                   | K ::    | CASE20L<br>CONSTANT        | -666-      | -666-     | 0.000E+00 | 1.00      |    |
|--------------------------------------|---------|----------------------------|------------|-----------|-----------|-----------|----|
|                                      | SOURCE  | SOURCE SPECIFIC VARIABLES  |            |           |           |           |    |
|                                      |         |                            |            | •         |           |           |    |
| VARIABLE NAME                        | UNITS   | DISTRIBUTION               | PARAMETERS | TERS      | LIMITS    | TS        |    |
|                                      |         |                            | MEAN       | STD DEV   | MIN       | MAX       |    |
| Infiltration rate                    | m/yr    | CONSTANT                   | 0.153E-06  | -999.     | 0.100E-09 | 0.100E+11 | ¥2 |
| Area of waste disposal unit          | m^2     | CONSTANT                   | 0.486E+06  |           | 0.100E-01 | -666-     |    |
| Duration of pulse                    | yr      | CONSTANT                   | -666-      | -666-     | 0.100E-08 | -666-     |    |
| Spread of contaminant source         | E       | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+11 |    |
| Recharge rate                        | m/yr    | CONSTANT                   | 0.368E-01  | -999.     | 0.000E+00 | 0.100E+11 |    |
| Source decay constant                | 1/yr    | CONSTANT                   | 0.000E+00  | -666-     | 0.000E+00 | -666-     |    |
| Initial concentration at landfill    | mg/1    | CONSTANT                   | 1.00       | -999.     | 0.000E+00 | -666-     |    |
| Length scale of facility             | E       | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+11 |    |
| Width scale of facility              | E       | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+11 |    |
| Near field dilution                  |         | DERIVED                    | 1.00       | 0.000E+00 | 0.000E+00 | 1.00      |    |
|                                      | AQUIFER | AQUIFER SPECIFIC VARIABLES | 10         |           |           |           |    |
|                                      |         |                            |            |           |           |           |    |
| VARIABLE NAME                        | UNITS   | DISTRIBUTION               | PARAMETERS | ETERS     | LIMITS    | TS        |    |
|                                      |         |                            | MEAN       | STD DEV   | MIN       | MAX       |    |
| Particle diameter                    | W)      | CONSTANT                   | 0.381E-01  | -999.     | 0.100E-08 | 100.      |    |
| Aquifer porosity                     | 1       | CONSTANT                   | 0.430      | -666-     | 0.100E-08 | 0.990     |    |
| Bulk density                         | g/cc    | CONSTANT                   | 1.65       | -666-     | 0.100E-01 | 5.00      |    |
|                                      | 8       | CONSTANT                   | 10.0       | -666-     | 0.100E-08 | 0.100E+06 |    |
| Source thickness (mixing zone depth) | E       | DERIVED                    | -666-      | -666-     | 0.100E-08 | 0.100E+06 |    |
| Conductivity (hydraulic)             | m/yr    | CONSTANT                   | 130.       | -999.     | 0.100E-06 | 0.100E+09 |    |
| Gradient (hydraulic)                 |         | CONSTANT                   | 0.200E-02  | - 666-    | 0.100E-07 | -999.     |    |
| Groundwater seepage Velocity         | m/yr    | DEKIVED                    | - 666      | . 666     | 0.100E-09 | 0.100E+09 |    |
| constitution   dispositivity         |         | ELINCTION OF Y             | .000       | .000      | 000       | -000      |    |
| Transverse dispersivity              | ≣       | 2 9                        | -666       | -666-     | -666-     | -666-     |    |
| Vertical dispersivity                | . ∈     | FUNCTION OF X              | -666       | -666      | -666-     | -666      |    |
| Temperature of aquifer               | U       |                            | 21.0       | -666-     | 0.000E+00 | 100.      |    |
| Hd                                   | 1       | CONSTANT                   | 7.20       | -666-     | 0.300     | 14.0      |    |
| Organic carbon content (fraction)    |         | CONSTANT                   | 0.300E-02  |           | 0.100E-05 | 1.00      |    |
| Well distance from site              | E       | CONSTANT                   | 168.       |           | 1.00      | .666-     |    |
| Angle off center                     | degree  | CONSTANT                   | 0.000E+00  |           | 0.000E+00 | 360.      |    |
| Well vertical distance               | E       | CONSTANT                   | 0.000E+00  | *666-     | 0.000E+00 | 1.00      |    |

## **APPENDIX F.11**

## MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER INTERIM CASE 3OL-LOCATION 3



|     | Z        |
|-----|----------|
|     | ш        |
|     | g        |
|     | A        |
|     | Z        |
|     | 0        |
| 200 | H        |
| E   | $\vdash$ |
| AS  | U        |
|     | ш        |
|     | -        |
|     | 0        |
|     | N        |
|     | Р        |
|     | ١        |
|     | d        |
|     | $\vdash$ |
|     | Z        |
|     | ш        |
|     | Σ        |
|     | Z        |
|     | 0        |
|     | 2        |
|     | Н        |
|     | >        |
|     | Z        |
|     | ш        |
|     | s.       |
|     |          |

## ASSESSMENT EXPOSURE

MODEL MULTIMEDIA MULTIMED (Version 1.01, June 1991)

CASE30L

Run options

Location 3 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model Infiltration input by user Run was steady-state Option Chosen Run was

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS      | ETERS               | LIMITS    | TS        |  |
|-----------------------------------------|-----------|--------------|-----------------|---------------------|-----------|-----------|--|
|                                         |           |              | MEAN            | STD DEV             | MIN       | MAX       |  |
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999  | -999.               | 0.000E+00 | 0.100E+11 |  |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999  | -989.               | 0.000E+00 | 0.100E+11 |  |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999  | -999.               | 0.000E+00 | 0.100E+11 |  |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |  |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |  |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |  |
| Reference temperature                   | U         | CONSTANT     | 20.0            | -999.               | 0.000E+00 | 100.      |  |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |  |
| Distribution coefficient                | 1         | DERIVED      | -666-           | -666-               | 0.000E+00 | 0.100E+11 |  |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | -666-     |  |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 10.0      |  |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | 100.      |  |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999  | -666-               | 0.000E+00 | -666-     |  |
| Mole fraction of solute                 | E         | CONSTANT     | 0.000E+00 -999  | -666-               | 0.100E-08 | 1.00      |  |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999. | -666-               | 0.000E+00 | 100.      |  |
| Henry's law constant                    | atm-m^3/M | CONSTANT     | 0.000E+00 -999. | -666-               | 0.100E-09 | 1.00      |  |
| Overall 1st order decay sat, zone       | 1/yr      | DERIVED      | 0.000E+00       | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |  |
| Not currently used                      |           | CONSTANT     | -666-           | - 666-              | 0.00E+00  | 1.00      |  |

|  | ( |   |   |
|--|---|---|---|
|  |   | ( | 3 |
|  |   | ţ |   |
|  | į | ç | Į |

| VARIBLE NAME   NULLS   DISTRIBUTION   PARAMETERS   NULLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not currently used                |        | CASE30L<br>CONSTANT  | .999.      |                  | 0.000E+00 | 1.00      |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|----------------------|------------|------------------|-----------|-----------|------------------|
| International Distribution   Datameters   Distribution   Distrib   |                                   | SOURC  | SPECIFIC VARIABLES   |            |                  |           |           |                  |
| E UNITS DISTRIBUTION PARAMETERS LIMIT    Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |                      |            |                  |           |           |                  |
| #EAM STD DEV MIN  ##AM STD DEV 100E-09  ##AM STD DEV 100E-09  ##AM STD DEV 0.100E-09  ##AM STD DEV 0.100E-08  ##AM STD DEV 0.100E-08  ##AM STD DEV MIN   VARIABLE NAME                     | UNITS  | DISTRIBUTION         | RAMET      | ;<br>;<br>;<br>; | 1         | 1         | I<br>I<br>I      |
| nit m/yr CONSTANT 0.153E-06 -999. 0.100E-09 o.00STANT 0.486E+06 -999. 0.100E-08 o.00STANT 0.486E+06 -999. 0.100E-08 o.00STANT 0.999. 0.999. 0.100E-08 o.00STANT 0.368E-01 -999. 0.100E-08 o.00STANT 0.00STANT 0.368E-01 -999. 0.100E-08 o.00STANT 0.00STANT 0.368E-01 -999. 0.100E-08 o.00STANT 0.00STANT 0.999. 0.999. 0.100EE-08 o.00STANT 0.999. 0.999. 0.100E-08 o.00STANT 0.999. 0.999. 0.100E-08 o.00STANT 0.999. 0.999. 0.100E-08 o.00STANT 0.430 0.999. 0.100E-08 o.00STANT 0.20G-099. 0.100E-09 o.100E-09 o.00STANT 0.20G-0-999. 0.100E-09 o.00STANT 0.00STANT 0 |                                   |        |                      |            |                  | NIN       | MAX       |                  |
| The continue contin   | Infiltration rate                 | m/yr   | CONSTANT             |            |                  | 100E-09   | 0.100E+11 |                  |
| The constraint   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   1999,   199   | Area of waste disposal unit       | m^2    | CONSTANT             |            |                  | 100E-01   | -666-     |                  |
| DERIVED   0.999.   0.100E-08   0.100E-08   0.100E-08   0.100E+00   1/yr   CONSTANT   0.000E+00   0.999.   0.000E+00   0.000E   | Duration of pulse                 | y      | CONSTANT             |            |                  | 100E-08   | -666-     |                  |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spread of contaminant source      | E      | DERIVED              |            |                  | 100E-08   | 0.100E+11 |                  |
| Tandfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recharge rate                     | m/yr   | CONSTANT             |            |                  | 999E+99   | 0.100E+11 |                  |
| Jandfill   mg/l   CONSTANT   1.00   -999.   0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source decay constant             | 1/vr   | CONSTANT             |            |                  | 999E+99   | -999.     |                  |
| DERIVED   -999.   -999.   0.100E-08   DERIVED   -999.   -999.   0.100E-08   DERIVED   -999.   -999.   0.100E-08   O.000E+00    |                                   | me/l   | CONSTANT             |            |                  | 999E+99   | -999.     |                  |
| DERIVED   1.00   0.000E+00   0.000E+00   0.000E+00   DERIVED   1.00   0.000E+00   0.000E+00   DERIVED   1.00   0.000E+00   0.000E+00   DERIVED   DISTRIBUTION   PARAMETERS   LIMIT     |                                   | E      | DERIVED              |            |                  | 100E-08   | 0.100E+11 |                  |
| DERIVED   1.00   0.000E+00   0.000E+00   0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | width scale of facility           | E      | DERIVED              |            |                  | 100E-08   | 0.100E+11 |                  |
| AQUIFER SPECIFIC VARIABLES   AQUIFER SPECIFIC VARIABLES   MEAN   STD DEV   MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wear field dilution               |        | DERIVED              |            | E+00             | 999E+99   | 1.00      |                  |
| CONSTANT    |                                   | AQUIFE | R SPECIFIC VARIABLES | 10         |                  |           |           |                  |
| units distribution Parameters Limit Limit Constraint 0.381E-01-999 MIN MEAN STD DEV MIN CONSTANT 0.430 -999, 0.100E-08 G/C CONSTANT 10.0 -999, 0.100E-08 0.100E-08 m/yr CONSTANT 130999, 0.100E-08 0.100E-07 m/yr CONSTANT 130999, 0.100E-07 0.00STANT 0.200E-02-999, 0.100E-07 0.00STANT 0.299, -999, 0.100E-07 0.00STANT 0.299, -999, 0.100E-07 0.00STANT 0.300E-02-999, 0.999, 0.999, 0.100E-05 0.00STANT 0.300E-02-999, 0.100E-05 0.00STANT 0.300E-02-999, 0.100E-05 0.00STANT 0.300E-02-999, 0.000SE+00 0.00STANT 0.000E+00 0.000E+00 0.00STANT 0.00STANT 0.000E+00 0.000E+00 0.00STANT 0.00STANT 0.000E+00 0.000E+00 0.00STANT 0.00STANT 0.000E+00 0.000E+00 0.00STANT 0.00STANT 0.000E+00 0.00SE+00 0.00STANT 0.00STA       |                                   |        |                      |            |                  |           |           |                  |
| Cm CONSTANT 0.381E-01 -999. MIN  cm CONSTANT 0.430 -999. 0.100E-08  CONSTANT 0.430 -999. 0.100E-08  g/cc CONSTANT 1.65 -999. 0.100E-08  m CONSTANT 130999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-09  DERIVED -999999. 0.100E-09  DERIVED -999999. 0.100E-09  m/yr DERIVED -999999. 0.100E-09  constant 7.20 -999999999.  c CONSTANT 7.20 -999. 0.100E-05  m CONSTANT 7.20 -999. 0.100E-05  m CONSTANT 0.000E+00 -999. 0.000E+00  degree CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |        |                      |            |                  |           |           |                  |
| mean STD DEV MIN  Cm CONSTANT 0.381E-01 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  g/cc CONSTANT 1.65 -999. 0.100E-08  m CONSTANT 130999. 0.100E-08  m/yr CONSTANT 0.200E-02 -999. 0.100E-07  CONSTANT 0.200E-02 -999. 0.100E-07  m/yr DERIVED -999999. 0.100E-09  DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m FUNCTION OF X -999999. 0.909.  C CONSTANT 21.0 -999. 0.300E-00  C CONSTANT 21.0 -999. 0.100E-05  C CONSTANT 21.0 -999. 0.100E-05  C CONSTANT 23.0 -999. 0.100E-05  CONSTANT 23.0 -999. 0.000E+00  GONSTANT 0.000E+00 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VARIABLE NAME                     | UNITS  | DISTRIBUTION         | PARAMETERS |                  | LIMI      | TS.       |                  |
| cm CONSTANT 0.381E-01 -999. 0.100E-08 CONSTANT 1.65 -999. 0.100E-08 CONSTANT 1.65 -999. 0.100E-08 CONSTANT 1.65 -999. 0.100E-08 CONSTANT 10.0 -999. 0.100E-08 CONSTANT 130999. 0.100E-08 CONSTANT 0.200E-02 -999. 0.100E-07 DERIVED -999999. 0.100E-07 DERIVED -999999. 0.100E-09 DERIVED -999999. 0.100E-09 DERIVED -999999. 0.100E-09 CONSTANT 7.20 -999. 0.999. 0.999. 0.100E-09 CONSTANT 7.20 -999. 0.100E-05 CONSTANT 7.20 -999. 0.000E+00 CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |        |                      |            |                  |           |           |                  |
| e depth) m CONSTANT 1.65 -999. 0.100E-08 CONSTANT 1.65 -999. 0.100E-08 CONSTANT 1.65 -999. 0.100E-08 CONSTANT 1.65 -999. 0.100E-08 0.100E-08 CONSTANT 130999. 0.100E-08 CONSTANT 130999. 0.100E-08 0.100E-08 0.100E-07 0.00STANT 0.999999. 0.100E-09 0.000E+00 0.          | Particle diameter                 | CM     | CONSTANT             | 1          |                  | 100E-08   | 100.      | !<br>!<br>!<br>! |
| g/cc CONSTANT 1.65 -999. 0.100E-01  m CONSTANT 10.0 -999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-08  constant 0.200E-02 -999. 0.100E-08  constant 0.200E-02 -999. 0.100E-07  constant 0.299999. 0.100E-09  m/yr DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999999.  c CONSTANT 2.00 -999999.  c CONSTANT 2.00 -999999.  c CONSTANT 2.00 -999. 0.100E-05  c CONSTANT 2.00 -999. 0.000E+00  degree CONSTANT 2.38999. 0.000E+00  c CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aquifer porosity                  | 1      | CONSTANT             |            |                  | 100E-08   | 0.990     |                  |
| e depth) m CONSTANT 10.0 -999. 0.100E-08 m/yr CONSTANT 130999. 0.100E-08 m/yr CONSTANT 130999. 0.100E-08 0.100E-08 constant berner 130999. 0.100E-06 0.100E-07 0.999. 0.100E-07 0.999. 0.100E-09 0.000E+00 0.00          | Bulk density                      | g/cc   | CONSTANT             |            |                  | 100E-01   | 5.00      |                  |
| e depth) m DERIVED -999999. 0.100E-08 CONSTANT 130999. 0.100E-08 CONSTANT 130999. 0.100E-06 CONSTANT 130999. 0.100E-06 0.100E-07 0.200E-02 -999. 0.100E-07 0.200E-07 0.999. 0.100E-07 0.999. 0.100E-09 0.100E-09 0.100E-09 0.999. 0.100E-09 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.100E-09 0.200STANT 7.20 0.999. 0.100E-05 CONSTANT 7.20 0.999. 0.100E-05 CONSTANT 7.20 0.999. 0.100E-05 0.000E+00 0.000STANT 0.999. 0.999. 0.000E+00 0.000STANT 0.999. 0.000E+00 0.000E+             | Aquifer thickness                 | E      | CONSTANT             |            |                  | 100E-08   | 0.100E+06 |                  |
| m/yr CONSTANT 130999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 -999. 0.100E-07 -999. 0.100E-07 -999. 0.100E-07 -999. 0.100E-07 -999. 0.100E-09 0.000E+00 0.000E    |                                   | E      | DERIVED              |            |                  | 100E-08   | 0.100E+06 |                  |
| CONSTANT 0.200E-02 -999. 0.100E-07  m/yr DERIVED -999999. 0.100E-09  DERIVED -999999. 1.00  m FUNCTION OF X -999999999.  m FUNCTION OF X -999999999.  C CONSTANT 21.0 -999. 0.000E+00  CONSTANT 0.300E-02 -999. 0.100E-05  CONSTANT 238999. 0.100E-05  CONSTANT 238999. 0.100E-05  CONSTANT 0.000E+00 -999. 0.000E+00  degree CONSTANT 0.000E+00 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | m/yr   | CONSTANT             |            |                  | 100E-06   | 0.100E+09 |                  |
| m/yr DERIVED -999, -999, 0.1006-09   DERIVED -999, -999, 1.00   FUNCTION OF X -999, -999, -999,   FUNCTION OF X -999, -999, -999,   CONSTANT 21.0 -999, 0.000E+00   CONSTANT 7.20 -999, 0.300E   CONSTANT 7.20 -999, 0.100E-05   CONSTANT 7.20 -999, 0.100E-05   CONSTANT 238, -999, 0.000E+00   CONSTANT 238, -999, 0.000E+00   CONSTANT 238, -999, 0.000E+00   CONSTANT 0.000E+00 -999, 0.000E+                                                                                                                                                                                      | Gradient (hydraulic)              |        | CONSTANT             |            |                  | 100E-07   | -666-     |                  |
| DERIVED -999, -999, 1.00 m FUNCTION OF X -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999    | Groundwater seepage velocity      | m/yr   | DERIVED              |            |                  | 100E-09   | 0.100E+09 |                  |
| Densivity m FUNCTION OF X -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999 | Retardation coefficient           | i i    | DERIVED              |            |                  | .00       | 0.100E+09 |                  |
| raivity m FUNCTION OF X -999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Longitudinal dispersivity         | E      | OF                   |            |                  | .66       | -666-     |                  |
| ivity m FUNCTION OF X -9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999996=+09 -9999999999=+09 -9999999=+0999999=+099=+099=+099=+099=+099=+099=+099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transverse dispersivity           | E      | OF                   |            |                  | .66       | -666-     |                  |
| quifer         C         CONSTANT         21.0         -999.         0.000E+00           ontent (fraction)          CONSTANT         7.20         -999.         0.300           om site         CONSTANT         0.300E-02         -999.         0.100E-05           om site         CONSTANT         238.         -999.         1.00           degree         CONSTANT         0.000E+00         -999.         0.000E+00           stance         m         CONSTANT         0.000E+00         -999.         0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vertical dispersivity             | E      | OF                   |            |                  | .66       | -666-     |                  |
| CONSTANT 7.20 -999. 0.300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -0300 -    | Temperature of aquifer            | U      | CONSTANT             |            |                  | 000E+00   | 100.      |                  |
| Ontent (fraction) CONSTANT 0.300E-02 -999. 0.100E-05 on site CONSTANT 238999. 1.00 odegree CONSTANT 0.000E+00 -999. 0.000E+00 stance m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hd                                | 1      | CONSTANT             |            |                  | 300       | 14.0      |                  |
| om site m CONSTANT 238999. 1.00 -  degree CONSTANT 0.000E+00 -999. 0.000E+00  stance m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organic carbon content (fraction) |        | CONSTANT             |            |                  | 100E-05   | 1.00      |                  |
| degree CONSTANT 0.000E+00 -999. 0.000E+00 stance m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well distance from site           | ш      | CONSTANT             |            |                  | .00       | -666-     |                  |
| stance m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Angle off center                  | degree | CONSTANT             |            |                  | 000E+00   | 360.      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well vertical distance            | E      | CONSTANT             |            | VE               | 000E+00   | 1.00      |                  |

## **APPENDIX F.12**

## MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER INTERIM CASE 40L-LOCATION 4



|   | Z           |  |
|---|-------------|--|
|   | ш           |  |
|   | 9           |  |
|   | A           |  |
|   |             |  |
|   | Z           |  |
|   | 0           |  |
| 2 | Н           |  |
| į | $\vdash$    |  |
| į | U           |  |
|   | ш           |  |
|   | H           |  |
|   | 0           |  |
|   | 8           |  |
|   | Δ.          |  |
|   |             |  |
|   |             |  |
|   | _           |  |
|   |             |  |
|   | T A         |  |
|   | T A         |  |
|   | ENTA        |  |
|   | MENTA       |  |
|   | NMENTA      |  |
|   | ONMENTA     |  |
|   | NMENTA      |  |
|   | IRONMENTA   |  |
|   | VIRONMENTA  |  |
|   | NVIRONMENTA |  |
|   | VIRONMENTA  |  |
|   | NVIRONMENTA |  |

U. S.

## ESSMENT MODEL ASS MULTIMEDIA EXPOSURE

(Version 1.01, June 1991)

MULTIMED

CASE40L

1 Run options

Location 4 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Run was Infiltration input by user Option Chosen

Run was steady-state

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | STD DEV             | LIMITS    | TS MAX    | 2 oğ |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|------|
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999         | -999.               | 0.000E+00 | 0.100E+11 |      |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |      |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |      |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |      |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |      |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |      |
| Reference temperature                   | U         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |      |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |      |
| Distribution coefficient                | i         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |      |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |      |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |      |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |      |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |      |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-08 | 1.00      |      |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 100.      |      |
| Henry's law constant                    | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |      |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00              | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |      |
| Not currently used                      | æ         | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |      |

| C |
|---|
| 0 |
| Č |
| 1 |

| SOURCE SPECIFIC VARIABLES   NATION   NEAR STD DEV   MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOURCE SPECIFIC VARIABLES  SIE NAME  |                                    |                                         | E SPECIFIC VARIABLES | 10        |           |           |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|----------------------|-----------|-----------|-----------|-----------|--|
| NET    | NET    |                                    | SOURC                                   |                      |           |           |           |           |  |
| STATE   STRIBUTION   PARAMETERS   LINITY   STD DEV   MIN     | NEANE   UNITS   DISTRIBUTION   PARAMETERS   LINUTION   NEAN   STD DEV   MIN   MIN   MIN   CONSTANT   0.153E-06 -999.   0.100E-09   0.100   |                                    |                                         |                      |           |           |           |           |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VARIABLE NAME                      | UNITS                                   | DISTRIBUTION         | PARAMI    | TERS      | 1         |           |  |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                      | NICOTO I  | 200       | NOTE      | SCI.      |  |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | filtration rate                    | m/yr                                    | CONSTANT             | 0.153E-06 | -666-     | 0.100E-09 | 0.100E+11 |  |
| yr CONSTANT -999999. 0.100E-08  m DERIVED -999999. 0.000E-08  1/yr CONSTANT 0.000E+00 -999. 0.000E+00  mg/l CONSTANT 1.000 -999. 0.000E+00  mg/l CONSTANT 1.000 -999. 0.000E+00  DERIVED -999. 0.000E+00  0.000E+00 0.000E+00  DERIVED -999999. 0.100E-08  cm CONSTANT 0.381E-01 -999. 0.100E-08  m/yr CONSTANT 10.0 0.999. 0.100E-09  m/yr CONSTANT 0.200E-02 -999. 0.100E-09  m/yr CONSTANT 0.200-999. 0.100E-09  m/yr DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m CONSTANT 7.20 -999. 0.300E-09  m CONSTANT 837999. 0.100E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yr CONSTANT -999999. 0.100E-08  m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | m^2                                     | CONSTANT             | 0.486E+06 | -666-     | 0.100E-01 | -666-     |  |
| m DERIVED -999999. 0.100E-08 (17/yr CONSTANT 0.000E+00 -999. 0.000E+00 0.    | m DERIVED -999999. 0.100E-08 (17/yr CONSTANT 0.000E+00 -999. 0.000E+00 0.    | ration of pulse                    | yr                                      | CONSTANT             | -666-     | -666-     | 0.100E-08 | -666-     |  |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m/yr CONSTANT 0.368E-01 -999. 0.000E+00    1/yr CONSTANT 0.000E+00 -999. 0.000E+00    m DERIVED -999999. 0.000E+00    m DERIVED -999999. 0.100E-08    DERIVED -999999. 0.100E-08    1.00 0.000E+00    DERIVED -999. 0.100E-08    1.00 0.000E+00    DERIVED -999. 0.100E-08    0.100E-08    1.00 0.381E-01 -999. 0.100E-08    CM CONSTANT 0.381E-01 -999. 0.100E-08    CONSTANT 10.0 0.999. 0.100E-08    1.00 0.300E-09    1.00 0.          | read of contaminant source         | E                                       | DERIVED              | -666-     | -666-     | 0.100E-08 | 0.100E+11 |  |
| 1/yr CONSTANT 0.000E+00 -999. 0.000E+00 mg/l CONSTANT 1.00 -999. 0.100E+00 0.000E+00 0 | 1/yr CONSTANT 0.000E+00 -999. 0.000E+00 mg/l CONSTANT 1.00 -999. 0.100E+00 0.000E+00 mg/l CONSTANT 1.00 -999. 0.100E-08 0.000E+00 0.000E | charge rate                        | m/yr                                    | CONSTANT             | 0.368E-01 | -666-     | 0.000E+00 | 0.100E+11 |  |
| mg/1 CONSTANT 1.00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | urce decay constant                | 1/yr                                    | CONSTANT             | 0.000E+00 | -666-     | 0.000E+00 | -666-     |  |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | itial concentration at landfill    | mg/1                                    | CONSTANT             | 1.00      | -666-     | 0.000E+00 | -666-     |  |
| DERIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DERIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngth scale of facility             | E                                       | DERIVED              | -666-     | -666-     | 0.100E-08 | 0.100E+11 |  |
| AQUIFER SPECIFIC VARIABLES  AQUIFER SPECIFIC VARIABLES  UNITS DISTRIBUTION PARAMETERS LIMIT  Cm CONSTANT 0.381E-01 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  m CONSTANT 1.69 -999. 0.100E-08  m/yr CONSTANT 0.200E-02 -999. 0.100E-09  CONSTANT 0.200E-02 -999. 0.100E-09  DERIVED -999999. 0.100E-09  DERIVED -999. 0.100E-09  DERIV                                                                                                                                                                                                                | DERIVED 1.00 0.000E+00 0.000E+00 0.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.00TS DESTRIBUTION PARAMETERS LIMIT MEAN STD DEV MIN STD DEV MIN O.00STANT 0.430 0.999. 0.100E-08 O.00STANT 0.430 0.999. 0.100E-08 O.00STANT 0.20E-0999. 0.100E-08 O.00STANT 0.20E-0999. 0.100E-08 O.00STANT 0.20E-0999. 0.100E-08 O.00STANT 0.20E-0999. 0.100E-09 O.00STANT 0.20E-0999. 0.100E-09 O.00STANT 0.20E-0999. 0.100E-09 O.00SE-099 O.00SE-0999. 0.100E-09 O.00SE-0999. 0.20E-0999. 0.20E-09999. 0.20E-09999 | Ath scale of facility              | E                                       | DERIVED              | -666-     | -666-     | 0.100E-08 | 0.100E+11 |  |
| AQUIFER SPECIFIC VARIABLES  UNITS DISTRIBUTION PARAMETERS LIMIT  Com CONSTANT 0.381E-01 -999. 0.100E-08 0.00STANT 0.430 -999. 0.100E-08 0.100E-09  | AQUIFER SPECIFIC VARIABLES  UNITS DISTRIBUTION PARAMETERS LIMIT  Cm CONSTANT 0.381E-01 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  g/cc CONSTANT 1.65 -999. 0.100E-08  m CONSTANT 10.0 -999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-09  CONSTANT 130999. 0.100E-09  DERIVED -999999. 0.100E-09  CONSTANT 2.20 -999. 0.300E-09  CONSTANT 387999. 0.300E-09  CONSTANT 8387999. 0.000E+00  CONSTANT 8387999. 0.000E+00  CONSTANT 8387999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ar field dilution                  |                                         | DERIVED              | 1.00      | 0.000E+00 | 0.000E+00 | 1.00      |  |
| cm CONSTANT 0.381E-01 -999. MIN CONSTANT 0.430 -999. 0.100E-08 0.100E-09 0.1 | cm CONSTANT 0.381E-01 -999. MIN CONSTANT 0.381E-01 -999. 0.100E-08 0.005TANT 0.430 -999. 0.100E-08 0.100E-08 0.005TANT 0.430 -999. 0.100E-08 0.100E-09 0.000E+00 0.000 | VADTABLE MAME                      | INTTC                                   | MOTERIAL             | MAGAG     | ETEDC     | TMT       | TC        |  |
| cm CONSTANT 0.381E-01-999. 0.100E-08 constant constant 0.430 -999. 0.100E-08 constant constant 1.65 -999. 0.100E-08 constant m CONSTANT 1.65 -999. 0.100E-08 constant m/yr constant 0.200E-02 -999. 0.100E-08 constant m/yr constant 0.200E-02 -999. 0.100E-09 constant berick of constant constant 21.0 -999. 0.999. 0.100E-09 constant constant 0.300E-09 consocration) m FUNCTION OF X -999999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.900E+09 constant 0.300E-09 0.999. 0.900E+09 0.900E+09 0.909. 0.900E+09 0.909. 0.900E+09 0.999. 0.900E+09 0.999. 0.900E+09 0.900E+09 0.999. 0.900E+09 0.900E+09 0.999. 0.900E+09 0.900E+09 0.900E+09 0.999. 0.900E+09 0.900E+09 0.900E+09 0.999. 0.900E+09 0.900E+09 0.900E+09 0.900E+09 0.900E+09 0.900E+09 0.999. 0.900E+09 0.    | Constant    | VAKIABLE NAME                      | ONTIS                                   | DISTRIBUTION         | PAKAM     | ELEKS     |           |           |  |
| cm CONSTANT 0.381E-01-999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  zone depth) m DERIVED -999999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-08  constant 0.200E-02-999. 0.100E-08  constant 0.200E-02-999. 0.100E-08  constant 0.200E-02-999. 0.100E-07  DERIVED -999999. 0.100E-09  m/yr DERIVED -999. 0.100E-09  DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999999.  c C CONSTANT 21.0 -999. 0.000E+00  c CONSTANT 7.20 -999. 0.300  constant 0.300E-09  constant 0.300E-09  degree CONSTANT 8.387999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cm CONSTANT 0.381E-01-999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  zone depth) m DERIVED -999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-08  constant 0.200E-02-999. 0.100E-08  constant berived -999. 0.100E-08  constant 0.200E-02-999. 0.100E-07  constant 0.200E-02-999. 0.100E-07  m/yr DERIVED -999999. 0.100E-07  DERIVED -999999. 0.100E-07  m FUNCTION OF X -999999999.  c CONSTANT 21.0 -999. 0.000E+00  c CONSTANT 21.0 -999. 0.000E+00  constant 0.300E-02-999. 0.100E-05  constant 0.300E-02-999. 0.100E-05  constant 0.300E-02-999. 0.000E+00  constant 0.300E+00  constant 0.000E+00  constan                   |                                    |                                         |                      | MEAN      | STD DEV   | MIN       | MAX       |  |
| g/cc CONSTANT 0.430 -999. 0.100E-08 consTANT 1.65 -999. 0.100E-08 consTANT 1.65 -999. 0.100E-08 consTANT 1.65 -999. 0.100E-08 consTANT 10.0 -999. 0.100E-08 consTANT 130999. 0.100E-08 consTANT 130999. 0.100E-08 consTANT 0.200E-02 -999. 0.100E-09 consTANT 0.200E-02 -999. 0.100E-09 consTANT 0.999999. 0.100E-09 consTANT 0.999999. 0.100E-09 consTANT 0.300E-09 consTANT 0.000E+00 consT             | CONSTANT   0.430   -999   0.100E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rticle diameter                    | 8                                       | CONSTANT             | 0.381E-01 | -666-     | 0.100E-08 | 100.      |  |
| g/cc CONSTANT 1.65 -999. 0.100E-01  zone depth) m DERIVED -999. 0.100E-08  zone depth) m DERIVED -999. 0.100E-08  CONSTANT 130999. 0.100E-08  CONSTANT 0.200E-02 -999. 0.100E-06  CONSTANT 0.200E-02 -999. 0.100E-07  DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999. 0.999.  m FUNCTION OF X -999999999.  C CONSTANT 21.0 -999. 0.300E-00  C CONSTANT 7.20 -999. 0.300  C CONSTANT 7.20 -999. 0.100E-05  C CONSTANT 7.20 -999. 0.100E-05  CONSTANT 7.20 -999. 0.100E-05  CONSTANT 7.20 -999. 0.100E-05  CONSTANT 7.20 -999. 0.100E-05  CONSTANT 387999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g/cc CONSTANT 1.65 -999. 0.100E-01  constant 10.0 -999. 0.100E-08  constant 10.0 -999. 0.100E-08  constant 10.0 -999. 0.100E-08  constant 10.0 -999. 0.100E-08  constant 0.200E-02 -999. 0.100E-09  iity m/yr DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999. 1.00  c CONSTANT 21.0 -999999.  c CONSTANT 21.0 -999. 0.000E+00  c CONSTANT 21.0 -999. 0.000E+00  constant 0.300E-02 -999. 0.100E-05  constant 0.300E-02 -999. 0.000E+00  constant 0.300E-02 -999. 0.000E+00  constant 0.300E+00 -999. 0.000E+00  constant 0.000E+00 -999. 0.000E+00  constant 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uifer porosity                     | 1                                       | CONSTANT             | 0.430     | -666-     | 0.100E-08 | 066.0     |  |
| zone depth) m CONSTANT 10.0 -999. 0.100E-08 0.100E-08 m/yr CONSTANT 130999. 0.100E-08 0.100E-08 0.100E-08 0.100E-08 0.100E-08 0.100E-09 0.100E-09 0.100E-09 0.100E-09 0.100E-07 0.200E-02 -999. 0.100E-07 0.100E-07 0.200E-09 0.100E-09 0.000E+00 0    | zone depth) m CONSTANT 10.0 -999. 0.100E-08 CONSTANT 13.0 -999. 0.100E-08 0.100E-08 0.00STANT 13.0 -999. 0.100E-08 0.100E-08 0.00STANT 13.0 -999. 0.100E-08 0.100E-07 0.20STANT 0.200E-02 -999. 0.100E-07 0.100E-07 0.20STANT 0.999. 0.999. 0.100E-09 0.1000E-09 0.100E-09 | 1k density                         | g/cc                                    | CONSTANT             | 1.65      | -666-     | 0.100E-01 | 5.00      |  |
| zone depth) m DERIVED -999999. 0.100E-08 CONSTANT 130999. 0.100E-08 0.100E-08 0.100E-08 0.100E-08 0.100E-08 0.100E-09 0.000E+00 0.       | zone depth) m DERIVED -999999. 0.100E-08 CONSTANT 130999. 0.100E-08 CONSTANT 130999. 0.100E-08 CONSTANT 130999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 OF X -999. 0.999. 0.100E-09 OF X -999. 0.999. 0.100E-09 OF X -999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.000E+00 CONSTANT 21.0 0.300E-09 OF X -999. 0.300 OF X ONSTANT 387. 0.999. 0.000E+00 ONSTANT 387. 0.999. 0.000E+00 ONSTANT 387. 0.999. 0.000E+00 ONSTANT 0.000E+00 OF X -999. 0.000E+00 ONSTANT 0.000E+00 OF X -999. 0.000E+00 ONSTANT 0.000E+00 OF X -999. 0.000E+00 OF X -9             | uifer thickness                    | E                                       | CONSTANT             | 10.0      | -666-     | 0.100E-08 | 0.100E+06 |  |
| ity CONSTANT 130999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 CONSTANT 0.200E-02 -999. 0.100E-07 CONSTANT 0.200E-02 -999. 0.100E-09 0.100E-    | ity CONSTANT 130999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 CONSTANT 0.200E-02 -999. 0.100E-07 CONSTANT 0.200E-02 -999. 0.100E-09 0.000E+00 0.000E+    | urce thickness (mixing zone depth) | E                                       | DERIVED              | -666-     | -666-     | 0.100E-08 | 0.100E+06 |  |
| ity m/yr DERIVED -999999. 0.100E-07  DERIVED -999999. 1.00  DERIVED -999999. 1.00  DERIVED -999999. 1.00  FUNCTION OF X -999999999.  C CONSTANT 21.0 -999999.  CONSTANT 7.20 -999. 0.300E-08  CONSTANT 7.20 -999. 0.100E-05  C CONSTANT 7.20 -999. 0.100E-05  CONSTANT 8.30E-02-999. 0.100E-05  CONSTANT 8.30E-02-999. 0.000E+00  CONSTANT 8.30F999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ity m/yr DERIVED -999999. 0.100E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nductivity (hydraulic)             | m/yr                                    | CONSTANT             | 130.      | -666-     | 0.100E-06 | 0.100E+09 |  |
| unndwater seepage velocity         m/yr         DERIVED         -999.         -999.         -999.         0.100E-09           -ardation coefficient          DERIVED         -999.         -999.         1.00             DERIVED         -999.         -999.         1.00              -999.         -999.         -999.              -999.         -999.         -999.              -999.         -999.         -999.              -999.         -999.         -999.              -999.         -999.         -999.               -999.         -999.         -999.               -999.         -999.         -999.               -999.         -999.         -999.               -999.         -999.         -999.               -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | unndwater seepage velocity         m/yr         DERIVED         -999.         -999.         -999.         -100E-09           -ardation coefficient          DERIVED         -999.         -999.         -999.         1.00            nn         FUNCTION OF X         -999.         -999.         -999.            nn         FUNCTION OF X         -999.         -999.         -999.            constant         C         CONSTANT         21.0         -999.         -999.            constant         C         CONSTANT         7.20         -999.         -999.            constant         C         CONSTANT         7.20         -999.         -999.            constant         Constant         0.300E-02         -999.         1.00E-05            constant         constant         0.000E+00         9.99.         0.000E+00            degree         constant         0.000E+00         999.         0.000E+00            constant         0.000E+00         999.         0.000E+00         0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | adient (hydraulic)                 |                                         | CONSTANT             | 0.200E-02 | -666-     | 0.100E-07 | -666-     |  |
| DERIVED999, -999, 1.00  gitudinal dispersivity m FUNCTION OF X -999, -999, -999, -999, nnsverse dispersivity m FUNCTION OF X -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -       | CONSTANT    | oundwater seepage velocity         | m/yr                                    | DERIVED              | -999.     | -666-     | 0.100E-09 | 0.100E+09 |  |
| FUNCTION OF X   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -990,   -999,   -999,   -999,   -999,   -999,   -999,   -999,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990,   -990   | Heat dispersivity   m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tardation coefficient              | 1                                       | DERIVED              | -666-     | -666-     | 1.00      | 0.100E+09 |  |
| insverse dispersivity m FUNCTION OF X -999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ngitudinal dispersivity            | E                                       | OF                   | -666-     | -666-     | -666-     | -666-     |  |
| tical dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tical dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ansverse dispersivity              | ш                                       | OF                   | -999.     | -999.     | -666-     | -666-     |  |
| perature of aquifer C CONSTANT 21.0 -999. 0.000E+00 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.0010 0.300 0.0010 0.300 0.0010 0.300 0.0010 0.300 0.0010 0.300 0.0010 0.300 0.0010 0.300 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0 | perature of aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rtical dispersivity                | Ε                                       | OF                   | -999.     | -666-     | -666-     | -666-     |  |
| CONSTANT 7.20 -999. 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONSTANT 7.20 -999. 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mperature of aquifer               | U                                       | CONSTANT             | 21.0      | -666-     | 0.000E+00 | 100.      |  |
| (fraction) m CONSTANT 0.300E-02 -999. 0.100E-05 consTANT 387999. 1.00 degree CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (fraction) m CONSTANT 0.300E-02 -999. 0.100E-05 constant 387999. 1.00 degree CONSTANT 0.000E+00 -999. 0.000E+00 m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | 1                                       | CONSTANT             | 7.20      | -666-     | 0.300     | 14.0      |  |
| degree CONSTANT 387999. 1.80 -0005+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degree CONSTANT 387, -999, 1.00 - CONSTANT 0.000E+00 -999, 0.000E+00 m CONSTANT 0.000E+00 -999, 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                         | CONSTANT             | 0.300E-02 | -666-     | 0.100E-05 | 1.00      |  |
| degree CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degree CONSTANT 0.000E+00 -999. 0.000E+00 m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | E                                       | CONSTANT             | 387.      | -666-     | 1.00      | -666-     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gle off center                     | degree                                  | CONSTANT             | 0.000E+00 |           | 0.000E+00 | 360.      |  |
| m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ll vertical distance               | E                                       | CONSTANT             | 0.000E+00 |           | 0.000E+00 | 1.00      |  |

## APPENDIX F.13 MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER CLOSED CASE 5OL-LOCATION 1



## AGEN ECTION PROT NVIRONMENTAL s

**≻** 

## MEN S E S S S A ш EXPOSUR

## MODEL MULTIMEDIA

(Version 1.01, June 1991)

MULTIMED

1 Run options

CASESOL

Location 1 Chemical simulated is DEFAULT CHEMICAL

Saturated zone model DETERMIN Run was Infiltration input by user Option Chosen

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model Run was steady-state

CHEMICAL SPECIFIC VARIABLES

|                                         |           | DISTRIBUTION | PARAMETERS<br>MEAN STD | STD DEV             | LIMITS    | TS<br>MAX | - 3 |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|-----|
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -999.               | 0.000E+00 | 0.100E+11 | Ö   |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |     |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |     |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |     |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |     |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |     |
| Reference temperature                   | ·         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |     |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |     |
| Distribution coefficient                | 1         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |     |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |     |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 10.0      |     |
| Reference temperature for air diffusion | Ú         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |     |
| Molecular weight                        | B/M       | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |     |
| Mole fraction of solute                 | . !       | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-08 | 1.00      |     |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |     |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.100E-09 | 1.00      |     |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00              | 3.000E+00 0.000E+00 | 0.000E+00 | 1.00      |     |
| Not currently used                      | 8         | CONSTANT     | -666-                  | -999.               | 0.000E+00 | 1.00      |     |

| ( |   | ١ | 1 |
|---|---|---|---|
|   |   | 1 | J |
|   | į | ā | 1 |
| ì | ( | Ţ | 5 |

| NARIABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VARIABLE NAME                      |        |                      |           |                  |           |           |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------|----------------------|-----------|------------------|-----------|-----------|---|
| UNITS DISTRIBUTION PARAMETERS LIMIT    MEAN STD DEV MIN   MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VARIABLE NAME                      | SOURC  | E SPECIFIC VARIABLES | -         |                  |           |           |   |
| MILTS   DISTRIBUTION   PARAMETERS   LIMITITY   DISTRIBUTION   PARAMETERS   LIMITITY   DISTRIBUTION   PARAMETERS   LIMITITY   DISTRIBUTION     | VARIABLE NAME                      |        |                      |           |                  |           |           |   |
| m/yr CONSTANT 0.511E-07-999. 0.100E-09 m/2 CONSTANT 0.486E+06-999. 0.100E-01 m/yr CONSTANT 0.999999. 0.100E-08 m/yr CONSTANT 0.999999. 0.100E-08 m/yr CONSTANT 0.600E+00 -999. 0.000E+00 mg/l CONSTANT 0.600E+00 -999. 0.000E+00 mg/l CONSTANT 1.00 -999. 0.100E-08 m DERIVED -999. 0.100E-08 m DERIVED -999. 0.100E-08 m DERIVED -999. 0.100E-08 cm DERIVED -999. 0.100E-08 m DERIVED -999. 0.100E-08 m CONSTANT 0.381E-01-999. 0.100E-08 m CONSTANT 1.65 -999. 0.100E-08 m M/yr CONSTANT 1.65 -999. 0.100E-08 m M/yr CONSTANT 0.381E-01-999. 0.100E-08 m M/yr CONSTANT 0.200E-02-999. 0.100E-09 m M/yr DERIVED -999. 0.100E-09 m FUNCTION OF X -999999. 0.100E-09 m CONSTANT 0.200E-02-999. 0.100E-09 m FUNCTION OF X -999999. 0.100E-09 m CONSTANT 0.200E-02-999. 0.100E-09                                                                                                                                                                                                                                                                                                                                        |                                    | UNITS  | DISTRIBUTION         | PARAM     | ETERS<br>STD DEV | 1         | 1         |   |
| Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | filtration rate                    | m/yr   | CONSTANT             | 0.511E-07 |                  | 0.100E-09 | 0.100E+11 |   |
| yr CONSTANT -999999. 0.100E-08  m/yr CONSTANT 0.368E-01 -999. 0.100E-08  1/yr CONSTANT 0.000E+00 -999. 0.000E+00  mg/l CONSTANT 0.000E+00 -999. 0.000E+00  mg/l CONSTANT 0.000E+00 -999. 0.000E+00  mm DERIVED -999. 0.100E-08  DERIVED -999. 0.100E-08  AQUIFER SPECIFIC VARIABLES  cm CONSTANT 0.381E-01 -999. 0.100E-08  g/cc CONSTANT 0.381E-01 -999. 0.100E-08  m/yr CONSTANT 0.200E-02 -999. 0.100E-08  m/yr DERIVED -999. 0.100E-08  m/yr DERIVED -999. 0.100E-08  m/yr DERIVED -999. 0.100E-08  m/yr DERIVED -999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m CONSTANT 0.300E-02 -999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m CONSTANT 0.300E-02 -999. 0.100E-09  m CONSTANT 0.000E+00 -999. 0.100E-09  m CONSTANT 0.000E+00 -999. 0.100E-09  m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | m^2    | CONSTANT             | 0.486E+06 |                  | 0.100E-01 | .666-     |   |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ration of pulse                    | y      | CONSTANT             | -666-     | -666-            | 0.100E-08 | -666-     |   |
| Mily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | read of contaminant source         | E      | DERIVED              | -666-     | -666-            | 0.100E-08 | 0.100E+11 |   |
| 1/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | charge rate                        | m/yr   | CONSTANT             | 0.368E-01 |                  | 0.000E+00 | 0.100E+11 |   |
| Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nurce decay constant               | 1/yr   | CONSTANT             | 0.000E+00 |                  | 0.000E+00 | -666-     |   |
| Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nitial concentration at landfill   | mg/1   | CONSTANT             | 1.00      | -666-            | 0.000E+00 | -666-     |   |
| DERIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngth scale of facility             | E      | DERIVED              | -666-     | -666-            | 0.100E-08 | 0.100E+11 |   |
| AQUIFER SPECIFIC VARIABLES  AQUIFER SPECIFIC VARIABLES  UNITS DISTRIBUTION PARAMETERS LIMIT  CONSTANT 0.381E-01-999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  M/yr CONSTANT 0.200E-02-999. 0.100E-08  m/yr DERIVED -999. 0.100E-08  m/yr DERIVED -999. 0.100E-08  m/yr DERIVED -999. 0.100E-08  m/yr DERIVED -999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  c CONSTANT 21.0 -999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  c CONSTANT 21.0 -999. 0.300E-09  degree CONSTANT 0.300E-02-999. 0.100E-09  m CONSTANT 0.300E-02-999. 0.100E-05  m CONSTANT 0.300E-02-999. 0.100E-05  m CONSTANT 0.300E-02-999. 0.000E+00  m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dth scale of facility              | E      | DERIVED              | -666-     | -666-            | 0.100E-08 | 0.100E+11 |   |
| AQUIFER SPECIFIC VARIABLES  UNITS DISTRIBUTION PARAMETERS LIMIT  CCM CONSTANT 0.381E-01 -999. 0.100E-08  CCNSTANT 1.65 -999. 0.100E-08  CCNSTANT 10.0 -999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-08  m/yr CONSTANT 0.200E-02 -999. 0.100E-09  m/yr DERIVED -999. 0.100E-09  m/yr DERIVED -999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  CC CONSTANT 21.0 -999999.  m FUNCTION OF X -999999. 0.100E-09  C CONSTANT 21.0 -999. 0.300  C CONSTANT 21.0 -999. 0.300  degree CONSTANT 8.80 -999. 0.300  m CONSTANT 58.0 -999. 0.100E-05  m CONSTANT 8.80 -999. 0.000E+00  degree CONSTANT 8.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ear field dilution                 |        | DERIVED              | 1.00      | 0.000E+00        | 0.000E+00 | 1.00      |   |
| CMITS DISTRIBUTION PARAMETERS LIMIT  CM CONSTANT 0.381E-01 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  g/cc CONSTANT 1.65 -999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-08  m/yr CONSTANT 130999. 0.100E-08  m/yr CONSTANT 0.200E-02 -999. 0.100E-09  DERIVED -999. 0.100E-09  m/yr DERIVED -999. 0.100E-09  m/yr DERIVED -999999. 0.100E-09  m FUNCTION OF X -999999. 0.999.  C CONSTANT 2.40 -999. 0.300E-00  C CONSTANT 7.20 -999. 0.100E-09  m CONSTANT 0.300E-02 -999. 0.100E-09  degree CONSTANT 0.300E-02 -999. 0.100E-09  m CONSTANT 5.80 -999. 0.100E-09  m CONSTANT 5.80 -999. 0.100E-09  m CONSTANT 0.300E-09 0.100E-09  m CONSTANT 0.300E-09 0.000E+00  m CONSTANT 0.000E+00 -999. 0.000E+00  m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | AQUIFE | R SPECIFIC VARIABLES | 10        |                  |           |           |   |
| UNITS         DISTRIBUTION         PARAMETERS         LIMIT           Cm         CONSTANT         0.381E-01 -999.         0.100E-08           -         CONSTANT         0.430         -999.         0.100E-08           m         CONSTANT         1.65         -999.         0.100E-08           m         CONSTANT         10.0         -999.         0.100E-08           m/yr         CONSTANT         130.         -999.         0.100E-08           m/yr         CONSTANT         0.200E-02 -999.         0.100E-08           m/yr         DERIVED         -999.         0.100E-09           m         FUNCTION OF X         -999.         -999.           m         FUNCTION OF X         -999.         -999.           m         FUNCTION OF X         -999.         -999.           c         CONSTANT         7.20         -999.           m         FUNCTION OF X         -999.         -999.           m         FUNCTION OF X         -999.         -999.           c         CONSTANT         0.300E-02         -999.           m         CONSTANT         0.300E-02           m         CONSTANT         0.000E+00         -999.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |        |                      |           |                  |           |           |   |
| CCM CONSTANT 0.381E-01 -999. 0.100E-08 0.100E-09 0.000E+00 0.000E+ | VARTABLE NAME                      | UNITS  | DISTRIBUTION         | PARAM     | ETERS            | IMIT      | TS        | 1 |
| Cm CONSTANT 0.381E-01 -999. 0.100E-08  CONSTANT 1.65 -999. 0.100E-08  g/cc CONSTANT 1.65 -999. 0.100E-08  m DERIVED -999. 0.100E-08  m/yr CONSTANT 180999. 0.100E-08  m/yr CONSTANT 0.200E-02 -999. 0.100E-07  m/yr DERIVED -999. 0.100E-09  DERIVED -999. 0.100E-09  m FUNCTION OF X -999999. 0.100E-09  m FUNCTION OF X -999999. 0.999. 0.000E+00  C CONSTANT 0.300E-02 -999. 0.300  CONSTANT 0.300E-02 -999. 0.000E+00  CONSTANT 0.300E-02 -999. 0.000E+00  CONSTANT 0.300E-02 -999. 0.000E+00  CONSTANT 0.300E-02 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |        |                      | MEAN      | STD DEV          |           |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ırticle diameter                   | W5     | CONSTANT             | 0.381E-01 | 1                | 0.100E-08 | 100.      |   |
| g/cc CONSTANT 1.65 -999, 0.100E-01  m CONSTANT 10.0 -999, 0.100E-08  m/yr CONSTANT 0.200E-02 -999, 0.100E-06  constant 0.200E-02 -999, 0.100E-07  m/yr DERIVED -999, -999, 0.100E-09  m FUNCTION OF X -999, -999, 0.100E-09  m FUNCTION OF X -999, -999, 0.100E-09  c CONSTANT 21.0 -999, -999, 0.000E+00  c CONSTANT 0.300E-02 -999, 0.100E-05  c CONSTANT 0.300E-02 -999, 0.100E-05  c CONSTANT 0.300E-02 -999, 0.100E-05  m CONSTANT 0.300E-02 -999, 0.000E+00  c CONSTANT 0.000E+00 -999, 0.000E+00  degree CONSTANT 0.000E+00 -999, 0.000E+00  m CONSTANT 0.000E+00 -999, 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | quifer porosity                    | 1      | CONSTANT             | 0.430     | -666-            | 0.100E-08 | 0.66.0    |   |
| m CONSTANT 10.0 -999. 0.100E-08 m/yr CONSTANT 130999. 0.100E-08 CONSTANT 0.200E-02 -999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 DERIVED -999999. 1.00 FUNCTION OF X -999999. 1.00 CONSTANT 21.0 -999999. C CONSTANT 21.0 -999999999 CONSTANT 7.20 -999. 0.000E+00 C CONSTANT 7.20 -999. 0.100E-05 C CONSTANT 7.20 -999. 0.100E-05 C CONSTANT 7.20 -999. 0.100E-05 C CONSTANT 0.300E-02 -999. 0.100E-05 C CONSTANT 0.000E+00 -999. 0.000E+00 C CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alk density                        | g/cc   | CONSTANT             | 1.65      | -666-            | 0.100E-01 | 2.00      |   |
| m/yr CONSTANT 130999. 0.100E-08 CONSTANT 130999. 0.100E-08 CONSTANT 0.200E-02 -999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 -999. 0.100E-09 CONSTANT 0.2009999. 0.100E-09 CCCONSTANT 0.300E-02 -999999999. 0.999. 0.999. 0.999. 0.300 CCCONSTANT 7.20 -999. 0.300 CCCONSTANT 7.20 -999. 0.100E-05 CCCONSTANT 7.20 -999. 0.100E-05 CCCONSTANT 0.300E-02 -999. 0.100E-05 CCONSTANT 0.300E-02 -999. 0.000E+00 CCNSTANT 0.000E+00 -999. 0.000E+00 CCNSTANT 0.000E+00 -999. 0.000E+00 CONSTANT 0.000E+00 -9999. 0.000E+00 CONSTANT 0.000E+00 -9999. 0.000E+00 CONSTANT 0.000E+00 -9999. 0.000E+00 CONSTANT 0.000E+00 -9999. 0.000E+0                | quifer thickness                   | E      | CONSTANT             | 10.0      | -666-            | 0.100E-08 | 0.100E+06 |   |
| m/yr CONSTANT 130999. 0.100E-06 CONSTANT 0.200E-02 -999. 0.100E-07 -999. 0.100E-07 -999. 0.100E-07 -999. 0.100E-09 -999. 0.100E-09 -999. 0.100E-09 -999. 0.100E-09 -999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.999. 0.000E+00 -999. 0.100E-05 CONSTANT 0.300E-02 -999. 0.100E-05 CONSTANT 0.300E-02 -999. 0.100E-05 CONSTANT 0.300E-02 -999. 0.100E-09 0.000E+00 0.000E+00 -999. 0.000E+00 0    | ource thickness (mixing zone depth | E      | DERIVED              | -666-     | -666-            | 0.100E-08 | 0.100E+06 |   |
| CONSTANT 0.200E-02 -999. 0.100E-07  m/yr DERIVED -999999. 0.100E-09  DERIVED -999999. 1.00  m FUNCTION OF X -999999999.  C CONSTANT 21.0 -999999.  CONSTANT 7.20 -999. 0.000E+00  CONSTANT 0.300E-02 -999. 0.100E-05  CONSTANT 0.300E-02 -999. 0.100E-05  CONSTANT 0.300E-02 -999. 0.100E-05  CONSTANT 0.300E-02 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anductivity (hydraulic)            | m/yr   | CONSTANT             | 130.      | -666-            | 0.100E-06 | 0.100E+09 |   |
| m/yr DERIVED -999999. 0.100E-09  DERIVED -999999. 1.00  -999999. 1.00  -999999. 1.00  -999999999.  -999999999.  C CONSTANT 21.0 -999999.  C CONSTANT 7.20 -999. 0.000E+00  C CONSTANT 0.30E-02 -999. 0.100E-05  m CONSTANT 58.0 -999. 1.00  degree CONSTANT 0.000E+00 -999. 0.000E+00  m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 'adient (hydraulic)                |        | CONSTANT             | 0.200E-02 |                  | 0.100E-07 | -666-     |   |
| DERIVED -999999. 1.00  m FUNCTION OF X -999999999.  m FUNCTION OF X -999999999.  C CONSTANT 21.0 -999999.  C CONSTANT 7.20 -999. 0.000E+00 CONSTANT 58.0 -999. 0.100E-05  m CONSTANT 58.0 -999. 0.000E+00 degree CONSTANT 0.000E+00 0.000E+                      | oundwater seepage velocity         | m/yr   | DERIVED              | -666-     | -666-            | 0.100E-09 | 0.100E+09 |   |
| m FUNCTION OF X -9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | standation coefficient             | 1      | DERIVED              | -666-     | -666-            | 1.00      | 0.100E+09 |   |
| m FUNCTION OF X -999999999999. CONSTANT 21.0 -999. 0.000E+00 0.300 0.300E-02 -999. 0.100E-05 0.300E-02 -999. 0.100E-05 0.300E-02 -999. 0.100E-05 0.00STANT 8.80 -999. 0.000E+00 0.000E+00 0.000E+00 -999. 0.000E+00 0.000          | ungitudinal dispersivity           | E      | N OF                 | -666-     | -666-            | -666-     | -666-     |   |
| C CONSTANT 21.0 -9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ansverse dispersivity              | E      | OF                   | -666-     | -666-            | -666-     | -666-     |   |
| C CONSTANT 21.0 -999. 0.000E+00  CONSTANT 7.20 -999. 0.300  CONSTANT 0.300E-02 -999. 0.100E-05  CONSTANT 58.0 -999. 1.00  degree CONSTANT 0.000E+00 -999. 0.000E+00  m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ertical dispersivity               | E      | OF                   | -666-     | -666-            | -666-     | -666-     |   |
| CONSTANT 7.20 -999. 0.300<br>CONSTANT 0.300E-02 -999. 0.100E-05<br>CONSTANT 58.0 -999. 1.00<br>degree CONSTANT 0.000E+00 -999. 0.000E+00<br>m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emperature of aquifer              | U      | CONSTANT             | 21.0      | -666-            | 0.000E+00 | 100.      |   |
| CONSTANT 0.300E-02 -999. 0.100E-05  CONSTANT 58.0 -999. 1.00  1.00  CONSTANT 0.000E+00 -999. 0.000E+00  CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | 1      | CONSTANT             | 7.20      | -666-            | 0.300     | 14.0      |   |
| degree CONSTANT 58.0 -999. 1.00  degree CONSTANT 0.000E+00 -999. 0.000E+00  m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 'ganic carbon content (fraction)   |        | CONSTANT             | 0.300E-02 |                  | 0.100E-05 | 1.00      |   |
| degree CONSTANT 0.000E+00 -999. 0.000E+00 m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | all distance from site             | E      | CONSTANT             | 58.0      |                  | 1.00      | -666-     |   |
| m CONSTANT 0.000E+00 -999. 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ngle off center                    | degree | CONSTANT             | 0.000E+00 |                  | 0.000E+00 | 360.      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ell vertical distance              | E      | CONSTANT             | 0.000E+00 |                  | 0.000E+00 | 1.00      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |        |                      |           |                  |           |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |        |                      |           |                  |           |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |        |                      |           | *                |           |           |   |

## APPENDIX F.14

## MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER CLOSED CASE 6OL-LOCATION 2



## AGENCY PROTECTION ENVIRONMENTAL U. S.

## MODEL MULTIMEDIA

MEN

E S S I

ASS

ш

EXPOSUR

(Version 1.01, June 1991) MULTIMED

> Location 2 Chemical simulated is DEFAULT CHEMICAL CASEGOL

Run options

Saturated zone model DETERMIN Run was Infiltration input by user Run was steady-state Option Chosen

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                                          | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | TERS<br>STD DEV | LIMITS    | TS MAX    |   |
|--------------------------------------------------------|-----------|--------------|------------------------|-----------------|-----------|-----------|---|
| Solid phase decay coefficient                          | 1/vr      | CONSTANT     | 0.000E+00 -999         | -999.           | 0.000E+00 | 0.100E+11 | 1 |
| Dissolved phase decay coefficient                      | 1/vr      | CONSTANT     | 0.000E+00 -999.        | -999.           | 0.000E+00 |           |   |
| Overall chemical decay coefficient                     | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.000E+00 | 0.100E+11 |   |
| Acid catalyzed hydrolysis rate                         | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.000E+00 | -666-     |   |
| Neutral hydrolysis rate constant                       | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-           | 0.000E+00 | -666-     |   |
| Base catalyzed hydrolysis rate                         | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -666-           | 0.000E+00 | -666-     |   |
| Reference temperature                                  | ,<br>U    | CONSTANT     | 20.0                   | -666-           | 0.000E+00 | 100.      |   |
| Normalized distribution coefficient                    | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.000E+00 | -666-     |   |
| Distribution coefficient                               | 1         | DERIVED      | -666-                  | -666-           | 0.000E+00 | 0.100E+11 |   |
| Biodegradation coefficient (sat. zone)                 | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-           | 0.000E+00 | -666-     |   |
| Air diffusion coefficient                              | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.000E+00 | 10.0      |   |
| Reference temperature for air diffusion                | U         | CONSTANT     | 0.000E+00 -999         | -666-           | 0.000E+00 | 100.      |   |
| Molecular weight                                       | B/M       | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.000E+00 | -666-     |   |
| Mole fraction of solute                                | 1         | CONSTANT     | 0.000E+00 -999.        | -666-           | 0.100E-08 | 1.00      |   |
| Vapor pressure of solute                               | mm Hg     | CONSTANT     | 0.000E+00 -999         | -666-           | 0.000E+00 | 100.      |   |
|                                                        | atm-m^3/M | CONSTANT     | 0.000E+00 -999         | -666-           | 0.100E-09 | 1.00      |   |
| cay sat, zone                                          | 1/yr      | DERIVED      | 0.000E+00              | 0.000E+00       | 0.000E+00 | 1.00      |   |
| Not currently used                                     | 8         | CONSTANT     | -666-                  | -999.           | 0.000E+00 | 1.00      |   |
| 00/08/07/06/08/09/09/09/09/09/09/09/09/09/09/09/09/09/ |           |              |                        |                 |           |           |   |

Page 1

| 0  |
|----|
|    |
| 20 |
| 2  |

|                                      | SOURCE  | SOURCE SPECIFIC VARIABLES  |                                         |                 |                                         |           |
|--------------------------------------|---------|----------------------------|-----------------------------------------|-----------------|-----------------------------------------|-----------|
|                                      |         |                            |                                         |                 |                                         |           |
| VARIABLE NAME                        | UNITS   | DISTRIBUTION               | PARAMETERS<br>MEAN STD                  | TERS<br>STD DEV | LIMITS                                  | rs<br>MAX |
| Infiltration rate                    | m/yr    | CONSTANT                   | 0.511E-07                               | -966-           | 0.100E-09                               | 0.100E+11 |
| Area of waste disposal unit          | m^2     | CONSTANT                   | 0.486E+06                               | -666-           | 0.100E-01                               | -666-     |
| Duration of pulse                    | yr      | CONSTANT                   | -666-                                   | -666-           | 0.100E-08                               | -666-     |
| Spread of contaminant source         | E       | DERIVED                    | -666-                                   | -666-           | 0.100E-08                               | 0.100E+11 |
| Recharge rate                        | m/yr    | CONSTANT                   | 0.368E-01                               | -666-           | 0.000E+00                               | 0.100E+11 |
| Source decay constant                | 1/yr    | CONSTANT                   | 0.000E+00                               | -666-           | 0.000E+00                               | -666-     |
| Initial concentration at landfill    | mg/1    | CONSTANT                   | 1.00                                    | -666-           | 0.000E+00                               | -666-     |
|                                      | E       | DERIVED                    | -666-                                   | -666-           | 0.100E-08                               | 0.100E+11 |
| Width scale of facility              | E       | DERIVED                    | -999                                    | -999.           | 0.100E-08                               | 0.100E+11 |
| Near field dilution                  |         | DERIVED                    | 1.00                                    | 0.000E+00       | 0.000E+00                               | 1.00      |
|                                      | AQUIFER | AQUIFER SPECIFIC VARIABLES | 10                                      |                 |                                         |           |
|                                      |         |                            |                                         |                 |                                         |           |
|                                      |         |                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           |
| VARIABLE NAME                        | UNITS   | DISTRIBUTION               | PARAMETERS                              | ETERS           | LIMITS                                  | TS        |
|                                      |         |                            | MEAN                                    | STD DEV         | MIN                                     | MAX       |
| Particle diameter                    | E       | CONSTANT                   | 0.381E-01                               | -666-           | 0.100E-08                               | 100.      |
| Aquifer porosity                     | 1       | CONSTANT                   | 0.430                                   | -666-           | 0.100E-08                               | 0.990     |
| Bulk density                         | g/cc    | CONSTANT                   | 1.65                                    | -666-           | 0.100E-01                               | 5.00      |
| Aguifer thickness                    | E       | CONSTANT                   | 10.0                                    | -666-           | 0.100E-08                               | 0.100E+06 |
| Source thickness (mixing zone depth) | E       | DERIVED                    | -666-                                   | -666-           | 0.100E-08                               | 0.100E+06 |
|                                      | m/yr    | CONSTANT                   | 130.                                    | -666-           | 0.100E-06                               | 0.100E+09 |
| Gradient (hydraulic)                 |         | CONSTANT                   | 0.200E-02                               | -666-           | 0.100E-07                               | -666-     |
| Groundwater seepage velocity         | m/yr    | DERIVED                    | -666-                                   | -666-           | 0.100E-09                               | 0.100E+09 |
| Retardation coefficient              | 1       | DERIVED                    | -666-                                   | -666-           | 1.00                                    | 0.100E+09 |
| Longitudinal dispersivity            | E       | FUNCTION OF X              | -666-                                   | -999.           | -666-                                   | -666-     |
| Transverse dispersivity              | E       | FUNCTION OF X              | -666-                                   | -666-           | -666-                                   | -666-     |
| Vertical dispersivity                | E       | FUNCTION OF X              | -666-                                   | -666-           | -666-                                   | -666-     |
| Temperature of aquifer               | U       | CONSTANT                   | 21.0                                    | -999.           | 0.000E+00                               | 100.      |
| HO                                   | ŀ       | CONSTANT                   | 7.20                                    | -666-           | 0.300                                   | 14.0      |
| Organic carbon content (fraction)    |         | CONSTANT                   | 0.300E-02                               |                 | 0.100E-05                               | 1.00      |
| Well distance from site              | E       | CONSTANT                   | 168.                                    | -666-           | 1.00                                    | -666-     |
| Angle off center                     | dagnap  | CONSTANT                   | B BBBE+BB                               | - 666           | 9.888F+88                               | 360.      |
|                                      | 2000    |                            | 00000                                   |                 | 1                                       |           |

## APPENDIX F.15 MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER CLOSED CASE 7OL-LOCATION 3



# S. ENVIRONMENTAL PROTECTION AGENCY

Ü.

## EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.01, June 1991)

1000

Run options

CASE70L

Location 3 Chemical simulated is DEFAULT CHEMICAL Option Chosen Saturated zone model Run was

Run was Infiltration input by user

Run was steady-state Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume

Gaussian source used in saturated zone model

CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | STD DEV             | LIMITS    | TS<br>MAX | = |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|---|
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999         | -966-               | 0.000E+00 | 0.100E+11 |   |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |   |
|                                         | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |   |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |   |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |   |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00              | -666-               | 0.000E+00 | -666-     |   |
|                                         | ·         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |   |
| Normalized distribution coefficient     | ml/g      | CONSTANT     | 0.000E+00              | -666-               | 0.000E+00 | -666-     |   |
| Distribution coefficient                | 1         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |   |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00              | -666-               | 0.000E+00 | -666-     |   |
|                                         | cm2/s     | CONSTANT     | 0.000E+00              | -666-               | 0.000E+00 | 10.0      |   |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00              | -666-               | 0.000E+00 | 100.      |   |
| Molecular weight                        | M/B       | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |   |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999         | -666-               | 0.100E-08 | 1.00      |   |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 100.      |   |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999         | -666-               | 0.100E-09 | 1.00      |   |
| Overall 1st order decay sat, zone       | 1/yr      | DERIVED      | 0.000E+00              | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |   |
| Not currently used                      | 83        | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |   |
|                                         |           |              |                        |                     |           |           |   |

ape 1

|  | ۲ |
|--|---|
|  |   |
|  | 0 |
|  | Ě |
|  | n |
|  | ô |

|                                      | SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOURCE SPECIFIC VARIABLES  |                        |                 |           |            |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------------|-----------|------------|
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                 |           |            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                 |           |            |
| VARIABLE NAME                        | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISTRIBUTION               | PARAMETERS<br>MEAN STD | TERS<br>STD DEV | LIMITS    | rs<br>MAX  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FINALONCO                  | 122                    | 000             | 0 4007 00 | 1000000    |
| Infiltration rate                    | m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSTANT                   | 0.511E-0/              | - 888.          | 0.100E-09 | 0.100E+11  |
| Area of Waste disposal unit          | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONSTANT                   | 0.4005+00              | . 666           | 0 1001 0  | . 666      |
| Duration of pulse                    | yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONSTANT                   |                        | .666            | 0 1001 00 | - 999.     |
| Spread of contaminant source         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEKIVED                    |                        | -888-           | 0.100E-08 | O. TOOE+II |
| Recharge rate                        | m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSTANT                   |                        | -666-           | 0.000E+00 | 0.100E+11  |
| Source decay constant                | 1/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSTANT                   | 0.000E+00              | -666-           | 0.000E+00 | -666-      |
| Initial concentration at landfill    | mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSTANT                   | 1.00                   | -999.           | 0.000E+00 | -666-      |
|                                      | )<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DERIVED                    | -666-                  | -999.           | 0.100E-08 | 0.100E+11  |
| Width scale of facility              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DERTVED                    | -666-                  | -666-           | 0.100E-08 | 0.100E+11  |
| Near field dilution                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DERIVED                    | 1.00                   | 0.000E+00       | 0.000E+00 | 1.00       |
|                                      | AQUIFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AQUIFER SPECIFIC VARIABLES | 750/936                |                 |           |            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                 |           |            |
|                                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                        |                 |           | 1          |
| VARIABLE NAME                        | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISTRIBUTION               | PARAMETERS             | TERS            | LIMITS    |            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | MEAN                   | STD DEV         | MIN       | MAX        |
| Particle diameter                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONSTANT                   | 0.381E-01              | -966-           | 0.100E-08 | 100.       |
| Aquifer porosity                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONSTANT                   | 0.430                  | -666-           | 0.100E-08 | 0.990      |
| Bulk density                         | g/cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSTANT                   | 1.65                   | -666-           | 0.100E-01 | 5.00       |
| Aguifer thickness                    | É                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONSTANT                   | 10.0                   | -999.           | 0.100E-08 | 0.100E+06  |
| Source thickness (mixing zone depth) | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DERIVED                    | -666-                  | -666-           | 0.100E-08 | 0.100E+06  |
|                                      | m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSTANT                   | 130.                   | -666-           | 0.100E-06 | 0.100E+09  |
| Gradient (hydraulic)                 | The state of the s | CONSTANT                   | 0.200E-02              | -666-           | 0.100E-07 | -666-      |
| Groundwater seepage velocity         | m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DERIVED                    | -666-                  | -666-           | 0.100E-09 | 0.100E+09  |
| Retardation coefficient              | · ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DERIVED                    | -666-                  | -666-           | 1.00      | 0.100E+09  |
| Longitudinal dispersivity            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUNCTION OF X              | -666-                  | -666-           | -666-     | -666-      |
| Transverse dispersivity              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUNCTION OF X              | -666-                  | -666-           | -666-     | -666-      |
| Vertical dispersivity                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | -666-                  | -666-           | -666-     | -666-      |
| Temperature of aquifer               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 21.0                   | -999.           | 0.000E+00 | 100.       |
|                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONSTANT                   | 7.20                   | -999.           | 0.300     | 14.0       |
| Organic carbon content (fraction)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONSTANT                   | 0.300E-02              | -999.           | 0.100E-05 | 1.00       |
| Wall distance from site              | Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONSTANT                   | 238                    | 666-            | 1.88      | -999       |
| Andle off center                     | dagnee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TNATANT                    | a agantaga             | - 666           | A BABETON | 360        |
| Wigge of center                      | ac61 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONSTANT                   | O DOOF TOO             |                 | 0.000E+00 | 1.00       |
| מדר אנו נדנמו מדר ניווני             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                 |           |            |

.

CONCENTRATION AFTER SATURATED ZONE MODEL 0.2110E-05

## **APPENDIX F.16**

## MULTIMED OUTPUT FOR ALTERNATIVE LINER/OVERLINER CLOSED CASE 80L-LOCATION 4



|     | ш        |
|-----|----------|
|     | Ð        |
|     | A        |
|     | z        |
| 100 | 0        |
| 20  | H        |
| 8E  | $\vdash$ |
| AS  | U        |
| U   | ш        |
|     | $\vdash$ |
|     | 0        |
|     | œ        |
|     | Д.       |
|     | 4        |
|     | A        |
|     | -        |
|     | Z        |
|     | ш        |
|     | Σ        |
|     | Z        |
|     | 0        |
|     | ĸ        |
|     | н        |
|     | >        |
|     | Z        |
|     | ш        |
|     | s.       |
|     | -        |

NCY

## EXPOSURE ASSESSMENT

MODEL

MULTIMEDIA

MULTIMED (Version 1.01, June 1991)

1 Run options

CASE80L

Location 4 Chemical simulated is DEFAULT CHEMICAL Option Chosen Saturated zone model Run was

Run was Infiltration input by user Run was steady-state

Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model CHEMICAL SPECIFIC VARIABLES

| VARIABLE NAME                           | UNITS     | DISTRIBUTION | PARAMETERS<br>MEAN STD | STD DEV             | LIMITS    | TS<br>MAX |  |
|-----------------------------------------|-----------|--------------|------------------------|---------------------|-----------|-----------|--|
| Solid phase decay coefficient           | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -966-               | 0.000E+00 | 0.100E+11 |  |
| Dissolved phase decay coefficient       | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 0.100E+11 |  |
| Overall chemical decay coefficient      | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | 0.100E+11 |  |
| Acid catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |  |
| Neutral hydrolysis rate constant        | 1/yr      | CONSTANT     | 0.000E+00 -999         | -666-               | 0.000E+00 | -666-     |  |
| Base catalyzed hydrolysis rate          | 1/M-yr    | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |  |
| Reference temperature                   | U         | CONSTANT     | 20.0                   | -666-               | 0.000E+00 | 100.      |  |
| Normalized distribution coefficient     | m1/g      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |  |
| Distribution coefficient                | ì         | DERIVED      | -666-                  | -666-               | 0.000E+00 | 0.100E+11 |  |
| Biodegradation coefficient (sat. zone)  | 1/yr      | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |  |
| Air diffusion coefficient               | cm2/s     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 10.0      |  |
| Reference temperature for air diffusion | U         | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |  |
| Molecular weight                        | g/M       | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | -666-     |  |
| Mole fraction of solute                 | 1         | CONSTANT     | 0.000E+00 -999         | -999.               | 0.100E-08 | 1.00      |  |
| Vapor pressure of solute                | mm Hg     | CONSTANT     | 0.000E+00 -999.        | -666-               | 0.000E+00 | 100.      |  |
|                                         | atm-m^3/M | CONSTANT     | 0.000E+00 -999         | -999.               | 0.100E-09 | 1.00      |  |
| Overall 1st order decay sat. zone       | 1/yr      | DERIVED      | 0.000E+00              | 0.000E+00 0.000E+00 | 0.000E+00 | 1.00      |  |
| Not currently used                      |           | CONSTANT     | -666-                  | -666-               | 0.000E+00 | 1.00      |  |

Dage 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOUR                                    | SOURCE SPECIFIC VARIABLES  |                                         |                 |             |            |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------|-----------------|-------------|------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                            |                                         |                 |             |            |             |
| VARIABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNITS                                   | DISTRIBUTION               | PARAMETERS<br>MEAN STD                  | TERS<br>STD DEV | LIMITS      | TS<br>MAX  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                            |                                         |                 |             |            | 1<br>1<br>1 |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m/yr                                    | CONSTANT                   | 0.511E-0/                               | -999.           | 0.100E-09   | 0.100E+11  |             |
| Area or waste disposal unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                       | CONSTANT                   | 0.4005+00                               | .666            | 0.1005-01   | -999.      |             |
| Duration of pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yr                                      | CONSTANT                   | -999                                    | -888-           | 0.100E-08   | -888-      |             |
| Spread of contaminant source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                       | DERIVED                    | -666-                                   | -666-           | 0.100E-08   | 0.100E+11  |             |
| Recharge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m/yr                                    | CONSTANT                   | 0.368E-01                               | -666-           | 0.000E+00   | 0.100E+11  |             |
| Source decay constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/yr                                    | CONSTANT                   | 0.000E+00                               | -666-           | 0.000E+00   | -666-      |             |
| Initial concentration at landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/1                                    | CONSTANT                   | 1.00                                    | -666-           | 0.000E+00   | -666-      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ē                                       | DERTVED                    | -666-                                   | -666-           | 0.100E-08   | 0.100E+11  |             |
| 15:11 3:44: 01 13:44:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : 1                                     | DEBINED                    | 000                                     | 000             | O TOOL O    | D 100ET1   |             |
| Width Stale of Tacility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                       | DERIVED                    |                                         | . 666-          | O. TOOE -OO | O. TOOLTIT |             |
| wear Tield dilucion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | DENTAED                    | 00.1                                    | 0.0000000       | 0.000000    | T.00       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AQUIF                                   | AQUIFER SPECIFIC VARIABLES | 1                                       |                 |             |            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                            |                                         |                 |             |            |             |
| VARIABLE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNITS                                   | DISTRIBUTION               | PARAMETERS                              | TERS            | LIMITS      | TS         | I<br>I      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                            | MEAN                                    | STD DEV         | NIW         | MAX        |             |
| Danticle diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 50                                    | CONSTANT                   | 0.381E-01                               | -999.           | 0.100E-08   | 100.       | !           |
| Aguifer noposity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;                                       | TONSTANT                   | 0.430                                   | -666-           | 0.100F-08   | 0.990      |             |
| Dill donniti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/00                                    | FNATANOO                   | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | .000            | 0 100E-01   | 200        |             |
| Duin delisity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br>(2)                                | TNATANO                    | 2 6                                     | .000            | 0 100E-08   | D 100E+06  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 1                                     | NE LONG                    | 10.00                                   | .000            | 0 100E 00   | 0 100E100  |             |
| Source chickness (Mixing Zone depon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | III V                                   | CONSTANT                   | 130                                     | .000            | 0 100E 06   | a 1885,60  |             |
| Colluctivity (Hydraulic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/ /11                                 | CONSTANT                   | 2000                                    |                 | 0 1001 0    | 000        |             |
| Gradient (nydraulic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000000000000000000000000000000000000000 | CONSTANT                   | 0.200E-02                               | -222.           | 0.100E-0/   | .222       |             |
| Groundwater seepage velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m/yr                                    | DERIVED                    | -666-                                   | -666-           | 0.100E-09   | 0.100E+09  |             |
| Retardation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       | DERIVED                    | -666-                                   | -666-           | 1.00        | 0.100E+09  |             |
| Longitudinal dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                                       | FUNCTION OF X              | -666-                                   | -666-           | -666-       | -666-      |             |
| Transverse dispositify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                       | O.                         | -999                                    | 666-            | - 999       | -999       |             |
| Vestinal dispersivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : E                                     |                            | 666-                                    | -666            | -666        | -666       |             |
| בייקביייי יצי ייייקנייי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i c                                     | 5                          | . 0                                     |                 | מ מממבים    | 100        |             |
| emperature of aquiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ر                                       | CONSTANT                   | 0.12                                    | -999.           | 0.300E+00   | 100.       |             |
| A Description of the Control of the | 1                                       | CONSTANT                   | 1.20                                    | - 666-          | 0.300       | 14.6       |             |
| Organic carbon content (fraction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | CONSTANT                   | 0.300E-02                               | -666-           | 0.100E-05   | 1.00       |             |
| Well distance from site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E                                       | CONSTANT                   | 387.                                    | -666-           | 1.00        | -666-      |             |
| Angle off center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degree                                  | CONSTANT                   | 0.000E+00                               | -666-           | 0.000E+00   | 360.       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                            |                                         |                 |             |            |             |

## CITY OF KINGSVILLE LANDFILL PART III ATTACHMENT 6 FACILITY SURFACE WATER

DRAINAGE REPORT

## ATTACHMENT 6 FACILITY SURFACE WATER DRAINAGE REPORT



## **CONTENTS**

- 1. INTRODUCTION
- 2. EXISTING SURFACE WATER DRAINAGE
- 3. PROPOSED SURFACE WATER MANAGEMENT PRACTICES
- 4. SITE PRE-DEVELOPMENT CONDITIONS
- 5. SITE POST-DEVELOPMENT CONDITIONS
  - 5.1 Rainfall
  - 5.2 Soil Groups and Final Drainage Areas
  - 5.3 Time of Concentration (tc)
  - 5.4 HydroCAD Model
  - 5.5 Ponds
  - 5.6 City of Kingsville MSW 235-B Permit
  - 5.7 Perimeter Channels, Collector Channels, and Chutes
  - 5.8 Southern Drainage Plan
  - 5.9 Post Development Chutes-HydroCAD Model
  - 5.10 Diversion Berms or Swales
  - 5.11 Soil Loss Estimate for Final Cover

## 6. CONCLUSION

## APPENDIX 6A SITE PRE-DEVELOPMENT CONDITIONS

- 6A.1 25 Year Pre-Development Conditions Summary Table
- 6A.2 Site Pre-Development Conditions-Existing Permitted Conditions
  - 6A.2.1 Kingsville Landfill Permit Amendment 235-B Attachment 6 Appendix 6A Pre-Development Conditions (Table of Contents and Pages 1-32)
  - 6A.2.2 Pre-Development Drainage Map Solid Waste Landfill Permit 235-B Amendment Figure A-1
  - 6A.2.3 Pre-Development Slope Map Solid Waste Landfill Permit 235-B Amendment Figure A-2
  - 6A.2.4 HydroCAD Model Pre-Development Conditions 25 Year Existing Permitted Condition
  - 6A.2.5 HydroCAD Model Pre-Development Conditions 25 Year Updated Permitted Conditions
  - 6A.2.6 National Engineering Handbook (NEH), Chapter 15, Figure 15-4



Hanson Professional Services Inc.

Velocity versus Slope for Shallow Concentrated Flow [Annotated]
6A.2.7 Pre-Development Drainage Map Solid Waste Landfill Permit 235-B
Amendment Figure A-1 (Updated Permitted Conditions)

### **APPENDIX 6B**

## SITE POST-DEVELOPMENT CONDITIONS

- 6B.1 USGS Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas-Depth of Precipitation for 25 yr-24 hr & 100 yr-24 hr [Annotated]
- 6B.2 Table 6B-1 Hydrologic Soil Groups for On-Site Soils (From NRCS, 2015) and City of Kingsville Municipal Solid Waste Landfill Final Drainage Areas
- 6B.3 Permit Amendment-Post Development-Top Drainage Areas/Slopes HydroCAD (Tc-Time of Concentration) Input Data
- 6B.4 HydroCAD Model Post Development-25 Year
- 6B.5 HydroCAD Model Post Development-100 Year
- 6B.6 HydroCAD Model Post Development 25 Year Pond Summary 6B.6.1 Post Development Drainage Plan-25 Year
- 6B.7 HydroCAD Model Post Development 100 Year Pond Summary 6B.7.1 Post Development Drainage Plan-100 Year
- 6B.8 Kingsville Landfill Permit Amendment 235-B
  - 6B.8.1 Portion of Attachment 6 Groundwater and Surface Water Protection Plan (Pre-Development/Post Development Drainage Conditions and Design [Annotated]
  - 6B.8.2 Portion of Appendix 6A-Pre-Development Conditions (Figure A-1 Pre-Development Drainage Map) [Annotated]
  - 6B.8.3 Portion of Appendix 6B-Final Development Conditions (Figure B-1 Final Development Drainage Map)
    [Annotated]
  - 6B.8.4 Portion of Appendix 6C Detention Ponds and Discharge Culverts (25-Year Storm Strategy/Comparative Summary of Peak Flows) [Annotated]
- 6B.9 Perimeter Channels, Collector Channels, and Chutes-25 Year Summary Table
- 6B.10 Perimeter Channels, Collector Channels, and Chutes-100 Year Summary Table
- 6B.11 Figure 1 Overall Southern Drainage Plan
  6B.11.1 Figure 2 Enlarged Southern Drainage Plan
  6B.11.2 Figure 3 Cross Sections
- 6B.12 HydroCAD Model 25 Year Post Development Chutes
- 6B.13 HydroCAD Model 100 Year Post Development Chutes
- 6B.14 Engineering Handbook Chute Spillways-Chute Spillway Design 6B.14.1 Chute Details

|       | 6B.14.2     | Chute Details                                          |
|-------|-------------|--------------------------------------------------------|
| 6B.15 | HydroCAD    | Model Post Development Diversion Berms (Swales) NRCS & |
|       | Rational Me | ethods                                                 |

- 6B.15.1 Post Development Typical Diversion Berm Drainage Plan
- 6B.15.2 National Engineering Handbook (NEH) Figure 15-4
  Velocity Versus Slope for Shallow Concentrated Flow
  [Annotated]
- 6B.15.3 HydroCAD-Swales Input Data (Swale B1S-0.5% Slope)
- 6B.15.4 HydroCAD-Swales Input Data (Swale B1S-1.0% Slope)
- 6B.15.5 HydroCAD-Swales Input Data (Swale B1T-0.5% & 1.0% Slope)
- 6B.15.6 HydroCAD-Swales Input Data (Drainage Area B1S)
- 6B.15.7 HydroCAD-Swales Input Data (Drainage Area B1T)
- 6B.15.8 HydroCAD Model 25 Year Post Development Diversion Berms (NRCS Method)
- 6B.15.9 HydroCAD Model 25 Year Post Development Diversion Berms (Rational Method)
- 6B.15.10 Summary of 25 Year Intensity Flow Rates by Rational Method and NRCS Method for Swale Design
- 6B.15.11 HydroCAD Model 100 Year Post Development Diversion Berms (NRCS Method)
- 6B.15.12 HydroCAD Model 100 Year Post Development Diversion Berms (Rational Method)
- 6B.15.13 Summary of 100 Year Intensity Flow Rates by Rational Method and NRCS Method for Swale Design
- 6B.15.14 Woking Face Containment and Diversion Berms
- 6B.16 Soil Loss Estimate for Final Cover
  - 6B.16.1 Revised Universal Soil Loss Equation (RUSLE) for Top of Slope (4%) and Side Slope (25%) Interim Cover & Post Closure
- 6B.17 FEMA Map-100 Year
- 6B.18 Typical Drainage Cross Sections

## **ATTACHMENT 6**

### INTRODUCTION 1.0

The City of Kingsville Landfill (Kingsville Landfill) is located in Kleberg County, Texas, at the northeast corner of the intersection of Farm to Market Road 2619 and County Road 2130. The northern boundary of the property is approximately 2,811 feet from FM 1717, while the eastern boundary is approximately 1,300 feet from N. County Road 1070 (See Part I, Attachment 2, Figure I.1 - Site Location Map).

The Kingsville Landfill has been in existence since February 1977 and is intended to provide waste disposal for residences and businesses in Kleberg County and surrounding Texas counties. The nearest community is the City of Kingsville, whose city limits are approximately 1.45 miles from the northeast corner of the landfill boundary. The facility has undergone two permit amendments to date allowing it to extend its initial permit boundaries, and increase the permitted maximum elevation (Refer to Part I, Attachment 1, Section 1.2 – Permit History).

The existing Kingsville Landfill includes a scale house, an office building, a maintenance shop, enclosed within a perimeter fence. These facilities will continue to be operational for the life of the landfill. No new buildings or infrastructure improvements will be constructed as part of the proposed permit amendment.

This Facility Surface Water Drainage Report (FSWDR) for the City of Kingsville Landfill TCEQ Permit MSW 235-C has been designed to collect, route, retain, and detain stormwater runoff from the facility. The Plan for the landfill contains design features that follow best management practices that meet or exceed the regulations applicable to stormwater management outlined in Title 30 of the Texas Administrative Code (30 TAC), Section 330, Municipal Solid Waste as follows;

Rule §330.63 Contents of Part III of the Application

(c) Facility surface water drainage report. The owner or operator of a municipal solid waste (MSW) facility shall include a statement that the facility design complies with the requirements of §330.303 of this title (relating to Surface Water Drainage for Municipal Solid Waste Facilities). Additionally, applications for landfill and compost units shall include a surface water drainage report to satisfy the requirements of Subchapter G of this chapter (relating to Surface Water Drainage)...

Rule §330.303 Surface Water Drainage for Municipal Solid Waste Facilities

Hanson Professional Services Inc. Submittal Date: September 2018

- (a) A facility must be constructed, maintained, and operated to manage run-on and runoff during the peak discharge of a 25-year rainfall event and must prevent the off-site discharge of waste and feedstock material, including, but not limited to, in-process and/or processed materials.
- (b) Surface water drainage in and around a facility shall be controlled to minimize surface water running onto, into, and off treatment area.

Rule §330.305 Additional Surface Water Drainage Requirements for Landfills

- (a) Existing or permitted drainage patterns must not be adversely altered.
- (b) The owner or operator shall design, construct, and maintain a run-on control system capable of preventing flow onto the active portion of the landfill during peak discharge from at least a 25-year rainfall event.
- (c) The owner or operator shall design, construct, and maintain a runoff management system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (d) The landfill design must provide effective erosional stability on top dome surfaces and external embankment side slopes during all phases of landfill operation, closure, and post-closure care in accordance with the following.
- (e) Dikes, embankments, drainage structures, or diversion channels sized and graded to handle the design runoff must be provided. The slopes of the sides and toe will be graded in such a manner as to minimize the potential for erosion. The surface water protection and erosion control practices must maintain low non-erodible velocities, minimize soil erosion losses below permissible levels, and provide long-term, low maintenance geotechnical stability to the final cover.

## Rule §330.307 Flood Protection for Landfills

- (a) The facility shall be protected from flooding by suitable levees constructed to provide protection from a 100-year frequency flood and in accordance with the rules of the commission relating to levee improvement districts and approval of plans for reclamation projects or the rules of the county or city having jurisdiction under Texas Water Code, §16.236, as implemented by Chapter 301, Subchapter C of this title (relating to Approval of Levees and Other Improvements).
- (b) Flood protection levees must be designed and constructed to prevent the washout of solid waste from the facility.

Hanson Professional Services Inc. Submittal Date: September 2018 The property boundary is 196.88 acres, the proposed updated Permit boundary is 176.33 acres, and the proposed waste footprint is 121.30 acres.

The pre-development calculations represent conditions at the site prior to any landfill development. The post-developed condition calculations represent conditions at the site after the landfill has been closed, final cover has been placed, and all components of the designed drainage system have been established. The existing City of Kingsville Landfill TCEQ Permit MSW 235-B has been referenced and utilized to evaluate the site predevelopment conditions and the site post-development conditions in Appendices 6A and 6B, respectively.

Stormwater modeling has been completed with the software program HydroCAD. HydroCAD is a computer aided design program used to model hydrology and hydraulics of stormwater using either TR-20 or TR-55 procedures developed by the Soil Conservation Service (now the Natural Resource Conservation Service). HydroCAD was selected for the modeling software due to the large number of drainage areas and stormwater control devices at the landfill facility.

## 2.0 EXISTING SURFACE WATER DRAINAGE

The City of Kingsville Landfill TCEQ Permit MSW 235-C (existing City of Kingsville Landfill TCEQ Permit MSW 235-B) is located on uplands south of Santa Gertrudis Creek. The overall property consists of gently undulating grasslands with limited forest cover. The property generally slopes to the northeast with no major topographic features. The nearest 100-year floodplain is located to the northeast of the site along Santa Gertrudis Creek. The existing Kingsville Landfill is not located within the 100-year floodplain as designated by the Federal Emergency Management Agency (FEMA) Firm Community Panel Numbers 48273C03205E and 48273C0325E included in Appendix 6B.17. Surrounding land use is predominantly agricultural.

## 3.0 PROPOSED SURFACE WATER MANAGEMENT SYSTEM

The proposed surface water management system will utilize stormwater best management practices (BMPs). The landfill will be developed as an above ground hill and designed to allow stormwater runoff to be collected in diversion berms or swales located near the upper grade break and on the landfill slopes. Stormwater will then be conveyed to let-down structures or chutes down the side slopes to the perimeter channel system and into either a retention pond or detention pond. The perimeter channels will be constructed prior to placing fill above ground in each adjacent landfill sector. The

Hanson Professional Services Inc. Submittal Date: September 2018 perimeter channels will be vegetated. Erosion protection will be provided at critical discharge locations where velocities are five feet per second (5 ft./sec.) or greater such as chutes or culvert discharges. These areas will be lined with concrete articulated block or flexible revetment system. Energy dissipaters will be required downstream of the chutes within the final cover area where flow enters unlined channels.

During landfilling operations, stormwater controls will be implemented to minimize run-on from flowing into the active portion of the site. Contaminated runoff from the working face will be contained with stormwater controls as well. This is shown in Appendix 6B.15.14 Working Face Containment and Diversion Berms.

The SWPPP has been prepared according to the requirements of the Texas Commission on Environmental Quality (TCEQ) Permit Number TXR050000 - General Permit to Discharge Under the Texas Pollutant Discharge Elimination System (TPDES) - Multi-Sector General Permit (MSGP), effective on August 14, 2016. The MSGP classifies industrial activities by Sectors containing various Standard Industrial Classification (SIC) Codes. The City of Kingsville Landfill falls under Sector L: Landfills and Land Application Sites under Activity Code LF – Landfills, Land Application Sites, and Open Dumps that Receive or Have Previously Received Industrial Waste under subtitle C of RCRA and including those that are subject to regulation under subtitle D of RCRA. Stormwater discharges at the facility were previously authorized by the submittal of a Notice of Intent (NOI) filed on November 26, 2001 and renewed on October 10, 2006 and November 3, 2011. Currently, discharges are authorized by an NOI submitted in November 2016. A copy of the current NOI and the MSGP are included in Appendix A. Discharges from the facility are not received by a Municipal Separate Storm Sewer System (MS4). Eventually stormwater discharges from outfalls on the west side of the facility flow into Santa Gertrudis Creek, then San Fernando Creek (TCEQ Classified Segment 2492A), and then Baffin Bay/Alazan Bay/Cayo del Grulla/Laguna Salada (TCEQ Classified Segment 2492A). Eventually stormwater discharges from outfalls on the south side of the facility flow into Baffin Bay/Alazan Bay/Cayo del Grulla/Laguna Salada (TCEQ Classified Segment 2492A).

The facility has been designed to prevent discharge of pollutants into the waters of the State or waters of the United States, as defined by the Texas Water Code and the Federal Clean Water Act.

All onsite surface drainage features are designed to collect and route stormwater through diversion berms, chutes, perimeter channels, and into three storage ponds. The three storage ponds are Pond A, Pond B, and Pond C. Pond A and Pond C are retention ponds and Pond B is a detention pond. The only stormwater discharge from the site will be at

Part III

Pond B via two drainage culverts. This is further discussed in Section 5.0 Site Post-Development Conditions.

## 4.0 SITE PRE-DEVELOPMENT CONDITIONS

The pre-development drainage characteristics of the landfill site are described in Appendix 6A-Site Pre-Development conditions. A summary of the pre-development conditions is summarized in Appendix 6A.1, 25 Year Pre-Development Conditions Summary Table. Pre-development drainage information from the City of Kingsville Landfill Permit Amendment 235-B, Attachment 6, Appendix 6A Pre-Development Conditions (Table of Contents and Pages 1-32) contained in Appendix 6A.2.1, Pre-Development Drainage Map Solid Waste Landfill Permit 235-B Amendment Figure 1 contained in Appendix 6A.2.2, and Pre-Development Slope Map Solid Waste Landfill Permit 235-B Amendment Figure A-2 contained in Appendix 6A.2.3 were all used to develop the summary table in Appendix 6A.1.

The City of Kingsville Landfill Permit Amendment 235-B illustrates that Watershed A contains drainage areas PA1, PA2, and PA3; Watershed B contains drainage areas PB1, PB2, and PB3; and Watershed C contains areas PC1, PC2, and PC3 for existing permitted conditions. A HydroCad model was developed to simulate the results from the pre-development drainage conditions using the same data. Results using HydroCAD were similar. HydroCAD results are shown in Appendix 6A.2.4 (HydroCAD Model Pre-Development Conditions 25 Year Existing Permitted Conditions). In addition, a separate HydroCAD model was developed to include a proposed updated boundary as shown in Appendix 6A.2.7 (Pre-Development Drainage Map Solid Waste Landfill Permit 235-B Amendment Figure A-1 (Updated Permitted Conditions)). The proposed updated permit boundary introduces drainage area PB4 located near the east boundary of the permit boundary. HydroCAD results are shown in Appendix 6A.2.5 (HydroCAD Model Pre-Development Conditions 25 Year Updated Permitted Conditions).

Results contained in the Appendix 6A.1 summary table illustrate that the combined total for the 25 year pre-development condition at the northwest corner of the landfill site adjacent to F.M. 2619 in the roadside ditch is approximately 49.3 cubic feet per second (cfs) to 51.1 cfs for both the existing permitted conditions and proposed updated conditions. The only stormwater discharge from the permit boundary will be at this northwest location (Pond B) via two (2) 21" x 128' reinforced concrete pipe (RCP) culverts with a discharge of 33.7 cfs for the 24 hr duration-25 year frequency storm and 42.5 cfs for the 24 hr duration-100 year frequency storm which is less than the combined 25 year pre-development flows as described in this section and in section 5.0 Site Post-Development Conditions.

Part III, Attachment 6, p.g.-5

## 5.0 SITE POST-DEVELOPMENT CONDITIONS

The post-development surface water management system design will include landfill final cover, a system of diversion berms or swales, let-down structures or chutes, perimeter channels, drainage culverts, two retention ponds and one detention pond. Onsite stormwater surface runoff from final cover will sheet flow to the diversion berms constructed at vertical intervals down the slope of the landfill. The diversion berms will convey runoff into the chutes that will convey the stormwater runoff down the slope of the landfill and into the perimeter channel drainage system. The chutes will be lined with concrete articulated block or flexible revetment system. Channels that exhibit velocities of 5 ft/sec or more will be also be lined with the same system. Collector channels along the landfill perimeter road at the northeast will collect landfill surface stormwater runoff not collected in the chutes. The stormwater will be conveyed to post inlets which will direct it across the road to Pond C via drainage culverts. In other areas to the east and south of the landfill, stormwater runoff not collected by the chutes will sheetflow into the adjacent perimeter channels which will in turn be directed into either Pond A or Pond C. At the north and northwest areas of the landfill, runoff not collected in the chutes will sheetflow into Pond B. The perimeter landfill channel system is divided into four segments; East, South, North, and West. The East channel system flows into Pond C, the South and West flow into Pond A, and the North flows into Pond C. Surface water from outside the boundary of the landfill will continue to be collected or directed as shown in Section 4.0 Site Pre-Development Conditions via existing roadside ditches along FM 2619 and C.R. 2130 that border the property. All surface stormwater runoff will be contained onsite with retention Ponds A and C with the exception of a discharge at Pond B. This discharge is less than the pre-development condition and post-development condition as shown in Appendices 6B.8.1 (Portion of Attachment 6 Groundwater and Surface Water Protection Plan (Pre-Development/Post Development Drainage Conditions and Design [Annotated], 6B.8.2 (Portion of Appendix 6A-Pre-Development Conditions (Figure A-1 Pre-Development Drainage Map) [Annotated]), 6B.8.3 (Portion of Appendix 6B-Final Development Conditions (Figure B-1 Final Development Drainage Map) [Annotated]), and 6B.8.4 (Portion of Appendix 6C Detention Ponds and Discharge Culverts (25-Year Storm Strategy/Comparative Summary of Peak Flow) [Annotated].

### 5.1 RAINFALL

Appendix 6B.1 USGS Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas-Depth of Precipitation for 25 Yr-24 Hr and 100 Yr-24 Hr [Annotated] was used to determine the rainfall depth at the site location. 8.7 inches and 11.5 inches was selected for the 25 Yr-24 Hr and 100 Yr-24 storms, respectively. These values were used for modeling purposes.

## 5.2 SOIL GROUPS AND FINAL DRAINAGE AREAS

Appendix 6B.2 contains Table 6B-1 Hydrologic Soils Groups for On-Site Soils (from NRCS, 2015) that was used to determine the hydrologic soil group. This Table indicates that the soil is predominantly a clay loam and sandy loam. It also lists the drainage area designations and areas in acres. The total onsite drainage areas are approximately 164.60 acres.

## 5.3 Time of Concentration (Tc) Values for Landfill Top/Slope Drainage Areas

Appendix 6B.3 illustrates values for the time of concentration (tc) at the top and slope drainage areas of the landfill. A conservative value of tc=10 min was used at the slopes.

## 5.4 HYDROCAD MODEL

The computer model HydroCAD was used to develop discharge rates, volumes, and velocities for the 24-hour duration, 25-year and 100-year storm frequencies. All drainage elements were modeled using HydroCAD. The HydroCAD stormwater model used the following analysis methods:

Runoff Calculation Method: SCS TR-20

Reach Routing Method: Storage-Indication Routing Method (also known

as Modified-Puls Method)

Pond Routing Method: Storage-Indication Routing Method (also known

as Modified-Puls Method)

Storm Distribution: SCS Type III-24-hour storm

Unit Hydrograph: SCS

The post-development models are in Appendices 6B.4 (HydroCad Model Post Development-25 Year) and Apppendix 6B.5 (HydroCAD Model Post Development-100 Year). Cross sections are shown in the models for perimeter channels, collector channels, and chutes with average depths at peak storage. Peak elevations and storage are shown for Pond A, Pond B, and Pond C. A summary of the results are described below in sections 5.5 PONDS AND 5.7 PERIMETER CHANNELS, COLLECTOR CHANNELS, AND CHUTES. Typical drainage cross sections are shown in Appendix 6B.18. The analyses meet or exceed state and federal requirements for landfills.

## 5.5 PONDS

A HydroCAD pond results summary for the post-development 24-hour duration, 25-year & 100-year storm frequencies are in Appendices 6B.6 (HydroCAD Model

Post Development 25 Year Pond Summary) and 6B.7 (HydroCAD Model Post Development 100 Year Pond Summary). The post-development drainage plan for the 25 year and the 100 year are in Appendices 6B.6.1 (Post Development Drainage Plan-25 Year) and 6B.7.1 (Post Development Drainage Plan-100 Year). The landfill surface stormwater runoff will be routed to three ponds, Pond A, Pond B, and Pond C. Pond A is a retention pond (no discharge) located at the southwest corner, Pond B is a detention pond (33.70 cfs/42.46 cfs discharge for 25-Year/100-Year) located at the northwest corner, and Pond C is a retention pond (no discharge) located at the northeast corner of the permit boundary. All ponds will have adequate freeboard.

# 5.6 CITY OF KINGSVILLE MSW 235-B PERMIT

Information from the Kingsville MSW 235-B Permit is contained in Appendix 6B.8 (Kingsville Landfill Permit Amendment 235-B). It was utilized to make the comparative analysis between pre-development conditions and post-development conditions. Modeling results demonstrate that the peak discharge flow for the 24-hour duration, 25-year frequency is 33.70 cfs via two (2) 21" x 128 ft. RCP culverts at Pond B after detention. The discharge is to an existing roadside ditch along FM 2619. Pre-development flow in this ditch is approximately 50 cfs. The post-development flow in this ditch will be 33.70 cfs for the 25-year storm and 42.46 cfs for the 100-year storm which is lower than the pre-development flows. The velocities will range between 7-9 ft/sec and therefore the receiving ditch will require erosion protection as discussed in previous sections.

# 5.7 PERIMETER CHANNELS, COLLECTOR CHANNELS, AND CHUTES

A summary of perimeter channels, collector channels, and chutes are located in Appendices 6B.9 (Perimeter Channels, Collector Channels, and Chutes-25 Year Summary Table) and 6B.10 (Perimeter Channels, Collector Channels, and Chutes-100 Year Summary Table). The table illustrates the geometry as well as peak flows, velocities, slopes, hydraulic grade line elevations, and freeboard for all identified channels and chutes.

# 5.8 SOUTHERN DRAINAGE PLAN

Appendix 6B.11 Figure 1 illustrates the overall southern drainage plan. Appendix 6B.11.1 Figure 2 is the Enlarged Southern Drainage Plan, and Appendix 6B.11.2 Figure 3 is the Cross Sections that illustrates the drainage channels relative to the existing waste locations. As shown the drainage channels will be articulated concrete block or flexible revetment placed over 60 mil HDPE geomembrane on prepared subgrade.

# 5.9 POST DEVELOPMENT CHUTES-HYDROCAD MODEL

The drainage chutes have been modeled using HydroCAD as shown in Appendices 6B.12 (HydroCAD Model 25 Year Post Development Chutes) and 6B.13 (HydroCAD Model 100 Year Post Development Chutes). Chute cross sections are shown. The chutes will be no more than 2 ft. deep, 5 ft. wide, at 4:1 side slopes. All chutes will accommodate the 24-hour duration 25 year and 100 year storm frequencies with adequate freeboard. Appendix 6B.14 (Engineering Handbook Chute-Spillways-Chute Spillway Design) was used to design the SAF stilling basin criteria at the bottom of the chute. As discussed in previous sections, articulated concrete blocks or flexible revetment will be used for the chutes and high velocity areas. Included is manufacturer data and specifications for the block and geotextile. Chute details are located in Appendices 6B.14.1 and 6B.14.2 (Chute Details).

# 5.10 DIVERSION BERMS OR SWALES

The diversions berms (swales) have been modeled using HydroCAD as shown in Appendix 6B.15 (HydroCAD Model Post Development Diversion Berms (Swales) NRCS & Rational Methods). The post-development plan for the diversion berms is shown in Appendix 6B.15.1 (Post Development Typical Diversion Berm Drainage Plan). This plan illustrates the proposed layout of the diversion berms. The largest drainage area was used to design a typical diversion berm and flow will be conveyed to a corresponding chute as shown on the drawing. The National Engineering Handbook (NEH) was used to determine the velocity versus slope for shallow concentrated flow using short grass criteria. This is shown in Appendix 6B.15.2 (National Engineering Handbook (NEH) Figure 15-4 Velocity Versus Slope for Shallow Concentrated Flow [Annotated]).

Swales were analyzed with a 0.5% slope and a 1.0% slope. The HydroCAD swales input data for 0.5% diversion berm slope (along the 25% slope of the landfill) is contained in Appendix 6B.15.3 (HydroCAD-Swales Input Data (Swale B1S-0.5% Slope). The HydroCAD swales input data for 1.0% diversion berm slope (along the 25% slope of the landfill) is contained in Appendix 6B.15.4 (HydroCAD-Swales Input Data (Swale B1S-1.0% Slope)). The HydroCAD swales input data for the largest drainage area at the top of the landfill (B1T) is shown in Appendix 6B.15.5 (HydroCAD-Swales Input Data (Swale B1T-0.5% & 1.0% Slope)). The HydroCAD input data for drainage area B1S and B1T is in Appendices 6B.15.6 (HydroCAD-Swales Input Data (Drainage Area B1S) and 6B.15.7 (HydroCAD-Swales Input Data (Drainage Area B1T)), respectively. Both the 0.5% slope and 1.0% diversion berm slopes were modeled with HydroCAD using the NRCS method and the Rational Method. The NRCS method is shown in Appendices 6B.15.8 (HydroCAD-Model 25 Year Post Development Diversion Berms (NRCS

Hanson Professional Services Inc. Submittal Date: September 2018

Method) and 6B.15.11 (HydroCAD Model 100 Year Post Development Diversion Berms (NRCS Method). The Rational Method is shown in Appendices 6B.16.9 (HydroCAD-Model 25 Year Post Development Diversion Berms (Rational Method)) and 6B.15.12 (HydroCAD Model 100 Year Post Development Diversion Berms (Rational Method)). A summary of the results is in Appendix 6B.15.10 (Summary of 25 Year Intensity Flow Rates By Rational Method and NRCS Method for Swale Design) and Appendices 6B.15.11 (Summary of 100 Year Intensity Flow Rates by Rational Method and NRCS Method for Swale Design) and 6B.15.13 (Summary of 100 Year Intensity Flow Rates by Rational Method and NRCS Method for Swale Design). Cross sections are shown in the model. The analyses demonstrates that a typical diversion berm (swale) 3 ft. tall with 2:1 side slopes flowing at a 1% slope into the chute will suffice for both the 24-hr duration/25 year storm and 100 year storm frequencies with an acceptable velocity of approximately 3.7 ft./sec. (below 5 ft./sec) to prevent erosion and allowable freeboard of at least one foot (1 ft.).

# 5.11 SOIL LOSS ESTIMATE FOR FINAL COVER

The Revised Universal Soil Loss Equation (RUSLE) for top of slope (4%) and side slope (25%) interim cover and post closure is in Appendix 6B.16.1. The RUSLE is described as follows:

A= computed soil loss (tons/acre/year)

R= the rainfall and runoff factor (unitless)

K= the soil erodibility factor (unitless)

LS= the topographic factor (unitless)

C= the cover and management factor (unitless)

P= the support practice factor (unitless)

Detailed calculations and assumptions are provided in Appendix 6B.16.1 (Revised Universal Soil Loss Equation (RUSLE) for Top of Slope (4%) and Side Slope (25%) Interim Cover & Post Closure. The RUSLE calculation results show that the soil loss is 0.36 tons/acre/year for final conditions at top of slope and 2.39 tons/acre/year at the side slope and are both below the allowable 3 tons/acre/year. Also, the soil loss is 2.52 tons/acre/year for interim conditions at top of slope and 18.61 tons/acre/year at the side slope and are both below the allowable 50 tons/acre/year.

#### 6.0 CONCLUSION

The following conclusions summarize the results of the Facility Surface Water **Drainage Report:** 

- The surface water management system for the proposed City of Kingsville Landfill TCEQ Permit MSW 235-C meets or exceeds the regulations applicable to stormwater management outlined in Title 30 of the Texas Administrative Code (30 TAC), Section 330, Municipal Solid Waste as outlined in section 1.0 INTRODUCTION.
- The surface water management plan system provides the required conveyance with a minimum of 1 foot of freeboard.
- It is designed to minimize surface water flow into the working face of the landfill and to minimize discharge pollutants.
- Erosion will be reduced using Best Management Practices. Temporary and permanent erosion control measures are provided to prevent and reduce sediment generation at the site.
- Drainage structures (diversion berms (swales), chutes, perimeter channels, and collector channels) are designed as a minimum to convey peak flow rates from the 25-year, 24-hour storm event.
- Site development will not significantly alter regional drainage patterns.
- The proposed development will not restrict the flow of the 100-year flood, reduce the temporary storage capacity of the floodway or result in wash-out of solid waste.
- All areas of solid waste disposal will be adequately protected from the 24 hr duration, 25 year frequency storm event.
- All stormwater will be retained onsite with the exception of the discharge at the northwest corner of the site at detention Pond B. Discharge at this location will be less than pre-development flows as outlined in section 4.0 SITE PRE-DEVELOPMENT CONDTIONS and section 5.0 SITE POST-DEVELOPMENT CONDITIONS.

The designs, drawings, figures, data, and conclusions described herein are based upon current site conditions and existing information available. This Facility Surface Water Drainage Report (FSWDR) has been prepared for permitting purposes only.

# APPENDIX 6A SITE PRE-DEVELOPMENT CONDITIONS



# APPENDIX 6A.1 25 YEAR PRE-DEVELOPMENT CONDITIONS SUMMARY TABLE



# 25 YEAR PRE-DEVELOPMENT CONDITIONS SUMMARY TABLE

\* Existing Permitted Conditions

| Drainage Area | Area<br>Sq. Mi. | Area<br>AC. | Curve No.<br>CN                       | Time of Concentration<br>Tc-hr        | Time of Concentration<br>Tc-min | Rain Distribution<br>Type | Frequency<br>Year | Rainfall (24-hour)<br>Inches | Peak Discharge<br>CFS |                |
|---------------|-----------------|-------------|---------------------------------------|---------------------------------------|---------------------------------|---------------------------|-------------------|------------------------------|-----------------------|----------------|
| Watershed A   |                 |             |                                       |                                       |                                 |                           |                   |                              |                       |                |
| PA1           | 0.031           | 19.84       | 46                                    | 0.4                                   | 24.0                            |                           | 25                | 8.7                          | 27.3                  | Combined Total |
| PA2           | 0.05            | 32          | 40                                    | 0.69                                  | 41.4                            | Ш                         | 25                | 8.7                          | 22.0                  | 49.3 cfs       |
| PA3           | 0.03            | 19.2        | 40                                    | 0.64                                  | 38.4                            | III                       | 25                | 8.7                          | 13.7                  |                |
| Watershed B   |                 |             |                                       |                                       |                                 |                           |                   |                              |                       |                |
| PB1           | 0.041           | 26.24       | 40                                    | 0.61                                  | 36.6                            | Ш                         | 25                | 8.7                          | 19.0                  | 1              |
| PB2           | 0.006           | 3.84        | 42                                    | 0.32                                  | 19.2                            | Ш                         | 25                | 8.7                          | 4.3                   | 7              |
| PB3           | 0.01            | 6.4         | 40                                    | 0.44                                  | 26.4                            | 111                       | 25                | 8.7                          | 5.4                   |                |
| Watershed C   |                 |             | · · · · · · · · · · · · · · · · · · · | , , , , , , , , , , , , , , , , , , , | 7                               |                           | 25                | 72                           |                       |                |
| PC1           | 0.071           | 45.44       | 42                                    | 0.6                                   | 36.0                            | III                       | 25                | 8.7                          | 39.6                  |                |
| PC2           | 0.015           | 9.6         | 47                                    | 0.28                                  | 16.8                            | III                       | 25                | 8.7                          | 15.7                  |                |
| PC3           | 0.005           | 3.2         | 41                                    | 0.38                                  | 22.8                            | III                       | 25                | 8.7                          | 3.1                   |                |

<sup>\*</sup> Kingsville Landfill Permit Amendment 235-B Attachment 6

Appendix 6A Pre-Development Conditions

\*\*Existing Permitted Conditions

| Drainage Area | Area<br>Sq. Mi. | Area<br>AC. | Curve No. | Time of Concentration<br>Tc-hr | Time of Concentration<br>Tc-min | Rain Distribution Type | Frequency<br>Year | Rainfall (24-hour)<br>Inches | Peak Discharge<br>CFS |                |
|---------------|-----------------|-------------|-----------|--------------------------------|---------------------------------|------------------------|-------------------|------------------------------|-----------------------|----------------|
| Watershed A   |                 |             |           | 24                             | 71                              |                        |                   |                              |                       |                |
| PA1           | 0.031           | 19.84       | 46        | 0.4                            | 24.0                            | III                    | 25                | 8.7                          | 28.7                  | Combined Total |
| PA2           | 0.05            | 32          | 40        | 0.69                           | 41.4                            | HI                     | 25                | 8.7                          | 22.3                  | 51.1 cfs       |
| PA3           | 0.03            | 19.2        | 40        | 0.64                           | 38.4                            | III                    | 25                | 8.7                          | 13.9                  |                |
| Watershed B   | X               |             |           |                                | 200                             |                        |                   |                              |                       |                |
| PB1           | 0.041           | 26.24       | 40        | 0.61                           | 36.6                            | Ш                      | 25                | 8.7                          | 19.5                  |                |
| PB2           | 0.006           | 3.84        | 42        | 0.32                           | 19.2                            | III                    | 25                | 8.7                          | 4.5                   |                |
| PB3           | 0.01            | 6.4         | 40        | 0.44                           | 26.4                            | III                    | 25                | 8.7                          | 5.5                   |                |
| Watershed C   |                 |             |           |                                |                                 |                        |                   |                              |                       | 7              |
| PC1           | 0.071           | 45.44       | 42        | 0.6                            | 36.0                            | 111                    | 25                | 8.7                          | 40.9                  |                |
| PC2           | 0.015           | 9.6         | 47        | 0.28                           | 16.8                            | Ш                      | 25                | 8.7                          | 17.1                  |                |
| PC3           | 0.005           | 3.2         | 41        | 0.38                           | 22.8                            | III                    | 25                | 8.7                          | 3.2                   |                |

<sup>\*\*</sup> Duplicated Existing Permitted Conditions from Kingsville Landfill Permit Amendment 235-B Attachment 6 Appendix 6A Pre-Development Conditions Using HydroCAD-Results Comparable

\*\*\*Updated Permitted Conditions

| Drainage Area | Area<br>Sq. Mi. | Area<br>AC. | Curve No.  | Time of Concentration<br>Tc-hr | Time of Concentration<br>Tc-min | Rain Distribution<br>Type | Frequency<br>Year | Rainfall (24-hour) | Peak Discharge<br>CFS |              |
|---------------|-----------------|-------------|------------|--------------------------------|---------------------------------|---------------------------|-------------------|--------------------|-----------------------|--------------|
| Watershed A   |                 |             |            |                                |                                 | ***                       |                   |                    |                       |              |
| PA1           | 0.031           | 19.84       | 46         | 0.4                            | 24.0                            | III                       | 25                | 8.7                | 28.7                  | Combined Tot |
| PA2           | 0.05            | 32          | 40         | 0.69                           | 41.4                            | Ш                         | 25                | 8.7                | 22.3                  | 51.1 cfs     |
| PA3           | 0.03            | 19.2        | 40         | 0.64                           | 38.4                            | III                       | 25                | 8.7                | 13.9                  |              |
| Watershed B   |                 |             | the second |                                |                                 |                           | •                 |                    |                       |              |
| PB1           | 0.041           | 26.24       | 40         | 0.61                           | 36.6                            | III                       | 25                | 8.7                | 19.5                  |              |
| PB2           | 0.006           | 3.84        | 42         | 0.32                           | 19.2                            | III                       | 25                | 8.7                | 4.5                   |              |
| PB3           | 0.01            | 6.4         | 40         | 0.44                           | 26.4                            | III                       | 25                | 8.7                | 5.5                   |              |
| ***PB4        | 0.021           | 13.38       | 40         | 0.26                           | 15.6                            | III                       | 25                | 8.7                | 13.9                  | T .          |
| Watershed C   |                 |             |            |                                |                                 |                           | *                 |                    |                       |              |
| PC1           | 0.071           | 45.44       | 42         | 0.6                            | 36.0                            | III                       | 25                | 8.7                | 40.9                  |              |
| PC2           | 0.015           | 9.6         | 47         | 0.28                           | 16.8                            | Ш                         | 25                | 8.7                | 17.1                  |              |
| PC3           | 0.005           | 3.2         | 41         | 0.38                           | 22.8                            | III                       | 25                | 8.7                | 3.2                   |              |

<sup>\*\*\*</sup>Updated Permitted Conditions Includes the Addition of Drainage Area PB4 Results Using HydroCAD

# APPENDIX 6A.2 SITE PRE-DEVELOPMENT CONDITIONS-EXISTING PERMITTED CONDITIONS



# **APPENDIX 6A.2.1**

KINGSVILLE LANDFILL PERMIT AMENDMENT 235-B ATTACHMENT 6 APPENDIX 6A PRE-DEVELOPMENT CONDITIONS (TABLE OF CONTENTS AND PAGES 1-32)



# APPENDIX 6A

Kingsville Landfill Permit Amendment 235-B Attachment 6

# Appendix 6A Pre-Development Conditions

# TABLE OF CONTENTS

| TR-55 Worksheets                              | <u>Page</u> |  |  |  |  |
|-----------------------------------------------|-------------|--|--|--|--|
| Drainage Area PA1                             | 1           |  |  |  |  |
| Drainage Area PA2                             | 5           |  |  |  |  |
| Drainage Area PA3                             | 8           |  |  |  |  |
| Drainage Area PB1                             | 13          |  |  |  |  |
| Drainage Area PB2                             | 14          |  |  |  |  |
| Drainage Area PB3                             | 17          |  |  |  |  |
| Drainage Area PC1                             |             |  |  |  |  |
| Drainage Area PC2                             | 23          |  |  |  |  |
| Drainage Area PC3                             | 26          |  |  |  |  |
| FlowMaster Hydraulic Worksheets               |             |  |  |  |  |
| Channel Segment C-D (Trial)                   | 29          |  |  |  |  |
| Channel Segment C-D (Final)                   | . 30        |  |  |  |  |
| Channel Segment Q-R                           |             |  |  |  |  |
| Channel Segment W-X                           | 32          |  |  |  |  |
| Figure A-1 Pre-Development Dre-Development St |             |  |  |  |  |



Pre-Development Conditions TR-55 Runoff Curve Number Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA1

# I. Runoff Curve Number (CN)

| Soil Name                            | Cover Description                                                                                                  |          | CN .           |          | Area                    | Product of |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|----------------|----------|-------------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio) | Table2-2 | Fig. 2-3       | Fig. 2-4 | acres<br>_x_sq.mi.<br>% | CN x Area  |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                                                                      | 39       |                |          | 0.01                    | 0.39       |
| Kingsville, A/D                      | Unimproved Area, 2 - 7% slope                                                                                      | 49       |                | ļ        | 0.02                    | 0.98       |
| Kingsville, A/D                      | Unimproved Area, > 7% slope                                                                                        | 59       |                |          | 0.001                   | 0.06       |
|                                      |                                                                                                                    |          | <del>-</del> _ |          |                         |            |
|                                      |                                                                                                                    |          | ·              |          | -                       |            |
|                                      |                                                                                                                    |          |                |          |                         |            |
|                                      |                                                                                                                    |          |                | <u> </u> |                         | <u> </u>   |
| 1. Use only one CN source            | perline.                                                                                                           |          |                | Totals = | 0.031                   | 1.43       |

CN (weighted): total product = 1.43 = 46 Use CN = 45

# 2. Runoff

| frequency                                                             | yr. |
|-----------------------------------------------------------------------|-----|
| Rainfall, P (24-hour)                                                 | In. |
| Runoff, Q(use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4) | in. |

| Storm #1 | Storm #2 | Storm #3 |
|----------|----------|----------|
| 25       |          |          |
|          |          |          |
| 8.7      |          |          |
| 2.2      | <u></u>  |          |
|          |          |          |

S = 1000/CN - 10: S = 11.7  $Q = \frac{(P - 0.2s)^2}{(P + 0.8s)}$  Q = 2.23

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA1 (Trial)

| Sheet Flow (applicable to Tc only)                                                  | Segment ID A-B              |
|-------------------------------------------------------------------------------------|-----------------------------|
| 1. Surface description (table 3-1)                                                  | grass                       |
| 2. Mannings roughness coeff., n (table 3-1)                                         | 0.13                        |
| 3. Flow length, L (total < 300 ft)                                                  | ft. 200                     |
| 4. Two -year 24-hr rainfall, $P_2$                                                  | in. 4.5                     |
| 5. Land slope, s                                                                    | ft/ft 0.01                  |
| 6. $T_t = \frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$ Compute $T_t$ | hr. 0.28 + = 0.28           |
| Shallow Concentrated Flow                                                           | Segment ID B-C              |
| 7. surface description (paved or unpaved)                                           | grass                       |
| 8. Flow length, L                                                                   | ft 450                      |
| 9. Watercourse slope, \$                                                            | ff/ft 0.06                  |
| 10. average velocity, V (figure 3-1)                                                | ft/s 4                      |
| 11. $T_t = L$ Compute $T_t$ 3600 V                                                  | hr. 0.03 + 0.03             |
| Channel Flow                                                                        | Segment ID C-D See          |
| 12. Cross sectional flow area, a                                                    | fi <sup>2</sup> 10 Page 29  |
| 13. Wetted perimeter, Pw                                                            | ff. 20.2                    |
| 14. Hydraulic radius, r = a/Pw                                                      | ft. 0.50                    |
| 15. Channel slope, s                                                                | ff./ff. 0.0125              |
| 16. Manning's roughness coefficient, n                                              | 0.03                        |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V                                            | ft./s 3.5                   |
| 18. Flow Length, L                                                                  | ft. 1000                    |
| 19. $Tt = \underline{t}$ Compute $T_t$ 3600 V                                       | hr 0.08 + = 0.08            |
| 20. Watershed or subarea To or Tt (add Tt in ste                                    | eps 6, 11, and 19) hr. 0.39 |

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA1 (Final)

| Sheet Flow (applicable to Tc only)                                  | Segment ID A-B       |          |
|---------------------------------------------------------------------|----------------------|----------|
| 1. Surface description (table 3-1)                                  | grass                |          |
| 2. Mannings roughness coeff., n (table 3-1)                         | 0.13                 |          |
| 3. Flow length, L (total < 300 ft)                                  | ft. 200              |          |
| 4. Two -year 24-hr rainfall; P2                                     | In. 4.5              |          |
| 5. Land slope, s                                                    | ff/ff 0.01           |          |
| 6. $T_t = \frac{0.007 (nl)^{0.8}}{P_2^{0.5} s^{0.4}}$ Compute $T_t$ | hr. 0.28 + =         | 0.28     |
| Shallow Concentrated Flow                                           | Segment ID B-C       |          |
| 7. surface description (paved or unpaved)                           | grass                |          |
| 8. Flow length, L                                                   | ft 450               |          |
| 9. Watercourse slope, \$                                            | f1/f1 0.06           |          |
| 10. average velocity, V (figure 3-1)                                | ft/s 4               |          |
| 11. $T_t = L$ Compute $T_t$ 3600 V                                  | hr. 0.03 + = =       | 0.03     |
| Channel Row                                                         | Segment ID C-D       | See      |
| 12. Cross sectional flow area, a                                    | ft <sup>2</sup> 8.36 | Page 30  |
| 13. Wetted perimeter, Pw                                            | ft. 18.46            |          |
| 14. Hydraulic radius, r = a/Pw                                      | ft. 0.45             |          |
| 15. Channel slope, s                                                | ff./ff. 0.0125       |          |
| 16. Manning's roughness coefficient, n                              | 0.03                 |          |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V                            | ft./s 3.3            |          |
| 18. Flow Length, L                                                  | ft. 1000             |          |
| 19. Tt = Compute T <sub>t</sub> 3600 V                              | hr 0.08 + =          | 80.0     |
| 20. Watershed or subarea To or Tt (add It in ste                    | ps 6, 11, and 19)    | hr. 0.40 |

(where  $q_p = q_u A_m Q F_p$ )

Kingsville Landfill Permit Application 235-8 Attachment 6

# Drainage Area PA1 (Trial and Final)

| 1. Daia:                                                                                                                                                                        |                  |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                                                                                   | A <sub>m</sub> = | sq.mi.                                                  |
| Runoff Curve number                                                                                                                                                             | CN=              | 46 (from worksheet 2)                                   |
| Time of concentration                                                                                                                                                           | T <sub>e</sub> = | 0.40 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                                                                                      | =                | <u>III (I, IA, II, III)</u>                             |
| Pond and swamp areas spread throughtout watershed                                                                                                                               |                  | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
|                                                                                                                                                                                 |                  | Storm #1   Storm #2   Storm #3                          |
| 2. Frequency                                                                                                                                                                    |                  | year 25                                                 |
| 3. Rainfall, P (24-hour)                                                                                                                                                        |                  | inches 8.7                                              |
| 4. Initial abstraction, la                                                                                                                                                      |                  | inches 2.35                                             |
| (use CN with table 4-1)                                                                                                                                                         |                  |                                                         |
| 5. Compute I <sub>a</sub> /P                                                                                                                                                    |                  | 0.27                                                    |
| 6. Unit peak discharge, qu                                                                                                                                                      |                  | csm/in 400                                              |
| (use $T_c$ and $I_d/p$ with exhibit 4 - $III$ )                                                                                                                                 |                  |                                                         |
| 7. Runoff, Q                                                                                                                                                                    |                  | inches 2.2                                              |
| (from worksheet 2)                                                                                                                                                              |                  |                                                         |
| <ol> <li>Pond &amp; swamp adjustment<br/>factor, Fp (use percent pond<br/>and swamp area with table 4-2.<br/>Factor is 1.0 for zeropercent pond<br/>and swamp area.)</li> </ol> |                  | 1.0                                                     |
| 9. Peak discharge, q <sub>p</sub>                                                                                                                                               |                  | cfs 27.3                                                |

Pre-Development Conditions TR-55 Runoff Curve Number Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA2

# 1. Runoff Curve Number (CN)

| Soil Name                            | Cover Description                                                                                                      | ļ        | ÇN       |          | Areci                   | Product of |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic<br>condition;percent impervious;<br>unconnected/connected imperviousarea ratio) | Table2-2 | Fig. 2-3 | Fig. 2-4 | acres<br>_x_sq.mi.<br>% | CN x Area  |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                                                                          | 39       |          |          | 0.05                    | 1.95       |
|                                      |                                                                                                                        |          |          |          |                         |            |
|                                      |                                                                                                                        | <u> </u> |          |          |                         |            |
|                                      |                                                                                                                        |          |          |          |                         |            |
| <u> </u>                             |                                                                                                                        |          |          | ·        |                         |            |
|                                      |                                                                                                                        |          |          |          |                         |            |
| L. Lise only one CN source           | a por line                                                                                                             | 1,       | .1       | Totals = | 0.05                    | 1.95       |

| I. Use only one CN source per li | Ŋ₽. |
|----------------------------------|-----|
|----------------------------------|-----|

| ( (weighted): total product = | 1.95 = | 39 | Use CN = |
|-------------------------------|--------|----|----------|
| tolol orea                    | 0.05   |    |          |

#### 2. Runoff

|                                                                        |     | Storm #1 | Storm #2 | Storm #3 |
|------------------------------------------------------------------------|-----|----------|----------|----------|
| Frequency                                                              | yr. | 25       |          |          |
| Rainfall, P (24-hour)                                                  | ìn. | 8.7      |          |          |
| Runoff, Q (use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4) | in. | 1.6      |          | -        |

40

$$S = 1000/CN - 10$$
:  $S = 15$   
 $Q = {P - 0.2s}2$   $Q = 1.6$   
 ${P + 0.8s}$ 

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA2

| Sheet Flow (applicable to Tc only)                               | Segment ID F-G               |
|------------------------------------------------------------------|------------------------------|
| 1. Surface description (table 3-1)                               | grass                        |
| 2. Mannings roughness coeff., n (table 3-1)                      | 0.13                         |
| 3. Flow length, L (total < 300 ft)                               | ft. 300                      |
| 4. Two -year 24-hr rainfall, $P_2$                               | in. 4.5                      |
| 5. Land slope, s                                                 | ff/ff 0.01                   |
| 6. $T_t = 0.007 (nL)^{0.8}$ Compute $T_t$<br>$P_2^{0.5} s^{0.4}$ | hr. 0,39 + = 0.39            |
| Shallow Concentrated Flow                                        | Segment ID G-E               |
| 7. surface description (paved or unpaved)                        | grass                        |
| 8. How length, L                                                 | ft 1700                      |
| 9. Watercourse slope, S                                          | ft/ft 0.01                   |
| 10. average velocity, V (figure 3-1)                             | ft/s 1.6                     |
| 11. T <sub>t</sub> = <u>L</u> Compute T <sub>t</sub> 3600 V      | hr. 0.30 + = 0.30            |
| Channel Flow                                                     | Segment ID                   |
| 12. Cross sectional flow area, a                                 | ft <sup>2</sup>              |
| 13. Wetted perimeter, Pw                                         | ft.                          |
| 14. Hydraulic radius, r = c/Pw                                   | ft-                          |
| 15. Channel slope, s                                             | ft./ft.                      |
| 16. Manning's roughness coefficient, n                           |                              |
| 17. $V = 1.49  r^{2/3}  s^{1/2}$ Compute V                       | ft./s                        |
| 18. Flow Length, L                                               | ft.                          |
| 19. Tt = $\frac{L}{3600 \text{ V}}$ Compute $T_t$                | hr = 0.00                    |
| 20. Watershed or subarea Tc or Tt (add Tt in s                   | teps 6, 11, and 19) hr. 0.69 |

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA2

| l, Data:                                                                                                                                   |                  |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|
| Drainage Area                                                                                                                              | A <sub>m</sub> ≔ | 0.05 sq.mi.                                 |
| Runoff Curve number                                                                                                                        | CN=              | 40 (from worksheet 2)                       |
| Time of concentration                                                                                                                      | T <sub>c</sub> = | 0.69 hr (from worksheet 3)                  |
| Rainfall distribution type                                                                                                                 | =                | <u>III</u> (I, 1A, II, III)                 |
| Pond and swamp areas spread throughtout watershed                                                                                          | =                | 0 % of A <sub>m</sub> ( acres/mi.² covered) |
|                                                                                                                                            |                  | Storm #1   Storm #2   Storm #3              |
| 2. Frequency                                                                                                                               |                  | year 25                                     |
| 3. Rainfall, P (24-hour)                                                                                                                   |                  | inches 8.7                                  |
| 4. Initial abstraction, la                                                                                                                 |                  | inches 3.00                                 |
| (use CN with table 4-1)                                                                                                                    |                  |                                             |
| 5. Compute l <sub>a</sub> /P                                                                                                               |                  | 0.34                                        |
| 6. Unit peak discharge, qu                                                                                                                 |                  | csm/in 275                                  |
| (use T <sub>a</sub> and I <sub>a</sub> /p with exhibit 4 - III)                                                                            |                  |                                             |
| 7. Runoff, Q                                                                                                                               |                  | inches 1.6                                  |
| (from worksheet 2)                                                                                                                         |                  |                                             |
| 8. Pond & swamp adjustment factor, Fp (use percent pond and swamp area with table 4-2. Factor is 1.0 for zeropercent pond and swamp area.) |                  | 1.0                                         |
| 9. Peak discharge, $q_p$<br>(where $q_p = q_p A_m Q F_p$ )                                                                                 |                  | cfs 22.0                                    |

Pre-Development Conditions TR-55 Runoff Curve Number

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA3

# 1. Runoff Curve Number (CN)

| Soll Name                            | Cover Description                                                    | 1        | ČN       |          | Area                | Product of |
|--------------------------------------|----------------------------------------------------------------------|----------|----------|----------|---------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic condition;percent impervious; | Toble2-2 | Fig. 2-3 | Fig. 2-4 | _x_ sq.mi.<br>acres | CN x Area  |
| 1. Ipp 5, 14, 11, 17                 | unconnected/connected imperviouscrea ratio)                          |          |          |          | %                   |            |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                        | 39       |          |          | 0.03                | 1.17       |
|                                      |                                                                      |          |          | <u> </u> |                     |            |
|                                      |                                                                      |          |          |          |                     |            |
|                                      |                                                                      |          |          |          |                     |            |
|                                      |                                                                      | <u> </u> |          |          |                     |            |
|                                      |                                                                      | -        |          | -        |                     |            |
|                                      |                                                                      |          |          |          |                     |            |
|                                      |                                                                      |          |          |          |                     |            |
| 1. Use only one CN source            | a not line                                                           |          |          | Totals = | 0.03                | 1.17       |

| N (weighted): total product = | 1.17 ₩ | 39 | Use CN = | 40 |
|-------------------------------|--------|----|----------|----|
| total area                    | 0.03   |    |          |    |

# 2. Runoff

| Frequency                                                             | yr |
|-----------------------------------------------------------------------|----|
| Rainfall, P (24-hour)                                                 | in |
| Runoff, Q(use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4) | in |

| Storm #1 | Storm #2 | Storm #3 |
|----------|----------|----------|
| 25       |          |          |
| 8.7      |          |          |
| 1.6      |          |          |

| S = 1000/CN - 10:                    | S = 15  |
|--------------------------------------|---------|
| $Q = \frac{(P - 0.2s)2}{(P + 0.8s)}$ | Q = 1.6 |

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA3

| Sheet Flow (applicable to Tc only)                                                  | Segment ID H-I               |
|-------------------------------------------------------------------------------------|------------------------------|
| 1. Surface description (table 3-1)                                                  | grass                        |
| 2. Mannings roughness coeff., n (table 3-1)                                         | 0.13                         |
| 3. Flow length, L (total < 300 ft)                                                  | ft. 300                      |
| 4. Two -year 24-hr rainfall, P <sub>2</sub>                                         | in. 4.5                      |
| 5. Land slope, s                                                                    | ft/ft 0.01                   |
| 6. $T_1 = \frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$ Compute $T_1$ | hr. 0.39 + 0.39              |
| Shallow Concentrated Flow                                                           | Segment ID I - E             |
| 7. surface description (paved or unpaved)                                           | grass                        |
| 8. Flow length, L                                                                   | ft 1450                      |
| 9. Watercaurse slope, \$                                                            | ft/ft 0.01                   |
| 10. average velocity, V (figure 3-1)                                                | ft/s 1.6                     |
| 11. T <sub>t</sub> = <u>L</u> Compute T <sub>t</sub>                                | hr. 0.25 + = 0.25            |
| Channel How                                                                         | Segment ID                   |
| 12. Cross sectional flow area, a                                                    | ff <sup>2</sup>              |
| 13. Wetted perimeter, Pw                                                            | ff.                          |
| 14. Hydraulic radius, r = a/Pw                                                      | ft.                          |
| 15. Channel slope, s                                                                | ff./ff.                      |
| 16. Manning's roughness coefficient, n                                              |                              |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V                                            | ft./s                        |
| n<br>18. Flow Length, L                                                             | ft.                          |
| 19. Tt = $\frac{1}{3600 \text{ V}}$ Compute T <sub>t</sub>                          | hr = 0.00                    |
| 20. Watershed or subarea Tc or Tt (add Tt in s                                      | teps 6, 11, and 19) hr. 0.64 |

(where  $q_p = q_\nu A_m Q F_p$ )

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PA3

| 1. Data:                                                                                                                                   |                  |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                                              | A <sub>m</sub> = | 0.03 sq.mi.                                             |
| Runoff Curve number                                                                                                                        | CN=              | 40_(from worksheet 2)                                   |
| Time of concentration                                                                                                                      | 1 <sub>e</sub> = | 0.64 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                                                 | =                | (i, IA, II, III)                                        |
| Pond and swamp areas spread throughtout watershed                                                                                          | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
| 2. Frequency                                                                                                                               | •                | Storm #1   Storm #2   Storm #3                          |
| 3. Rainfall, P (24-hour)                                                                                                                   |                  | inches 8.7                                              |
| 4. Initial abstraction, $l_a$ (use CN with table 4-1)                                                                                      |                  | inches 3.00                                             |
| 5. Compute I <sub>a</sub> /P                                                                                                               |                  | 0.34                                                    |
| 6. Unit peak discharge, q <sub>0</sub><br>(use T <sub>c</sub> and I <sub>o</sub> /p with exhibit 4 - III)                                  |                  | csm/in 285                                              |
| 7. Runoff, Q<br>(from worksheet 2)                                                                                                         |                  | inches 1.6                                              |
| 8. Pond & swamp adjustment factor, Fp (use percent pond and swamp crea with table 4-2. Factor is 1.0 for zeropercent pond and swamp area.) |                  | 1.0                                                     |
| 9. Peak discharge, q₀                                                                                                                      |                  | cfs 13.7                                                |

Appendix 6A May 1998 Revision 1

Page 10

Pre-Development Conditions TR-55 Runoff Curve Number

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB1

# 1. Runoff Curve Number (CN)

| Soil Name                            | Cover Description                                                                                                      | 1        | CN       |          | Area                        | Product of                                   |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-----------------------------|----------------------------------------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic<br>condition:percent impervious;<br>unconnected/connected imperviousarea ratio) | Table2-2 | Fig. 2-3 | Fig. 2-4 | _x_sq.mi.<br>_x_sq.mi.<br>% | CN x Area                                    |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                                                                          | 39       |          |          | 0.04                        | 1.56                                         |
| Kingsville, A/D                      | Unimproved Area, 3 - 7% slope                                                                                          | 49       |          |          | 0.001                       | 0.05                                         |
|                                      |                                                                                                                        |          |          |          | 1                           |                                              |
|                                      |                                                                                                                        |          |          | ļ        |                             |                                              |
|                                      |                                                                                                                        |          |          |          |                             | <u>                                     </u> |
|                                      |                                                                                                                        |          |          |          | 1                           | <u> </u>                                     |
|                                      |                                                                                                                        |          | <u> </u> | <u></u>  |                             |                                              |
| 1 Hea only one CN source             | a nor lina                                                                                                             |          |          | Totals = | 0.041                       | 1.61                                         |

| 1. | Use only | one  | CN  | source | per | ine   |
|----|----------|------|-----|--------|-----|-------|
| ١. | use only | OFIC | C14 | 200100 | PG  | H+ 14 |

| I (weighted): total product =- | 1.61  | == | 39 | Use CN = | 40 |
|--------------------------------|-------|----|----|----------|----|
| total area                     | 0.041 |    |    |          |    |

# 2. Runoff

|                       |     | 2tom1 # I | 510mm #2 | 2101111 #2 |
|-----------------------|-----|-----------|----------|------------|
| Frequency             | γr. | 25        |          |            |
| Rainfall, P (24-hour) | in. | 8.7       |          |            |
| Runoff, Q             | in. | 1.6       | ·        |            |

$$S = 1000/CN - 10$$
:  $S = 15$ 

$$Q = {P - 0.2s}2 \qquad Q = 1.6$$

$${P + 0.8s}$$

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB1

| Sheet Flow (applicable to Tc only)                                  | Segment ID j-k             |
|---------------------------------------------------------------------|----------------------------|
| 1. Surface description (table 3-1)                                  | grass                      |
| 2. Mannings roughness coeff., n (table 3-1)                         | 0.13                       |
| 3. Flow length, L (total < 300 ft)                                  | ft. 300                    |
| 4. Two -year 24-hr rainfall, P <sub>2</sub>                         | in. 4.5                    |
| 5. Land slope, s                                                    | ft/ft 0.01                 |
| 6. $T_1 = \frac{0.007 (nt)^{0.8}}{P_2^{0.5} s^{0.4}}$ Compute $T_1$ | hr. 0.39 + 0.39            |
| Shallow Concentrated Flow                                           | Segment ID k-l             |
| 7. surface description (paved or unpaved)                           | grass grass                |
| 8. Flow length, L                                                   | ft 1250                    |
| 9. Watercourse slope, S                                             | ft/ft 0.01                 |
| 10. average velocity, V (figure 3-1)                                | ft/s 1.6                   |
| 11. $T_t = \underline{t}$ Compute $T_t$                             | hr. 0.22 + = 0.22          |
| Channel Flow                                                        | Segment ID                 |
| 12. Cross sectional flow area, a                                    | ft <sup>2</sup>            |
| 13. Wetted perimeter, Pw                                            | ft.                        |
| 14. Hydraulic radius, r= a/Pw                                       | ft.                        |
| 15. Channel slope, s                                                | ft./ft                     |
| 16. Manning's roughness coefficient, n                              |                            |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V                            | ft./s                      |
| 18. Flow Length, L                                                  | ft.                        |
| 19. Tt = $\underline{L}$ Compute T <sub>t</sub> 3600 V              | ht = 0.00                  |
| 20. Watershed or subgrea To or Tt (add Tt in ste                    | ps 6, 11, and 19) hr. 0.61 |

Kingsville Landfill Permit Application 235-B Attachment 6

# **Drainage Area PB1**

| 1. Data:                                                                                                                 |                  |                                                         |
|--------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                            | A <sub>m</sub> = | <u>0.041</u> sq.mi.                                     |
| Runoff Curve number                                                                                                      | CN=              | 40_(from worksheet 2)                                   |
| Time of concentration                                                                                                    | T <sub>c</sub> ≔ | 0.61 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                               | =                | <u>HI</u> (I, IA, II, III)                              |
| Pond and swamp areas spread throughtout watershed                                                                        | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
|                                                                                                                          |                  | Storm #1 Storm #2 Storm #3                              |
| 2. Frequency                                                                                                             |                  | year <u>25</u>                                          |
| 3. Rainfall, P (24-hour)                                                                                                 |                  | inches 8.7                                              |
| 4. Initial abstraction, I <sub>a</sub>                                                                                   |                  | inches 3.00                                             |
| (use CN with table 4-1)                                                                                                  |                  | <del></del>                                             |
| 5. Compute I <sub>a</sub> /P                                                                                             |                  | 0.34                                                    |
| 6. Unit peak discharge, qu                                                                                               |                  | csm/in 290                                              |
| (use $T_c$ and $I_o/p$ with exhibit 4 - $III$ )                                                                          |                  |                                                         |
| 7. Runoff, Q                                                                                                             |                  | inches 1.6                                              |
| (from worksheet 2)                                                                                                       |                  |                                                         |
| 8. Pond & swamp adjustment                                                                                               |                  | 1.0                                                     |
| factor, Fp (use percent pond<br>and swamp area with table 4-2.<br>Factor is 1.0 for zeropercent pond<br>and swamp area.) |                  |                                                         |
| 9. Peak discharge, q <sub>p</sub>                                                                                        |                  | cfs 19.0                                                |
| (where $q_p = q_u A_m Q F_p$ )                                                                                           |                  |                                                         |

Pre-Development Conditions TR-55 Runoff Curve Number

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB2

# 1. Runoff Curve Number [CN]

| Soil Name                            | Cover Description .                                                 | <u> </u> | ÇN          |          | Area               | Product of |
|--------------------------------------|---------------------------------------------------------------------|----------|-------------|----------|--------------------|------------|
| and hydrologic group<br>(Appendix A) | cover type, treatment, and hydrologic condition;percent impervious; | Table2-2 | Fig. 2-3    | Fig. 2-4 | acres<br>_x_sq.mi. | CN x Area  |
| (Mpperion M                          | unconnected/connected imperviousarea ratio)                         | <u> </u> |             | ļ        | %                  | <u> </u>   |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                       | 39       | <u>-</u>    | <u> </u> | 0.004              | 0.16       |
| Kingsville, A/D                      | Unimproved Area, 3 - 7% slope                                       | 49       |             |          | 0.002              | 0.10       |
|                                      |                                                                     |          |             | :        | }                  |            |
|                                      |                                                                     |          |             |          |                    |            |
|                                      |                                                                     |          | <u> </u>    |          | -                  |            |
|                                      |                                                                     |          | <del></del> |          | <del></del>        |            |
|                                      |                                                                     |          | <u> </u>    |          | 1                  | <u> </u>   |
|                                      |                                                                     | <u> </u> |             | <u></u>  | <u></u>            |            |
| 1. Use only one CN source            | e per line.                                                         |          |             | Totals = | 0.006              | 0.25       |

| "N [weighted]: total product = | 0.25 = | 42 | Use CN = | 42 |
|--------------------------------|--------|----|----------|----|
| total area                     | 0.006  |    |          |    |

# 2. Runoff

| requency                               | yr. |
|----------------------------------------|-----|
| Rainfall, P (24-hour)                  | in. |
| Runoff, Q(use P and CN with table 2-1, | in. |

fig. 2-1, or eqs. 2-3 and 2-4)

| Storm #1 | Storm #2 | Storm #3 |
|----------|----------|----------|
| 25       |          |          |
| 8.7      |          |          |
| 1.8      |          |          |

$$S = 1000/CN - 10$$
:  $S = 14$ 

$$Q = \frac{(P - 0.2s)2}{(P + 0.8s)}$$
  $Q = 1.8$ 

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB2

| Sheet flow (applicable to Tc only)                | Segment ID m-I               |
|---------------------------------------------------|------------------------------|
| 1. Surface description (table 3-1)                | grass                        |
| 2. Mannings roughness coeff., n (table 3-1)       | 0.13                         |
| 3. Flow length, L (total < 300 ft)                | ft. 300                      |
| 4. Two -year 24-hr rainfall, P₂                   | in. 4.5                      |
| 5. Land slope, s                                  | ft/ft 0.016                  |
| 6. $T_t = 0.007 \text{ (nL)}^{0.8}$ Compute $T_t$ | hr. 0.32 + = 0.32            |
| Shallow Concentrated Flow                         | Segment ID                   |
| 7. surface description (paved or unpaved)         |                              |
| 8. Flow length, L                                 | ft                           |
| 9. Watercourse slope, S                           | ft/ft                        |
| 10. average velocity, V (figure 3-1)              | ft/s                         |
| 11. $T_t = \underbrace{L}$ Compute $T_t$          | hr. 0.00 + = 0.00            |
| Channel Flow                                      | Segment ID                   |
| 12. Cross sectional flow area, a                  | ft <sup>2</sup>              |
| 13. Wetted perimeter, Pw                          | ft.                          |
| 14. Hydraulic radius, r = a/Pw                    | ft.                          |
| 15. Channel slope, s                              | rt./rt.                      |
| 16. Manning's roughness coefficient, n            |                              |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V          | ft./s                        |
| 18. Flow Length, L                                | ft.                          |
| 19. Tt =                                          | fnr = 0.00                   |
| 20. Watershed or subarea Tc or Tt (add Tt in s    | teps 6, 11, and 19) hr. 0.32 |

(where  $q_p = q_0 A_m Q F_p$ )

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB2

| 1. Dafa:                                                                                                                                   |                  |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------|
| Drainage Area                                                                                                                              | A <sub>m</sub> = | 0.006 sq.ml.                                                         |
| Runoff Curve number                                                                                                                        | CN=              | 42 [from worksheet 2]                                                |
| Time of concentration                                                                                                                      | T <sub>e</sub> = | 0.32 hr (from worksheet 3)                                           |
| Rainfall distribution type                                                                                                                 | =                | <u>        (</u> [, ]A,   ,   )                                      |
| Pond and swamp areas spread<br>throughtout watershed                                                                                       | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered)              |
| 2. frequency                                                                                                                               |                  | Storm #1         Storm #2         Storm #3           year         25 |
| 3. Rainfail, P (24-hour)                                                                                                                   |                  | inches 8.7                                                           |
| <ol> <li>Initial abstraction, l<sub>a</sub></li> <li>(use CN with table 4-1)</li> </ol>                                                    |                  | inches 2.76                                                          |
| 5. Compute I <sub>a</sub> /P                                                                                                               |                  | 0.32                                                                 |
| <ol> <li>Unit peak discharge, q<sub>u</sub></li> <li>(use T<sub>e</sub> and I<sub>a</sub>/p with exhibit 4 - III)</li> </ol>               |                  | csm/in 400                                                           |
| 7. Runoff, Q<br>(from worksheet 2)                                                                                                         |                  | inches 1.8                                                           |
| 8. Pond & swamp adjustment factor, Fp (use percent pond and swamp area with table 4-2. Factor is 1.0 for zeropercent pond and swamp area.) |                  | 1.0                                                                  |
| 9. Peak discharge, q <sub>o</sub>                                                                                                          |                  | cfs 4.3                                                              |

Pre-Development Conditions TR-55 Runoff Curve Number

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB3

# 1. Runoff Curve Number (CN)

| · Soil Name                          | Cover Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | CN       |          | Area                     | Product of |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|--------------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic<br>condition;percent impervious;<br>unconnected/connected imperviousarea ratio)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table2-2 | Fig. 2-3 | Fig. 2-4 | acres<br>_x_ sq.mi,<br>% | CN x Area  |
| (ingsville, A/D                      | Unimproved Area, 0 - 2% slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39       |          |          | 0.01                     | 0.39       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ·······  | <u> </u> | <u> </u>                 |            |
|                                      | and the state of t |          |          |          |                          |            |
|                                      | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |                          |            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |                          |            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |                          | <u> </u>   |
| Lise only one CN source              | e per line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | Totals = | 0.01                     | 0.39       |

|                                       | 0.00   | -00 | Use CN a | 40 |
|---------------------------------------|--------|-----|----------|----|
| N (weighted): total p <u>roduct</u> = | 0.39 = | 39  | Use CN = | 40 |
| total area                            | 0.01   |     |          |    |

#### 2. Runoff

| Frequency                                                             | yr. |
|-----------------------------------------------------------------------|-----|
| Rainfall, P (24-hour)                                                 | in. |
| Runoff, Q(use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4) | in. |

| Storm #1 | Storm #2 | Storm #3 |
|----------|----------|----------|
| 25       | -        |          |
| 8.7      |          |          |
| 1.6      |          |          |

$$S = 1000/CN - 10$$
:  $S = 15$ 

$$Q = \frac{[P - 0.2s]2}{[P + 0.8s]}$$
  $Q = 1.6$ 

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB3

| Sheet Flow (applicable to Tc only)                                                  | Segment ID n-o             |
|-------------------------------------------------------------------------------------|----------------------------|
| 1. Surface description (table 3-1)                                                  | grass                      |
| 2. Mannings roughness coeff., n (table 3-1)                                         | 0.13                       |
| 3. Flow length, L (total < 300 ft)                                                  | ff. 300                    |
| 4. Two -year 24-hr rainfall, P <sub>2</sub>                                         | in. 4.5                    |
| 5. Land slope, s                                                                    | ft/ft 0.01                 |
| 6. $T_1 = \frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$ Compute $T_1$ | hr. 0.39 + = 0.39          |
| Shallow Concentrated Flow                                                           | Segment ID o-m             |
| 7. surface description (paved or unpaved)                                           | grass                      |
| 8. Flow length, I.                                                                  | ft 300                     |
| 9. Watercourse slope, \$                                                            | ff/ff 0.01                 |
| 10. average velocity, V (figure 3-1)                                                | ft/s 1.6                   |
| 11. $T_t = L$ Compute $T_t$ 3600 V                                                  | hr. 0.05 + = 0.05          |
| Channel Flow                                                                        | Segment ID                 |
| 12. Cross sectional flow area, a                                                    | ft <sup>2</sup>            |
| 13. Wetted perimeter, Pw                                                            | ft.                        |
| 14. Hydraulic radius, r = a/Pw                                                      | fi.                        |
| 15. Channel slope, s                                                                | ft./ft.                    |
| 16. Manning's roughness coefficient, n                                              |                            |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V                                            | ft./s                      |
| 18. Flow Length, L                                                                  | ft.                        |
| 19. Tt = <u>L</u> Compute T <sub>t</sub> 3600 V                                     | hr + = 0.00                |
| On Watershad or withgroad To or It ladd It in stell                                 | os 6, 11, and 19) br. 0.44 |

(where  $q_p = q_u A_m Q F_p$ )

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PB3

| 1. Data:                                                                                                                                   |                  |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                                              | A <sub>m</sub> = | 0.01 sq.mi.                                             |
| Runoff Curve number                                                                                                                        | CN=              | 40 [from worksheet 2]                                   |
| Time of concentration                                                                                                                      | 7 <sub>c</sub> = | 0.44 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                                                 | =                | <u> </u>                                                |
| Pond and swamp areas spread throughtout watershed                                                                                          | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
| 2. Frequency                                                                                                                               |                  | Storm #1   Storm #2   Storm #3                          |
| 3. Rainfall, P (24-hour)                                                                                                                   |                  | inches 8.7                                              |
| 4. Initial abstraction, I <sub>a</sub> [use CN with table 4-1)                                                                             |                  | inches 3.00                                             |
| 5. Compute I <sub>a</sub> /P                                                                                                               |                  | 0.34                                                    |
| 6. Unit peak discharge, $q_{\nu}$ (use $T_{c}$ and $I_{d}/p$ with exhibit 4 - III)                                                         |                  | csm/in 340                                              |
| 7. Runoff, Q<br>(from worksheet 2)                                                                                                         |                  | înches 1.6                                              |
| 8. Pond & swamp adjustment factor, Fp (use percent pond and swamp area with table 4-2. Factor is 1.0 for zeropercent pond and swamp area.) |                  | 1.0                                                     |
| 9. Peak discharge, q <sub>p</sub>                                                                                                          |                  | cfs 5.4                                                 |

Appendix 6A May 1998 Revision 1

Part III, Attachment 6, Appendix 6A.2.1, p.g.-21

Pre-Development Conditions TR-55 Runoff Curve Number

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PC1

# 1. Runoff Curve Number (CN)

| Soil Name                            | Cover Description                                                                                                      |          | CN         |          | Areci                   | Product of |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|-------------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic<br>condition;percent impervious;<br>unconnected/connected imperviousarea ratio) | Table2-2 | Fig. 2-3   | Fig. 2-4 | acres<br>_x_sq.mi.<br>% | CN x Area  |
| Kingsville. A/D                      | Unimproved Area, 0 - 2% siope                                                                                          | 39       |            |          | 0.05                    | 1.95       |
| Kingsville, A/D                      | Unimproved Area, 3 - 7% slope                                                                                          | 49       |            |          | 0.02                    | 0.98       |
| Kingsville, A/D                      | Unimproved Area, > 7% slope                                                                                            | 59       |            |          | 0.001                   | 0.06       |
|                                      |                                                                                                                        |          |            |          | <u> </u>                |            |
|                                      |                                                                                                                        |          |            | <u></u>  | <u> </u>                | <u> </u>   |
|                                      |                                                                                                                        |          | <u> </u>   |          |                         | <u> </u>   |
|                                      |                                                                                                                        | <u> </u> | !<br>!<br> |          |                         |            |
| Use only one CN source               | per line.                                                                                                              |          |            | Totals = | 0.071                   | 2.99       |

|                                |       |   | _  |          |
|--------------------------------|-------|---|----|----------|
| :N (weighted): total product = | 2.99  | = | 42 | Use CN = |
| total area                     | 0.071 |   |    |          |
| ioidi disa                     | 0.07  |   |    |          |

# 2. Runoff

|                       |     | Slorm #1 | Storm #2 | Storm #3 |
|-----------------------|-----|----------|----------|----------|
| Frequency             | yr. | 25       |          |          |
| Rainfall, P (24-hour) | in. | 8.7      |          | ·        |
| Runoff, Q             | in. | 1.8      | ,        |          |

42

$$S = 1000/CN - 10$$
:  $S = 13.8$ }
$$Q = (P - 0.2s)2 \qquad Q = 1.8$$
$$\{P + 0.8s\}$$

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PC1

| Sheet Flow (applicable to Tc only)                                       | Segment ID j-p               |
|--------------------------------------------------------------------------|------------------------------|
| 1. Surface description (table 3-1)                                       | grass                        |
| 2. Mannings roughness coeff., n (lable 3-1)                              | 0.13                         |
| 3. Flow length, L (total < 300 ft)                                       | ft. 300                      |
| 4. Two -year 24-hr rainfall, P <sub>2</sub>                              | in. 4.5                      |
| 5. Land slope, s                                                         | ff/ff 0.01                   |
| 6. $T_1 = 0.007 \text{ [nL]}^{0.8}$ Compute $T_1$<br>$P_2^{0.5} s^{0.4}$ | hr. 0.39 + = 0.39            |
| Shallow Concentrated Flow                                                | Segment ID p-q               |
| 7. surface description (paved or unpaved)                                | grass                        |
| 8. Flow length, L                                                        | ff 650                       |
| 9. Watercourse slope, \$                                                 | ft/ft 0.025                  |
| 10. average velocity, V (figure 3-1)                                     | ft/s 1.6                     |
| 11. $T_t = \underline{L}$ Compute $T_t$                                  | hr. 0.11 + = 0.11            |
| Channel Flow                                                             | Segment ID q-r See           |
| 12. Cross sectional flow area, a                                         | ft <sup>2</sup> 17.5 Page 31 |
| 13. Wetted perimeter. Pw                                                 | fl. 70.01                    |
| 14. Hydraulic radius, r = a/Pw                                           | ft. 0.25                     |
| 15. Channel slope, s                                                     | ff./ff. 0.018                |
| 16. Manning's roughness coefficient, n                                   | 0.03                         |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V                                 | ft./s 2.6                    |
| n<br>18. Flow Length, L                                                  | ft. 950                      |
| 19. Tt =L                                                                | hr 0.10 + = 0.10             |
| 20. Watershed or subarea Tc or Tt (add Tt in ste                         | ps 6, 11, and 19) hr. 0.60   |

# Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PC1

| 1. Data:                                                                                                                                   |                  |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                                              | ۸ <sub>m</sub> = | 0.071 sq.ml.                                            |
| Runoff Curve number                                                                                                                        | CN=              | 42 (from worksheet 2)                                   |
| Time of concentration                                                                                                                      | T <sub>c</sub> ≔ | 0.60 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                                                 | =                | <u>III</u> (I, IA, II, III)                             |
| Pond and swamp areas spread throughtout watershed                                                                                          | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
|                                                                                                                                            |                  | Storm #1   Storm #2   Storm #3                          |
| 2. Frequency                                                                                                                               |                  | year 25                                                 |
| 3. Rainfall, P (24-hour)                                                                                                                   |                  | inches 8.7                                              |
| 4. Initial abstraction, la                                                                                                                 |                  | inches 2.76                                             |
| (use CN with table 4-1)                                                                                                                    |                  |                                                         |
| 5. Compute I <sub>a</sub> /P                                                                                                               |                  | 0.32                                                    |
| <ol> <li>Unit peak discharge, q<sub>v</sub></li> <li>(use I<sub>c</sub> and I<sub>a</sub>/p with exhibit 4 - III)</li> </ol>               |                  | csm/in 310                                              |
| 7. D. m. o. 6. 🔿                                                                                                                           |                  | inches I.8                                              |
| 7. Runoff, Q<br>(from worksheet 2)                                                                                                         |                  | 1101100                                                 |
| 8. Pond & swamp adjustment factor, Fp (use percent pond and swamp area with table 4-2. Factor is 1.0 for zeropercent pond and swamp area.) |                  | 0.1                                                     |
| 9. Peak discharge, $q_p$<br>(where $q_p = q_u A_m Q F_p$ )                                                                                 |                  | cfs 39.6                                                |

Pre-Development Conditions TR-55 Runoff Curve Number Kingsvilte Landfill Permit Application 235-B Attachment 6

# Drainage Area PC2

# 1. Runoff Curve Number (CN)

| Soil Name                            | Cover Description                                                                                                      | 1        | CN                                            |          | Area                    | Product of |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|----------|-------------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic<br>condition;percent impervious;<br>unconnected/connected imperviousarea ratio) | Table2-2 | Fig. 2-3                                      | Fig. 2-4 | acres<br>_x_sq.mi.<br>% | CN x Area  |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                                                                          | 39       |                                               |          | 0.004                   | 0.16       |
| Kingsville, A/D                      | Unimproved Area, 3 - 7% slope                                                                                          | 49       |                                               |          | 0.01                    | 0.49       |
| Kingsville, A/D                      | Unimproved Area, > 7% slope                                                                                            | 59       |                                               | <u> </u> | 0.001                   | 0.06       |
|                                      |                                                                                                                        |          |                                               |          | <u> </u>                |            |
| <u>, </u>                            |                                                                                                                        | :        | <u>                                      </u> |          |                         |            |
|                                      |                                                                                                                        |          | <u> </u>                                      |          |                         |            |
| I. Use only one CN source            | ner line                                                                                                               | <u> </u> |                                               | Totals = | 0.015                   | 0.71       |

| ,v (weighted):total product = | 0.71 = | 47 | Use CN : | 47 |
|-------------------------------|--------|----|----------|----|
| total area                    | 0.015  |    |          |    |

# 2. Runoff

| Frequency                              | yr. |
|----------------------------------------|-----|
| Rainfall, P (24-hour)                  | in. |
| Runoff, Q(use P and CN with fable 2-1, | în. |

| Storm #1 | Storm #2 | Storm #3 |
|----------|----------|----------|
| 25       |          | -        |
| 8.7      |          |          |
| 2.3      |          |          |

S = 1000/CN - 10:

S = 11

fig. 2-1, or eqs. 2-3 and 2-4)

 $Q = \frac{[P - 0.2s]2}{[P + 0.8s]}$ 

Q = 2.3

Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PC2

| Sheet Flow (applicable to Tc only)            | Segment ID a-I                |
|-----------------------------------------------|-------------------------------|
| 1. Surface description (table 3-1)            | grass                         |
| 2. Mannings roughness coeff., n (table 3-1)   | 0.13                          |
| 3. Flow length, L (total < 300 ft)            | ft. 150                       |
| 4. Two -year 24-hr rainfall, $P_2$            | in. 4.5                       |
| 5. Land slope, s                              | ft/ft 0.01                    |
| 6. $T_t = 0.007 (nL)^{0.8}$ Compute $T_t$     | hr. 0.22 + = 0.22             |
| Shallow Concentrated Flow                     | Segment ID U-w                |
| 7. surface description (paved or unpaved)     | grass                         |
| 8. Flow length, L                             | ft 180                        |
| 9. Watercourse slope, \$                      | ft/ft 0.06                    |
| 10. average velocity, V (figure 3-1)          | ft/s 4                        |
| 11. $T_t = L$ Compute $T_t$ 3600 V            | hr. 0.01 + = 0.01             |
| Channel Flow                                  | Segment ID W-X                |
| 12. Cross sectional flow area, a              | fl <sup>2</sup> 3.54 See      |
| 13. Wetted perimeter, Pw                      | ff. 11.72 Page 32             |
| 14. Hydraulic radius, r = a/Pw                | ff. 0.30                      |
| 15. Channel slope, s                          | ft./ft. 0.036                 |
| 16. Manning's roughness coefficient, n        | 0.03                          |
| 17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V      | ft./s 4.2                     |
| n<br>18. Flow Length, L                       | ft. 650                       |
| 19. Th = $\underline{L}$ Compute $T_t$ 3600 V | $hr = 0.04 \pm = 0.04$        |
| an watershad or subgreate or It ladd It in    | steps 6, 11, and 19) hr. 0.28 |

#### Kingsville Landfill Permit Application 235-B Attachment 6

# Drainage Area PC2

| I. Daid:                                                                                                                                   |                  |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                                              | A <sub>m</sub> = | 0.015 sq.mi.                                            |
| Runoff Curve number                                                                                                                        | CN=              | (from worksheet 2)                                      |
| Time of concentration                                                                                                                      | $T_e =$          | 0.28 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                                                 | =                | <u>III</u> (I, IA, II, III)                             |
| Pond and swamp areas spread throughtout watershed                                                                                          | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
| • •                                                                                                                                        |                  | Storm #1   Storm #2   Storm #3_                         |
| 2. Frequency                                                                                                                               |                  | year 25                                                 |
| ·                                                                                                                                          |                  |                                                         |
| 3. Rainfall, P (24-hour)                                                                                                                   |                  | inches 8.7                                              |
| 4. Initial abstraction, I <sub>a</sub>                                                                                                     |                  | inches 2.26                                             |
| (use CN with table 4-1)                                                                                                                    |                  |                                                         |
| 5. Compute I <sub>a</sub> /P                                                                                                               |                  | 0.26                                                    |
| 6. Unit peak discharge, qu                                                                                                                 |                  | csm/in 455                                              |
| (use $T_c$ and $I_a/p$ with exhibit $4$ - $III$ )                                                                                          |                  |                                                         |
| 7. 0                                                                                                                                       |                  | inches 2.3                                              |
| 7. Runoff, Q                                                                                                                               |                  | niches 25                                               |
| (from worksheet 2)                                                                                                                         |                  |                                                         |
| 8. Pond & swamp adjustment factor, Fp (use percent pond and swamp area with table 4-2. Factor is 1.0 for zeropercent pond and swamp area.) |                  | 1.0                                                     |
| 9. Peak discharge, q <sub>p</sub>                                                                                                          |                  | cfs 15.7                                                |
| (where $q_p = q_u A_m Q f_p$ )                                                                                                             |                  |                                                         |

Pre-Development Conditions TR-55 Runoff Curve Number

Kingsville Landfill Permit Application 235-B Attachment 6

#### Drainage Area PC3

#### ). Runoff Curve Number (CN)

| Soil Name                            | Cover Description                                                                                                      |          | ĊИ       |          | Area                    | Product of |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------------------------|------------|
| and hydrologic group<br>(Appendix A) | (cover type, treatment, and hydrologic<br>condition;percent impervious;<br>unconnected/connected imperviousarea ratio) | Table2-2 | Fig. 2-3 | Fig. 2-4 | acres<br>_x_sq.mi.<br>% | CN x Area  |
| Kingsville, A/D                      | Unimproved Area, 0 - 2% slope                                                                                          | 39       |          |          | 0.004                   | 0.16       |
| Kingsville, A/D                      | Unimproved Area, 3 - 7% slope                                                                                          | 49       | :        | ļ        | 0.001                   | 0.05       |
|                                      | ·                                                                                                                      |          |          |          |                         |            |
|                                      |                                                                                                                        |          |          |          |                         |            |
|                                      | ·                                                                                                                      |          |          |          |                         |            |
|                                      |                                                                                                                        |          |          |          |                         |            |
|                                      |                                                                                                                        |          |          |          |                         |            |
| Use only one CN source               | e per line.                                                                                                            | ·····    | <u> </u> | Totals = | 0.005                   | 0.21       |

| N (weighted): total product = | 0.21 = | 41 | Use CN : | 41 |
|-------------------------------|--------|----|----------|----|
| total area                    | 0.005  |    |          |    |

#### 2. Runoff

| Frequency             | yr. |
|-----------------------|-----|
| Rainfall, P (24-hour) | in. |
| Runoff, Q             | in. |

| Storm #1 | Storm #2 | Storm #3 |
|----------|----------|----------|
| 25       |          |          |
|          |          |          |
| 8.7      |          |          |
|          |          |          |
| 1.7      |          |          |
|          |          |          |

$$S = 1000/CN - 10$$
:  $S = 14$   
 $Q = (P - 0.2s)2$   $Q = 1.7$   
 $(P + 0.8s)$ 

Appendix 6A May 1998 Revision 1 Pre-Development Conditions TR-55 Time of Concentration

Kingsville Landfill Permit Application 235-B Attachment 6

#### Drainage Area PC3

| Sheet Flow (applicable to Tc only)                                          | Segment ID y-s             |
|-----------------------------------------------------------------------------|----------------------------|
|                                                                             | 1                          |
| Surface description (table 3-1)                                             | grass                      |
| 2. Mannings roughness coeff., n (table 3-1)                                 | 0.13                       |
| 3. Flow length, L (total < 300 ft)                                          | ff. 300                    |
| 4. Two -year 24-hr rainfall. P <sub>2</sub>                                 | in. 4.5                    |
| 5. Land slope, s                                                            | ft/ft 0.015                |
| 6. $T_1 = 0.007 \text{ (nL)}^{0.8}$ Compute $T_1$<br>$P_2^{0.8}$ s $^{0.4}$ | hr. 0.33 + = 0.33          |
| Shallow Concentrated Flow                                                   | Segment ID s-t             |
| 7. surface description (paved or unpaved)                                   | grass                      |
| 8. Flow length, L                                                           | ft 300                     |
| 9. Watercourse slope, S                                                     | ft/ft 0.015                |
| 10. average velocity, V (figure 3-1)                                        | ft/s 1.6                   |
| 11. T <sub>t</sub> =L Compute T <sub>t</sub> 3600 V                         | hr. 0.05 + = 0.05          |
| Channel Flow                                                                | Segment ID                 |
| 12. Cross sectional flow area, a                                            | ff <sup>2</sup>            |
| 13. Wetted perimeter, Pw                                                    | ft.                        |
| 14. Hydraulic radius, r = a/Pw                                              | ft.                        |
| 15. Channel slope, s                                                        | ft./ft.                    |
| 16. Manning's roughness coefficient, n                                      |                            |
| 17. $V = 1.49  r^{2/3}  s^{1/2}$ Compute V                                  | ft./s                      |
| 18. Flow Length, L                                                          | ft.                        |
| 19. Tt = $\frac{L}{3600 \text{ V}}$ Compute $T_t$                           | hr = 0.00                  |
| 20. Watershed or subarea To or Tt (add Tt in step                           | os 6, 11, and 19) hr. 0.38 |

Appendix 6A May 1998 Revision 1

#### Pre-Development Conditions TR-55 Graphical Peak Discharge Method

#### Kingsville Landfill Permit Application 235-B Attachment 6

#### Drainage Area PC3

| I. Data:                                                                                                                                                                             |                  | •                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| Drainage Area                                                                                                                                                                        | A <sub>m</sub> = | 0.005 sq.mi.                                            |
| Runoff Curve number                                                                                                                                                                  | CN=              | (from worksheet 2)                                      |
| Time of concentration                                                                                                                                                                | T <sub>e</sub> = | 0.38 hr (from worksheet 3)                              |
| Rainfall distribution type                                                                                                                                                           | =                | (I, 1A, II, III)                                        |
| Pond and swamp areas spread throughtout watershed                                                                                                                                    | =                | 0 % of A <sub>m</sub> ( acres/mi. <sup>2</sup> covered) |
|                                                                                                                                                                                      |                  | Storm #1 Storm #2 Storm #3                              |
| 2. Frequency                                                                                                                                                                         |                  | year 25                                                 |
|                                                                                                                                                                                      |                  |                                                         |
| 3. Rainfall, P (24-hour)                                                                                                                                                             |                  | inches 8.7                                              |
| 4. Initial abstraction, I <sub>a</sub>                                                                                                                                               |                  | inches 2.88                                             |
| (use CN with table 4-1)                                                                                                                                                              |                  | <u> </u>                                                |
| 5. Compute l <sub>a</sub> /P                                                                                                                                                         |                  | 0.33                                                    |
| 6. Unit peak discharge, qu                                                                                                                                                           |                  | csm/in 360                                              |
| (use $T_c$ and $I_a/p$ with exhibit 4 - $III$ )                                                                                                                                      |                  | <u> </u>                                                |
| 7. Runoff, Q                                                                                                                                                                         |                  | inches 1.7                                              |
| (from worksheet 2)                                                                                                                                                                   |                  | menos as                                                |
|                                                                                                                                                                                      |                  | -                                                       |
| <ol> <li>Pond &amp; swamp adjustment<br/>factor. Fp (use percent pond<br/>and swamp area with table 4-2.</li> <li>Factor is 1.0 for zeropercent pond<br/>and swamp area.)</li> </ol> |                  | 1.0                                                     |
| 9. Peak discharge, q <sub>p</sub>                                                                                                                                                    |                  | cfs 3.1                                                 |
| (where $q_p = q_0 A_m Q F_p$ )                                                                                                                                                       |                  |                                                         |

Appendix 6A May 1998 Revision 1

#### Kingsville Landfill Permit Amendment 235-B Attachment 6 PreDevelop Channel C-D Trial 1 Worksheet for Triangular Channel

| Project Description |                                                          |
|---------------------|----------------------------------------------------------|
| Project File        | d:\98 files\kingsville landfill permit 235b\predevel.fm2 |
| Worksheet           | Seg CD                                                   |
| Flow Element        | Triangular Channel                                       |
| Method              | Manning's Formula                                        |
| Solve For           | Discharge                                                |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.012500 ft/ft  |
| Depth                | 1.00 ft         |
| Left Side Slope      | 17.000000 H : V |
| Right Side Slope     | 3,000000 H:V    |

| Results              |         |          |
|----------------------|---------|----------|
| Discharge            | 34.66   | cfs      |
| Flow Area            | 10.00   | ff²      |
| Wetted Perimeter     | 20.19   | ft       |
| Top Width            | 20.00   | ft       |
| Critical Depth       | 0.94    | ft       |
| Critical Slope       | 0.01706 | 33 ft/ft |
| Velocity             | 3.47    | ft/s     |
| Velocity Head        | 0.19    | ft       |
| Specific Energy      | 1.19    | ft       |
| Froude Number        | 0.86    |          |
| Flow is subcritical. |         |          |

05/19/99 08:44:14 PM

Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

FlowMaster v5.15 Page 1 of 1 May 1998

Revision: 0

Page 29

## Kingsville Landfill Permit Amendment 235-B Pre-Development Channel C-D Final Appendix 6A Worksheet for Triangular Channel

| Project Description |                                                       |
|---------------------|-------------------------------------------------------|
| Project File        | d:\98 files\kingsville landfiil permit 235b\final.fm2 |
| Worksheet           | 6A C-D final                                          |
| Flow Element        | Triangular Channel                                    |
| Method              | Manning's Formula                                     |
| Solve For           | Channel Depth                                         |

| Input Data           |                |
|----------------------|----------------|
| Mannings Coefficient | 0.030          |
| Channel Slope        | 0.012500 ft/ft |
| Left Side Slope      | 17.000000 H:V  |
| Right Side Slope     | 3.000000 H:V   |
| Discharge            | 27.30 cfs      |

| Results              |        | _        |
|----------------------|--------|----------|
| Depth                | 0.91   | ft       |
| Flow Area            | 8.36   | ft²      |
| Wetted Perimeter     | 18.46  | ft       |
| Top Width            | 18.29  | ft       |
| Critical Depth       | 0.86   | ft       |
| Critical Slope       | 0,0176 | 16 ft/ft |
| Velocity             | 3.27   | ft/s     |
| Velocity Head        | 0.17   | ft       |
| Specific Energy      | 1.08   | · ft     |
| Froude Number        | 0.85   |          |
| Flow is subcritical. |        |          |

May 1998 Page 30

06/11/98 09:27:57 PM

Haesfad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1566

FlowMaster v5.15 Page 1 of 1

### Kingsville Landfill Permit Amendment 235-8 PreDevelopment Segment Q - R Attachment 6 Worksheet for Triangular Channel

| Project Description | חס                                                       |
|---------------------|----------------------------------------------------------|
| Project File        | d:\98 files\kingsville landfill permit 235b\predevel.fm2 |
| Worksheet           | PreDev Q-R                                               |
| Flow Element        | Triangular Channel                                       |
| Method              | Manning's Formula                                        |
| Solve For           | Discharge                                                |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.018000 ft/ft  |
| Depth                | 0.50 ft         |
| Left Side Slope      | 82,000000 H:V   |
| Right Side Slope     | 58,000000 H : V |

| Results              |          |       |
|----------------------|----------|-------|
| Discharge            | 46.15    | cfs   |
| Flow Area            | 17,50    | ff²   |
| Wetted Perimeter     | 70.01    | ft    |
| Top Width            | 70.00    | ft    |
| Critical Depth       | 0.49     | ft    |
| Critical Slope       | 0.021023 | ft/ft |
| Velocity             | 2.64     | ft/s  |
| Velocity Head        | 0.11     | ft    |
| Specific Energy      | D.61     | ft    |
| Froude Number        | 0.93     |       |
| Flow is subcritical. |          |       |

05/20/98 08:10:55 PM

Heestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

FlowMaster v5.15 May 1998 Page 1 of 1

Page 31

## Kingsville Landfill Permit Amendment 235-B PreDevelopment Segment W-X Attachment 6 Worksheet for Triangular Channel

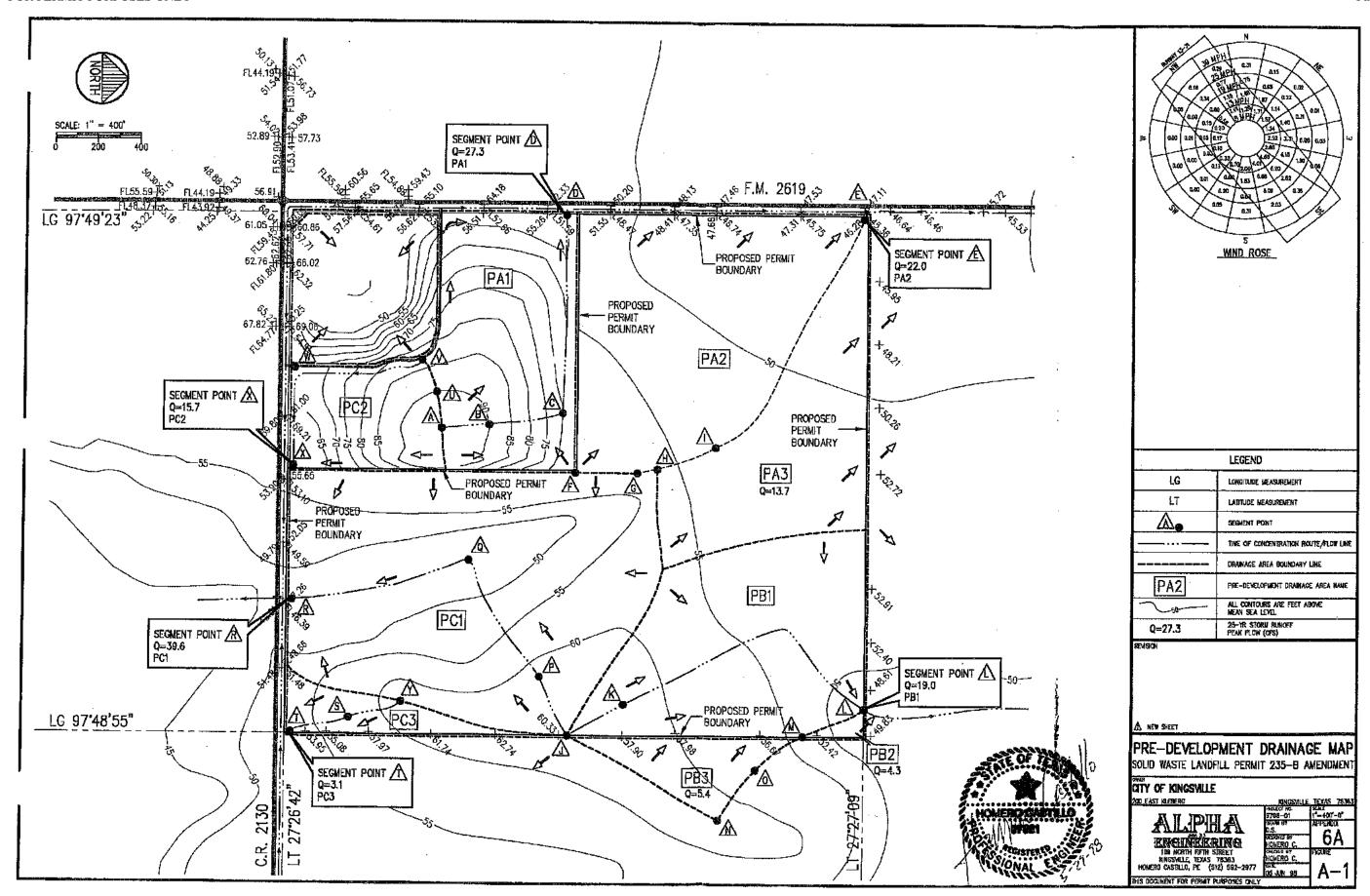
| Project Description | n                                                        |
|---------------------|----------------------------------------------------------|
| Project File        | d:\98 files\kingsville landfill permit 235b\predevel.fm2 |
| Worksheet           | PreD WX Final                                            |
| Flow Element        | Triangular Channel                                       |
| Method              | Manning's Formula                                        |
| Solve For           | Channel Depth                                            |

| Input Data           |                 |
|----------------------|-----------------|
| Mannings Coefficient | 0.030           |
| Channel Slope        | 0.036000 ft/ft  |
| Left Side Slope      | 16.000000 H : V |
| Right Side Slope     | 3,000000 H : V  |
| Discharge            | 15.00 cfs       |

| Results                |        |          |
|------------------------|--------|----------|
| Depth                  | 0.61   | ft       |
| Flow Area              | 3,54   | ft²      |
| Wetted Perimeter       | 11.72  | ft       |
| Top Width              | 11.60  | ft       |
| Critical Depth         | 0.69   | ft       |
| Critical Slope         | 0.0189 | 64 ft/ft |
| Velocity .             | 4.23   | ft/s     |
| Velocity Head          | 0.28   | ft       |
| Specific Energy        | 0.89   | ft       |
| Froude Number          | 1.35   |          |
| Flow is supercritical. |        |          |

05/20/96 10:29:48 PM

Hacetad Methods, Inc. 37 Brockside Road Waterbury, CT 06708 (203) 755-1666

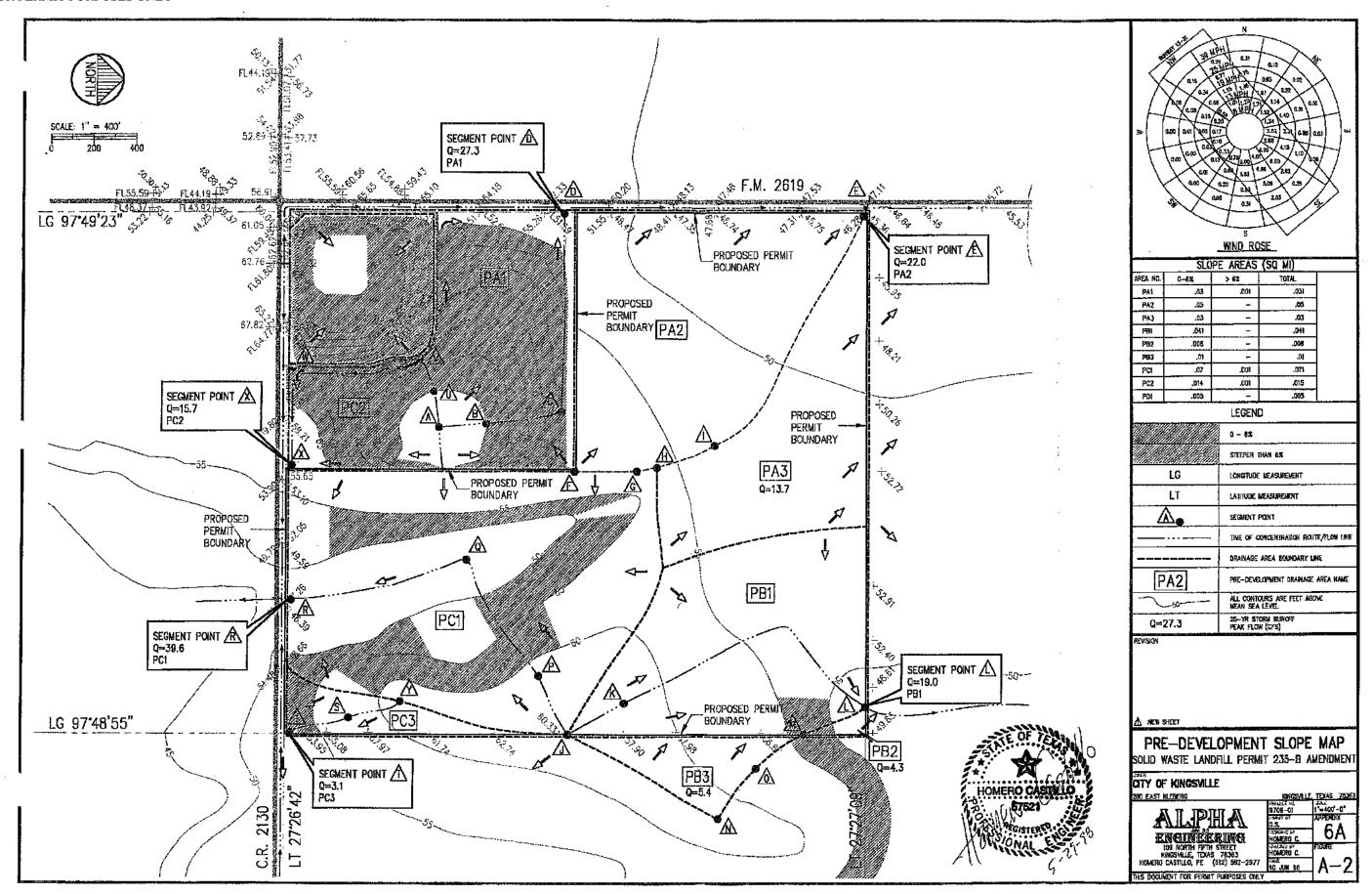

FlowMaster v5.15 May 1998 Page 1 of 1

Page 32

#### **APPENDIX 6A.2.2**

### PRE-DEVELOPMENT DRAINAGE MAP SOLID WASTE LANDFILL PERMIT 235-B AMENDMENT FIGURE A-1






Part III, Attachment 6, Appendix 6A.2.2, p.g.-1

#### **APPENDIX 6A.2.3**

### PRE-DEVELOPMENT SLOPE MAP SOLID WASTE LANDFILL PERMIT 235-B AMENDMENT FIGURE A-2





#### **APPENDIX 6A.2.4**

### HYDROCAD MODEL PRE-DEVELOPMENT CONDITIONS 25 YEAR EXISTING PERMITTED CONDITIONS



Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 2/21/2017

Page 2

#### Area Listing (all nodes)

| Area    | CN | Description            |
|---------|----|------------------------|
| (acres) |    | (subcatchment-numbers) |
| 19.840  | 46 | (PA1)                  |
| 83.840  | 40 | (PA2, PA3, PB1, PB3)   |
| 49.280  | 42 | (PB2, PC1)             |
| 9.600   | 47 | (PC2)                  |
| 3.200   | 41 | (PC3)                  |
| 165.760 | 42 | TOTAL AREA             |

Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 2/21/2017

Page 3

#### Soil Listing (all nodes)

| Area<br>(acres) | Soil<br>Group | Subcatchment<br>Numbers                     |
|-----------------|---------------|---------------------------------------------|
| 0.000           | HSG A         |                                             |
| 0.000           | HSG B         |                                             |
| 0.000           | HSG C         |                                             |
| 0.000           | HSG D         |                                             |
| 165.760         | Other         | PA1, PA2, PA3, PB1, PB2, PB3, PC1, PC2, PC3 |
| 465 760         |               | TOTAL ARFA                                  |

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 2/21/2017

Page 4

#### **Ground Covers (all nodes)**

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total<br>(acres) | Ground<br>Cover | Subcatchment<br>Numbers |
|------------------|------------------|------------------|------------------|---------------|------------------|-----------------|-------------------------|
| <br>0.000        | 0.000            | 0.000            | 0.000            | 165.760       | 165.760          |                 | PA1, PA2, PA3,          |
|                  |                  |                  |                  |               |                  |                 | PB1, PB2, PB3,          |
|                  |                  |                  |                  | •             |                  |                 | PC1, PC2, PC3           |
| 0.000            | 0.000            | 0.000            | 0.000            | 165,760       | 165.760          | TOTAL AREA      |                         |

Subcatchment PC3: PC3

#### **PreDevelopment Existing 25 Yr**

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment PA1: PA1 | Runoff Area=19.840 ac 0.00% Impervious Runoff Depth=2.23"<br>Tc=24.0 min CN=46 Runoff=28.74 cfs 3.688 af |
|-----------------------|----------------------------------------------------------------------------------------------------------|
| Subcatchment PA2: PA2 | Runoff Area=32,000 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=41.4 min CN=40 Runoff=22.31 cfs 4,186 af |
| Subcatchment PA3: PA3 | Runoff Area=19.200 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=38.4 min CN=40 Runoff=13.91 cfs 2,511 af |
| Subcatchment PB1: PB1 | Runoff Area=26.240 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=36.6 min CN=40 Runoff=19.49 cfs 3.432 af |
| Subcatchment PB2: PB2 | Runoff Area=3,840 ac 0.00% Impervious Runoff Depth=1,79"<br>Tc=19.2 min CN=42 Runoff=4,48 cfs 0.571 af   |
| Subcatchment PB3: PB3 | Runoff Area=6.400 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=26.4 min CN=40 Runoff=5.49 cfs 0.837 af   |
| Subcatchment PC1: PC1 | Runoff Area=45.440 ac 0.00% Impervious Runoff Depth=1.79"<br>Tc=36.0 min CN=42 Runoff=40.94 cfs 6.761 af |
| Subcatchment PC2: PC2 | Runoff Area=9.600 ac 0.00% Impervious Runoff Depth=2.34"<br>Tc=16.8 min CN=47 Runoff=17.12 cfs 1.875 af  |
| •                     |                                                                                                          |

Total Runoff Area = 165.760 ac Runoff Volume = 24.309 af Average Runoff Depth = 1.76" 100.00% Pervious = 165.760 ac 0.00% Impervious = 0.000 ac

Runoff Area=3.200 ac 0.00% Impervious Runoff Depth=1.68"

Tc=22.8 min CN=41 Runoff=3.20 cfs 0.447 af

Type III 24-hr 25-Year Rainfall=8.70"

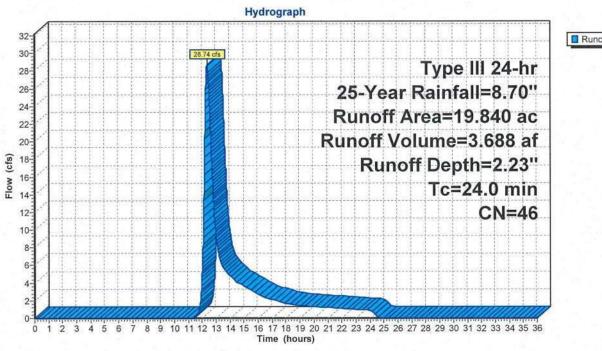
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 6

#### Summary for Subcatchment PA1: PA1


28.74 cfs @ 12.38 hrs, Volume= Runoff

3.688 af, Depth= 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| - | Area        | (ac)           | CN | Desc             | cription             |                |               |  |
|---|-------------|----------------|----|------------------|----------------------|----------------|---------------|--|
| * | 19          | .840           | 46 |                  |                      | Jan 15         |               |  |
|   | 19          | .840           |    | 100.             | 00% Pervi            | ous Area       |               |  |
|   | Tc<br>(min) | Lengt<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
|   | 24.0        |                |    |                  |                      |                | Direct Entry, |  |

#### Subcatchment PA1: PA1



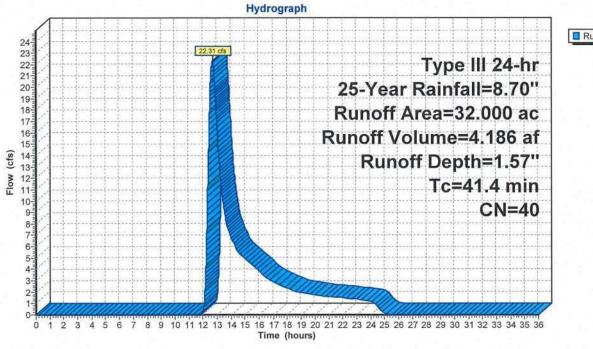
Runoff

Type III 24-hr 25-Year Rainfall=8.70"

Printed 2/21/2017

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 7


#### Summary for Subcatchment PA2: PA2

Runoff 22.31 cfs @ 12.69 hrs, Volume= 4.186 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|   | Area  | (ac)   | CN I  | Desc  | cription  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---|-------|--------|-------|-------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | 32    | .000   | 40    |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| - | 32    | .000   | 3     | 100.  | 00% Pervi | ous Area |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | Тс    | Length |       | оре   |           | Capacity | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|   | (min) | (feet  | ) (fl | t/ft) | (ft/sec)  | (cfs)    | Hardala and the Company of the Compa |  |
|   | 41.4  |        |       |       |           |          | Direct Entry,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

#### Subcatchment PA2: PA2



Runoff

Part III

#### PreDevelopment Existing 25 Yr

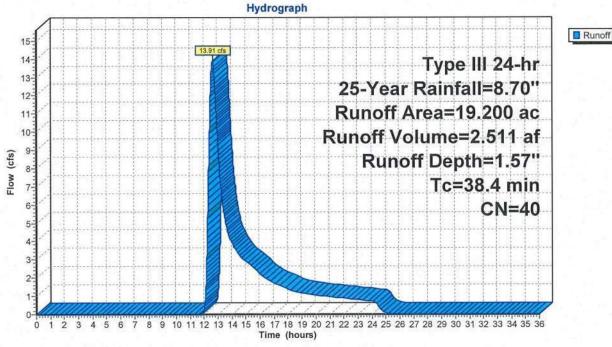
Type III 24-hr 25-Year Rainfall=8.70"

Printed 2/21/2017

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 8

#### Summary for Subcatchment PA3: PA3


13.91 cfs @ 12.64 hrs, Volume= Runoff

2.511 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| _ | Area        | (ac)            | CN | Desc             | cription             |                | <u> Karata da Afrika ana kaominina da </u> |
|---|-------------|-----------------|----|------------------|----------------------|----------------|--------------------------------------------|
| * | 19          | .200            | 40 |                  |                      |                |                                            |
|   | 19          | .200            |    | 100.             | 00% Pervi            | ous Area       |                                            |
|   | Tc<br>(min) | Lengtl<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                |
|   | 38.4        |                 |    |                  |                      |                | Direct Entry, Direct Entry                 |

#### Subcatchment PA3: PA3



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 2/21/2017

Page 9

#### Summary for Subcatchment PB1: PB1

Runoff =

19.49 cfs @ 12.61 hrs, Volume=

3.432 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| -  | Area        | (ac)            | CN | Desc             | cription             |                |               |  |
|----|-------------|-----------------|----|------------------|----------------------|----------------|---------------|--|
| *  | 26.240      |                 | 40 |                  |                      |                |               |  |
|    | 26.         | 240             |    | 100.             | 00% Pervi            | ous Area       |               |  |
| L. | Tc<br>(min) | Lengtl<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
|    | 36.6        |                 |    |                  |                      |                | Direct Entry. |  |

#### Subcatchment PB1: PB1



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

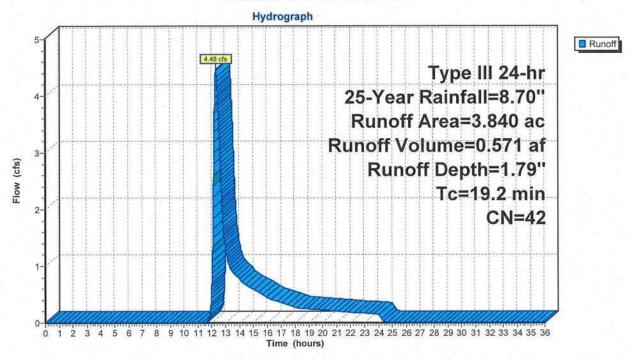
Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 10

#### Summary for Subcatchment PB2: PB2

Runoff =


4.48 cfs @ 12.31 hrs, Volume=

0.571 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|   | Area        | (ac)         | CN           | Desc             | cription             |                |               |  |
|---|-------------|--------------|--------------|------------------|----------------------|----------------|---------------|--|
| * | 3           | .840         | 42           |                  |                      |                |               |  |
|   | 3           | .840         | - 4          | 100.             | 00% Pervi            | ous Area       |               |  |
|   | Tc<br>(min) | Leng<br>(fee |              | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
|   | 19.2        | (166         | <del>)</del> | (II/II)          | (lusec)              | (CIS)          | Direct Entry, |  |

#### Subcatchment PB2: PB2



Submittal Date: September 2018

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 11

#### **Summary for Subcatchment PB3: PB3**


Runoff = 5.49 cfs @ 12.46 hrs, Volume=

0.837 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| - | Area        | (ac)  | CN | Desc             | cription             |                   |               |   |
|---|-------------|-------|----|------------------|----------------------|-------------------|---------------|---|
| * | 6.          | 400   | 40 |                  |                      |                   |               | 1 |
|   | 6.          | 400   |    | 100.             | 00% Pervi            | ous Area          |               |   |
|   | Tc<br>(min) | Lengt |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |   |
|   | 26.4        | (166  | ι) | (IUIL)           | (IUSEC)              | (CIS)             | Direct Entry, |   |

#### Subcatchment PB3: PB3



Part III

#### PreDevelopment Existing 25 Yr

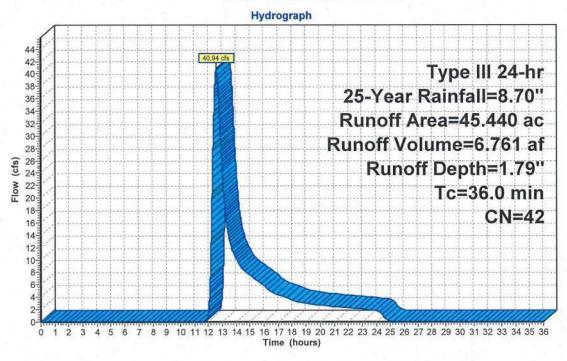
Type III 24-hr 25-Year Rainfall=8.70"

Printed 2/21/2017

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 12

#### **Summary for Subcatchment PC1: PC1**


Runoff = 40.94 cfs @ 12.60 hrs, Volume=

6.761 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| -   | Area (ac)   |               | CN | Des              | cription             |                   |               | 11 |
|-----|-------------|---------------|----|------------------|----------------------|-------------------|---------------|----|
| *   | 45.440      |               | 42 |                  |                      |                   |               |    |
|     | 45          | .440          |    | 100.             | 00% Pervi            | ous Area          |               |    |
| 100 | Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |    |
|     | 36.0        |               |    |                  |                      |                   | Direct Entry. |    |

#### Subcatchment PC1: PC1



Runoff

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

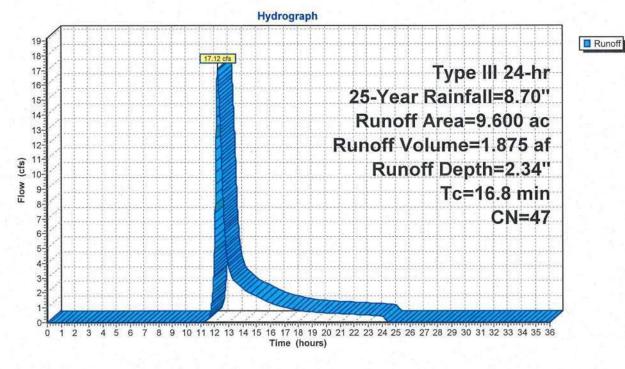
Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 13

#### Summary for Subcatchment PC2: PC2

Runoff


17.12 cfs @ 12.26 hrs, Volume=

1.875 af, Depth= 2.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| ١. | Area        | (ac)         | CN | Des              | cription             |                |               |                   |
|----|-------------|--------------|----|------------------|----------------------|----------------|---------------|-------------------|
| *  | 9.600       |              | 47 |                  |                      |                |               |                   |
|    | 9           | .600         |    | 100.             | 00% Pervi            | ous Area       |               |                   |
|    | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |                   |
|    | 16.8        | (100         |    | (1010)           | (12000)              | (0.0)          | Direct Entry, | The second second |

#### Subcatchment PC2: PC2



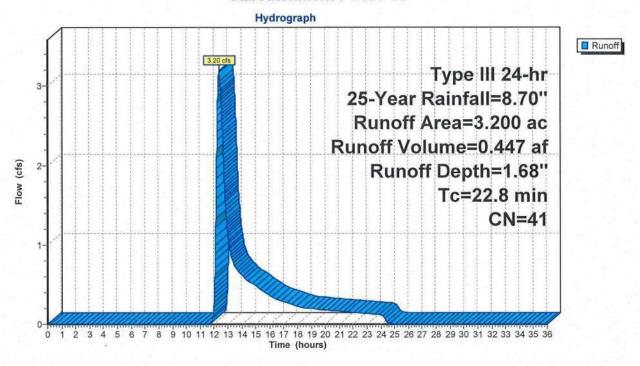
Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 2/21/2017 Page 14

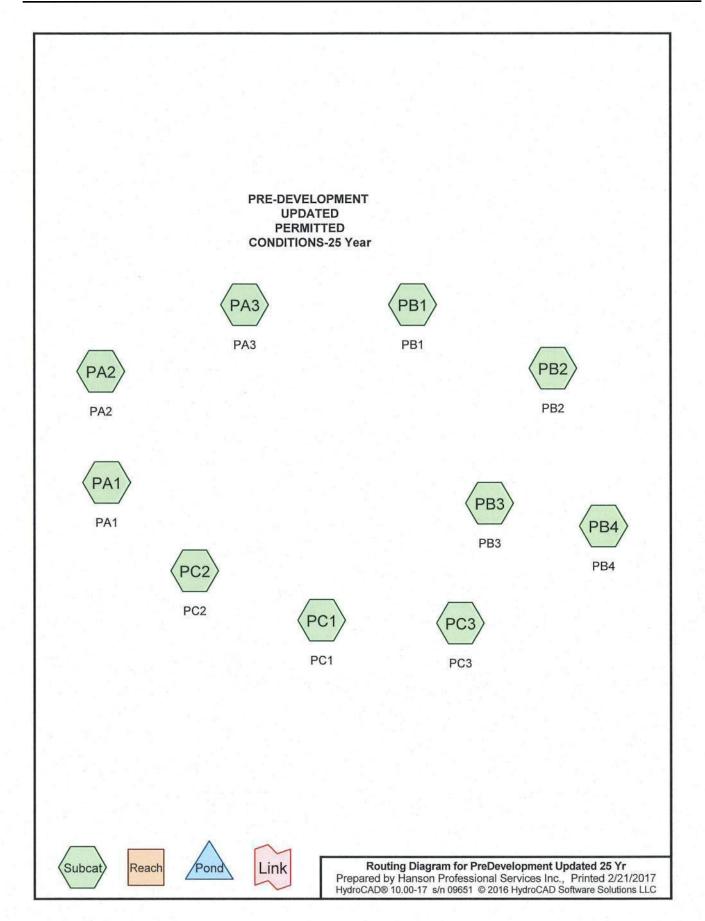
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

#### **Summary for Subcatchment PC3: PC3**


Runoff = 3.20 cfs @ 12.39 hrs, Volume= 0.

0.447 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"


| 8 | Area        | (ac)           | CN | Desc             | cription             |                |               |  |
|---|-------------|----------------|----|------------------|----------------------|----------------|---------------|--|
| * | 3.          | 200            | 41 |                  |                      |                |               |  |
|   | 3           | 200            |    | 100.             | 00% Pervi            | ous Area       |               |  |
|   | Tc<br>(min) | Lengt<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
|   | 22.8        | (100           | ., | (1010)           | (10000)              | (0.0)          | Direct Entry. |  |

#### Subcatchment PC3: PC3



# APPENDIX 6A.2.5 HYDROCAD MODEL PRE-DEVELOPMENT CONDITIONS 25 YEAR UPDATED PERMITTED CONDITIONS





#### PreDevelopment Updated 25 Yr

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 2/21/2017 Page 2

#### Area Listing (all nodes)

| Area       | CN | Description               |
|------------|----|---------------------------|
| (acres)    |    | (subcatchment-numbers)    |
| <br>19.840 | 46 | (PA1)                     |
| 97.220     | 40 | (PA2, PA3, PB1, PB3, PB4) |
| 49.280     | 42 | (PB2, PC1)                |
| 9.600      | 47 | (PC2)                     |
| 3.200      | 41 | (PC3)                     |
| 179,140    | 42 | TOTAL AREA                |

### PreDevelopment Updated 25 Yr

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 2/21/2017 Page 3

#### Soil Listing (all nodes)

| Area        | Soil  | Subcatchment                                     |
|-------------|-------|--------------------------------------------------|
| <br>(acres) | Group | Numbers                                          |
| <br>0.000   | HSG A |                                                  |
| 0.000       | HSG B |                                                  |
| 0.000       | HSG C |                                                  |
| 0.000       | HSG D |                                                  |
| 179.140     | Other | PA1, PA2, PA3, PB1, PB2, PB3, PB4, PC1, PC2, PC3 |
| 179 140     |       | TOTAL AREA                                       |

Part III

PreDevelopment Updated 25 Yr
Prepared by Hanson Professional Services Inc.
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 2/21/2017

Page 4

#### **Ground Covers (all nodes)**

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total<br>(acres) | Ground<br>Cover | Subcatchment<br>Numbers |
|------------------|------------------|------------------|------------------|---------------|------------------|-----------------|-------------------------|
| 0.000            | 0.000            | 0.000            | 0.000            | 179.140       | 179.140          |                 | PA1, PA2, PA3,          |
|                  |                  |                  |                  |               |                  |                 | PB1, PB2, PB3,          |
|                  |                  |                  |                  |               |                  |                 | PB4, PC1, PC2,          |
|                  |                  |                  |                  |               |                  |                 | PC3                     |
| 0.000            | 0,000            | 0.000            | 0.000            | 179,140       | 179,140          | TOTAL AREA      |                         |

Subcatchment PC3: PC3

#### PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

Tc=16.8 min CN=47 Runoff=17.12 cfs 1.875 af

Tc=22.8 min CN=41 Runoff=3.20 cfs 0.447 af

Runoff Area=3.200 ac 0.00% Impervious Runoff Depth=1.68"

Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment PA1: PA1 | Runoff Area=19.840 ac 0.00% Impervious Runoff Depth=2.23"<br>Tc=24.0 min CN=46 Runoff=28.74 cfs 3.688 af |
|-----------------------|----------------------------------------------------------------------------------------------------------|
| Subcatchment PA2: PA2 | Runoff Area=32.000 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=41.4 min CN=40 Runoff=22.31 cfs 4.186 af |
| Subcatchment PA3: PA3 | Runoff Area=19.200 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=38.4 min CN=40 Runoff=13.91 cfs 2.511 af |
| Subcatchment PB1: PB1 | Runoff Area=26.240 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=36.6 min CN=40 Runoff=19.49 cfs 3.432 af |
| Subcatchment PB2: PB2 | Runoff Area=3.840 ac 0.00% Impervious Runoff Depth=1.79"<br>Tc=19.2 min CN=42 Runoff=4.48 cfs 0.571 af   |
| Subcatchment PB3: PB3 | Runoff Area=6.400 ac 0.00% Impervious Runoff Depth=1.57"<br>Tc=26.4 min CN=40 Runoff=5.49 cfs 0.837 af   |
| Subcatchment PB4: PB4 | Runoff Area=13.380 ac                                                                                    |
| Subcatchment PC1: PC1 | Runoff Area=45.440 ac 0.00% Impervious Runoff Depth=1.79"<br>Tc=36.0 min CN=42 Runoff=40.94 cfs 6.761 af |
| Subcatchment PC2: PC2 | Runoff Area=9.600 ac 0.00% Impervious Runoff Depth=2.34"                                                 |

Total Runoff Area = 179.140 ac Runoff Volume = 26.059 af Average Runoff Depth = 1.75" 100.00% Pervious = 179.140 ac 0.00% Impervious = 0.000 ac

#### PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

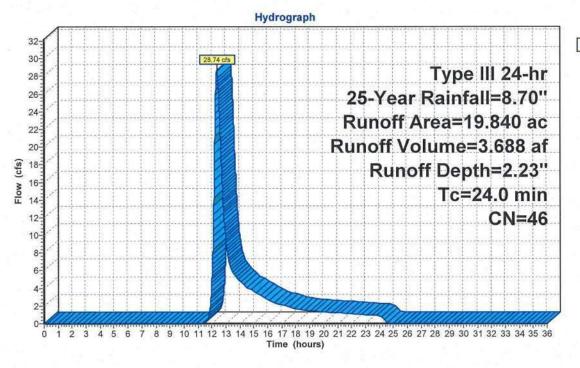
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 6

#### Summary for Subcatchment PA1: PA1


Runoff = 28.74 cfs @ 12.38 hrs, Volume=

3.688 af, Depth= 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| 200 | Area        | (ac)         | CN | Desc             | cription             |                |               | The second second |
|-----|-------------|--------------|----|------------------|----------------------|----------------|---------------|-------------------|
| *   | 19          | 840          | 46 |                  |                      |                |               |                   |
| (4) | 19.         | .840         |    | 100.             | 00% Pervi            | ous Area       |               |                   |
|     | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |                   |
|     | 24.0        |              |    |                  |                      | 1111           | Direct Entry, |                   |

#### Subcatchment PA1: PA1



Runoff

#### PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

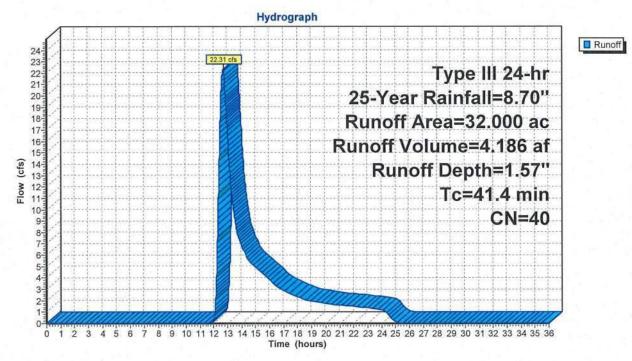
Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 7

#### **Summary for Subcatchment PA2: PA2**

Runoff =


= 22.31 cfs @ 12.69 hrs, Volume=

4.186 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| _ | Area        | (ac)         | CN | Des              | cription             |                   |               |  |
|---|-------------|--------------|----|------------------|----------------------|-------------------|---------------|--|
| * | 32.         | .000         | 40 |                  |                      |                   |               |  |
|   | 32.000      |              |    | 100.             | 00% Pervi            | ous Area          |               |  |
|   | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |  |
|   | 41.4        | ~            |    |                  | 38                   | 44                | Direct Entry, |  |

#### Subcatchment PA2: PA2



Page 8

#### PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

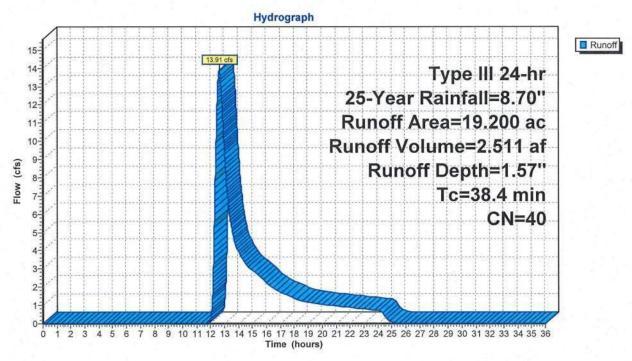
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

#### **Summary for Subcatchment PA3: PA3**

Runoff


13.91 cfs @ 12.64 hrs, Volume=

2.511 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|   | Area        | (ac)           | CN                    | Desc          | cription             |                |                            |
|---|-------------|----------------|-----------------------|---------------|----------------------|----------------|----------------------------|
| * | 19          | .200           | 40                    |               |                      |                |                            |
| 1 | 19.200      |                | 100.00% Pervious Area |               |                      | ous Area       |                            |
|   | Tc<br>(min) | Lengt<br>(feet |                       | ope<br>ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                |
|   | 38.4        |                |                       |               |                      |                | Direct Entry, Direct Entry |

#### Subcatchment PA3: PA3



#### PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

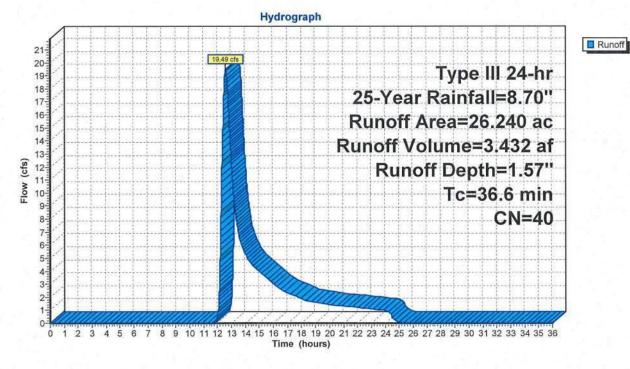
Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 9

#### Summary for Subcatchment PB1: PB1

Runoff


19.49 cfs @ 12.61 hrs, Volume=

3.432 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|   | Area        | (ac)          | CN | Desc                  | cription             |                |               |                                          |
|---|-------------|---------------|----|-----------------------|----------------------|----------------|---------------|------------------------------------------|
| * | 26          | 240           | 40 |                       |                      |                |               |                                          |
|   | 26          | .240          |    | 100.00% Pervious Area |                      |                |               |                                          |
|   | Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft)      | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |                                          |
| - | 36.6        | (100          | ., | (ioit)                | (10000)              | (013)          | Direct Entry, | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |

#### Subcatchment PB1: PB1



Type III 24-hr 25-Year Rainfall=8.70"

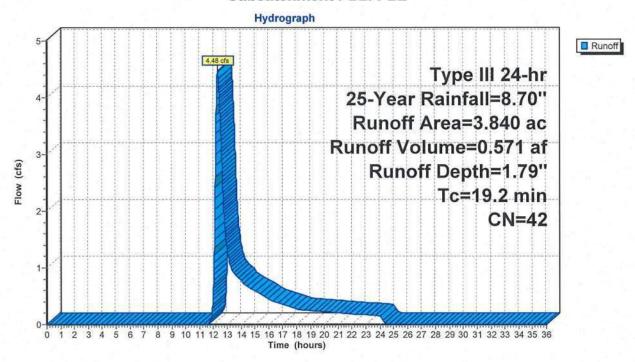
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 10

# Summary for Subcatchment PB2: PB2


Runoff = 4.48 cfs @ 12.31 hrs, Volume=

0.571 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| -   | Area        | (ac)          | CN | Desc             | cription             |                |               |  |
|-----|-------------|---------------|----|------------------|----------------------|----------------|---------------|--|
| *   | 3           | .840          | 42 |                  |                      |                |               |  |
| 477 | 3           | .840          |    | 100.             | 00% Pervi            | ous Area       |               |  |
|     | Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
| -   | 19.2        |               | -  |                  |                      |                | Direct Entry, |  |

# Subcatchment PB2: PB2



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

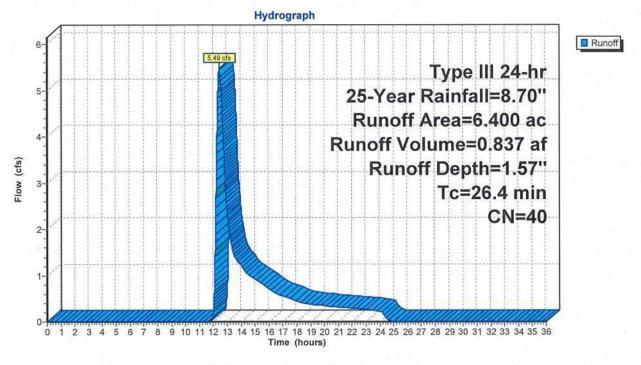
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 11

# **Summary for Subcatchment PB3: PB3**

Runoff

=


5.49 cfs @ 12.46 hrs, Volume=

0.837 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|     | Area        | (ac)         | CN | Desc             | cription             |                |               |  |
|-----|-------------|--------------|----|------------------|----------------------|----------------|---------------|--|
| 4   | 6           | .400         | 40 |                  |                      |                |               |  |
| -   | 6           | .400         |    | 100.             | 00% Pervi            | ous Area       |               |  |
|     | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
| . 1 | 26.4        |              |    | -1               |                      |                | Direct Entry, |  |

# Subcatchment PB3: PB3



Submittal Date: September 2018

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

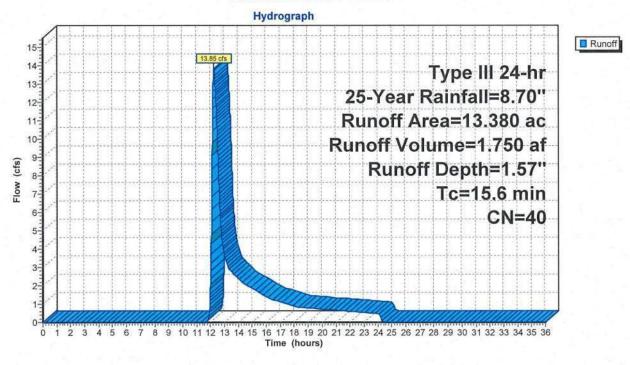
Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 12

# **Summary for Subcatchment PB4: PB4**

Runoff


13.85 cfs @ 12.26 hrs, Volume=

1.750 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| 2 | Area        | (ac)          | CN | Desc             | cription             | 1                 |               |      |
|---|-------------|---------------|----|------------------|----------------------|-------------------|---------------|------|
| , | 13          | .380          | 40 |                  |                      |                   |               |      |
| - | 13          | .380          |    | 100.             | 00% Pervi            | ous Area          |               |      |
|   | Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |      |
|   | 15.6        | -             |    |                  |                      |                   | Direct Entry, | 1000 |

# Subcatchment PB4: PB4



Type III 24-hr 25-Year Rainfall=8.70"

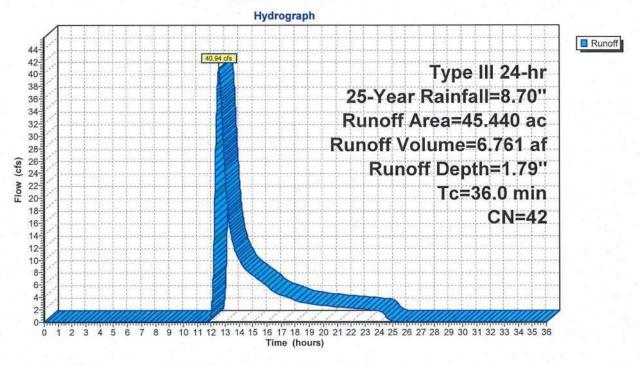
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 13

# **Summary for Subcatchment PC1: PC1**


Runoff = 40.94 cfs @ 12.60 hrs, Volume=

6.761 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|   | Area        | (ac) | CN | Desc             | cription             |                |               |  |
|---|-------------|------|----|------------------|----------------------|----------------|---------------|--|
| * | 45.         | 440  | 42 |                  |                      |                |               |  |
| Ī | 45.         | 440  |    | 100.             | 00% Pervi            | ous Area       |               |  |
|   | Tc<br>(min) | -    |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
| - | 36.0        | (fee | L) | (IVIL)           | (IUSEC)              | (CIS)          | Direct Entry, |  |

# Subcatchment PC1: PC1



Part III

# PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

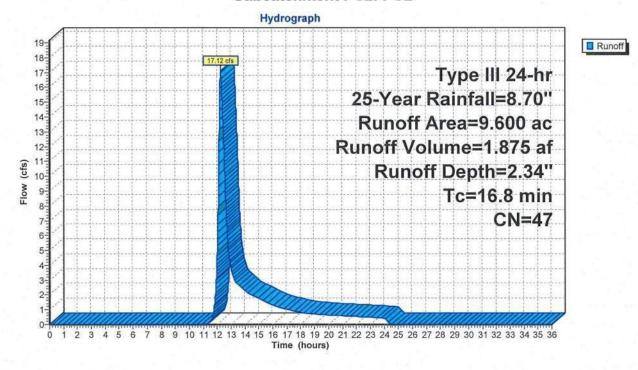
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 14

# **Summary for Subcatchment PC2: PC2**


Runoff = 17.12 cfs @ 12.26 hrs, Volume=

1.875 af, Depth= 2.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| - | Area        | (ac)         | CN  | Desc             | cription             |                |               |  |
|---|-------------|--------------|-----|------------------|----------------------|----------------|---------------|--|
| * | 9.          | 600          | 47  |                  |                      |                |               |  |
| 3 | 9.          | 600          |     | 100.             | 00% Pervi            | ous Area       |               |  |
| ( | Tc<br>(min) | Leng<br>(fee |     | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description   |  |
|   | 16.8        |              | 2.7 |                  |                      |                | Direct Entry, |  |

# Subcatchment PC2: PC2



Revision: 0

Page 15

# PreDevelopment Updated 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

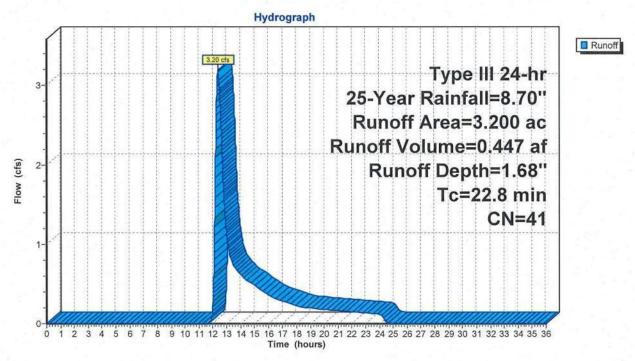
Prepared by Hanson Professional Services Inc.

Printed 2/21/2017

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

# **Summary for Subcatchment PC3: PC3**

Runoff =


3.20 cfs @ 12.39 hrs, Volume=

0.447 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| 100 | Area        | (ac)         | CN | Des              | cription             |                   |               |  |
|-----|-------------|--------------|----|------------------|----------------------|-------------------|---------------|--|
| *   | 3           | .200         | 41 |                  |                      |                   |               |  |
|     | 3           | .200         |    | 100.             | 00% Pervi            | ous Area          |               |  |
|     | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |  |
| 100 | 22.8        | 70           |    | 1                |                      |                   | Direct Entry, |  |

# Subcatchment PC3: PC3

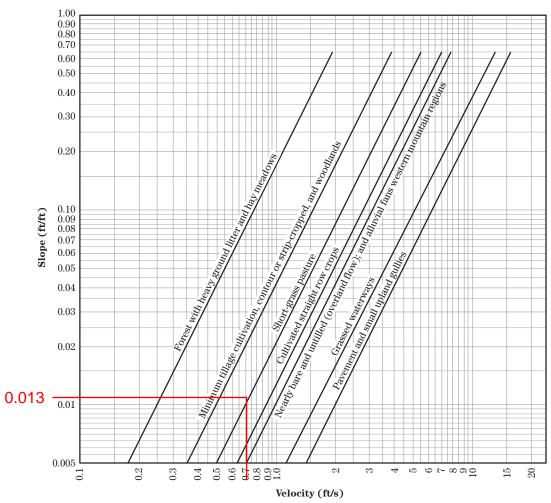


Submittal Date: September 2018 Revision: 0

# **APPENDIX 6A.2.6**

NATIONAL ENGINEERING HANDBOOK (NEH), CHAPTER 15, FIGURE 15-4 VELOCITY VERSUS SLOPE FOR SHALLOW CONCENTRATED FLOW [ANNOTATED]




Part III

Chapter 15

Time of Concentration

Part 630 National Engineering Handbook

Figure 15-4 Velocity versus slope for shallow concentrated flow



PB4

Elev 60 ft → Elev 50 ft

 $s = 10 \text{ ft}/750 \text{ ft} = 0.01\overline{3}$ 

0.80

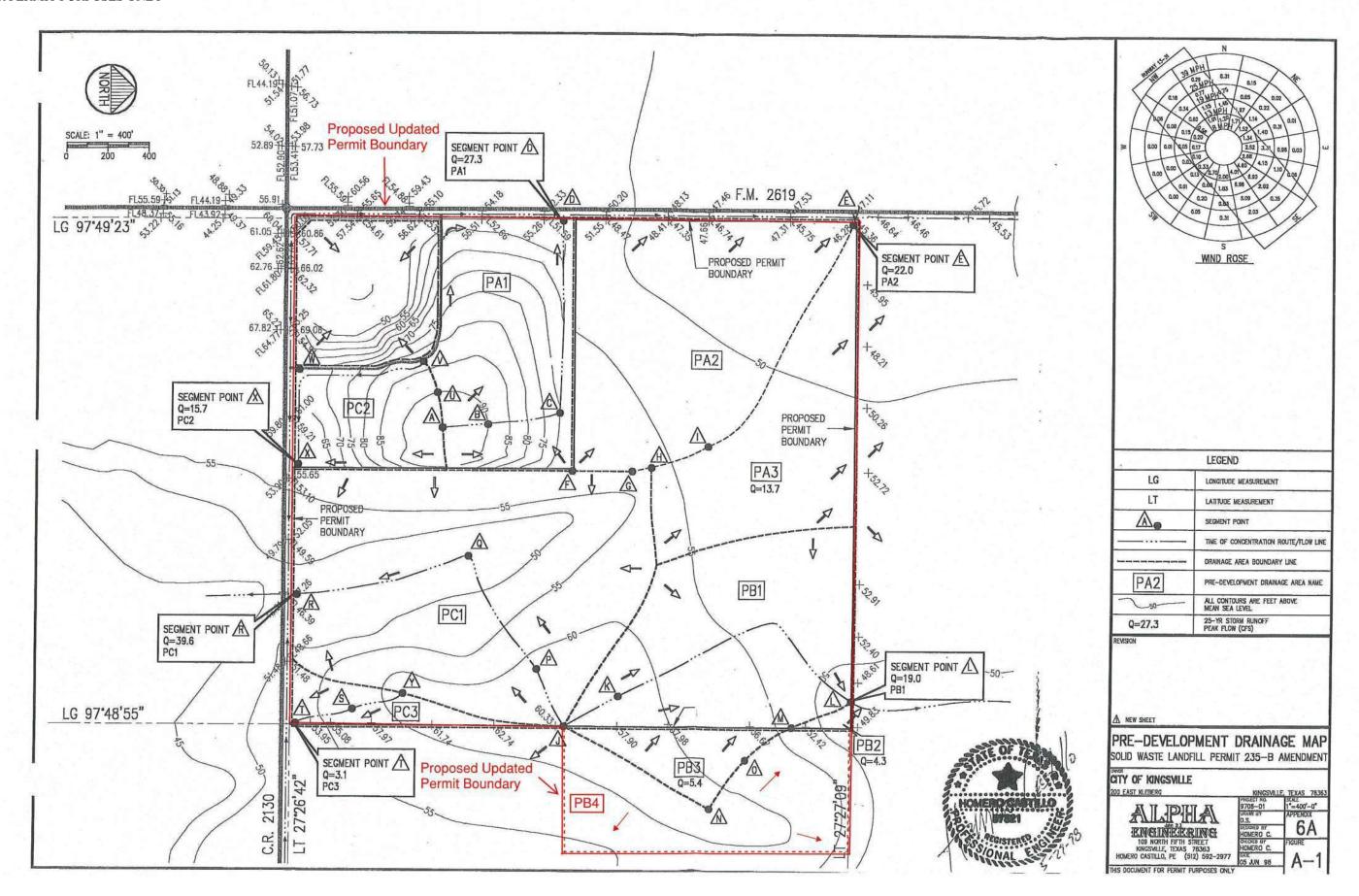
tc = 750 ft/0.80 ft/sec = 937.5 sec

tc = 937.5 sec/60 sec/min = 15.6 min

 Table 15–3
 Equations and assumptions developed from figure 15–4

| Flow type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth<br>(ft) | Manning's n | Velocity equation (ft/s)    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------------------|
| Pavement and small upland gullies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2           | 0.025       | V =20.328(s) <sup>0.5</sup> |
| Grassed waterways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4           | 0.050       | $V=16.135(s)^{0.5}$         |
| Nearly bare and untilled (overland flow); and alluvial fans in western mountain regions $% \left( 1\right) =\left( 1\right) \left( 1\right) $ | 0.2           | 0.051       | $V=9.965(s)^{0.5}$          |
| Cultivated straight row crops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2           | 0.058       | $V=8.762(s)^{0.5}$          |
| Short-grass pasture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2           | 0.073       | $V=6.962(s)^{0.5}$          |
| Minimum tillage cultivation, contour or strip-cropped, and woodlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2           | 0.101       | $V=5.032(s)^{0.5}$          |
| Forest with heavy ground litter and hay meadows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2           | 0.202       | $V=2.516(s)^{0.5}$          |

15<u>–8</u>


(210-VI-NEH, May 2010)

Revision: 0

# **APPENDIX 6A.2.7**

PRE-DEVELOPMENT DRAINAGE MAP SOLID WASTE LANDFILL PERMIT 235-B AMENDMENT FIGURE A-1 (UPDATED PERMITTED CONDITIONS)





Part III, Attachment 6, Appendix 6A.2.7, p.g.-1

# APPENDIX 6B SITE POST-DEVELOPMENT CONDITIONS



# **APPENDIX 6B.1**

USGS ATLAS OF DEPTH-DURATION FREQUENCY OF PRECIPITATION ANNUAL MAXIMA FOR TEXAS-DEPTH OF PRECIPITATION FOR 25 YR-24 HR & 100 YR-24 HR [ANNOTATED]





In cooperation with the Texas Department of Transportation

# Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas



Scientific Investigations Report 2004–5041 (TxDOT Implementation Report 5–1301–01–1)

U.S. Department of the Interior U.S. Geological Survey

Part III

| 1. Report No.                                 | 2. Government Accession No.                | 3. Recipient's Catalog No.               |  |  |
|-----------------------------------------------|--------------------------------------------|------------------------------------------|--|--|
| FHWA/FX-04/5-1301-01-1                        |                                            |                                          |  |  |
| 4. Title and Subtitle                         |                                            | 5. Report Date                           |  |  |
| ATLAS OF DEPTH-DURATION FI                    | REQUENCY OF                                | June 2004                                |  |  |
| PRECIPITATION ANNUAL MAXI                     | 6. Performing Organization Code            |                                          |  |  |
| 7. Author(s)                                  | 8, Performing Organization Report No.      |                                          |  |  |
| William H. Asquith and Meghan C. Rousse       | SIR 2004–5041                              |                                          |  |  |
| 9. Performing Organization Name and Add       | 10. Work Unit No. (TRAIS)                  |                                          |  |  |
| U.S. Geological Survey                        |                                            |                                          |  |  |
| Water Resources Division                      |                                            | 11. Contract or Grant No. Project 5-1301 |  |  |
| 8027 Exchange Drive                           |                                            |                                          |  |  |
| Austin, Texas 78754                           |                                            |                                          |  |  |
| 12. Sponsoring Agency Name and Address        |                                            | 13. Type of Report and Period Covered    |  |  |
| Texas Department of Transportation            | U.S. Geological Survey                     | Research from 2003 to 2004               |  |  |
| Research and Technology Implementation Office |                                            | 14, Sponsoring Agency Code               |  |  |
| 4000 Jackson Ave., Bldg. 1<br>P.O. Box 5080   | 8027 Exchange Drive<br>Austin, Texas 78754 |                                          |  |  |
| Austin, TX 78731                              |                                            |                                          |  |  |
| 15. Supplementary Notes                       |                                            |                                          |  |  |
| Project conducted in cooperation with the I   | lexas Department of Transportation         | and the Federal Highway Administration.  |  |  |
| 16, Abstract                                  |                                            |                                          |  |  |

Ninety-six maps depicting the spatial variation of the depth-duration frequency of precipitation annual maxima for Texas are presented. The recurrence intervals represented are 2, 5, 10, 25, 50, 100, 250, and 500 years. The storm durations represented are 15 and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5, and 7 days. The maps were derived using geographically referenced parameter maps of probability distributions used in previously published research by the U.S. Geological Survey to model the magnitude and frequency of precipitation annual maxima for Texas. The maps in this report apply that research and update depth-duration frequency of precipitation maps available in earlier studies performed by the National Weather Service.

| 17, Key Words                                          | 18. Distribution Statement           |  |                  |           |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------|--|------------------|-----------|--|--|--|--|--|
| Precipitation, Depth duration frequen L-moments, Texas | No restrictions.                     |  |                  |           |  |  |  |  |  |
| 19. Security Classif. (of report)                      | 20. Security Classif. (of this page) |  | 2). No. of pages | 22. Price |  |  |  |  |  |
| Unclassified                                           | Unclassified                         |  | 106              | \$4.00    |  |  |  |  |  |

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

#### Cover:

West Sister Creek near Sisterdale, Texas, on FM 473, Kendali County, May 10, 2004.

Hanson Professional Services Inc. Submittal Date: September 2018

Revision: 0

# Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas

| Rv W/illi | am H. As | auith an | d Meah | an C. I | Antiesel |
|-----------|----------|----------|--------|---------|----------|
|           |          |          |        |         |          |

In cooperation with the Texas Department of Transportation

Scientific Investigations Report 2004–5041 (TxDOT Implementation Report 5–1301–01–1)

U.S. Department of the Interior U.S. Geological Survey

# U.S. Department of the Interior

Gale A. Norton, Secretary

# U.S. Geological Survey

Charles G. Groat, Director

U.S. Geological Survey, Reston, Virginia: 2004 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For more information about the USGS and its products: Telephone: 1-888-ASK-USGS

World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

The contents of this report do not necessarily reflect the official view or policies of the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation.

Suggested citation:

Asquith, W.H., and Roussel, M.C., 2004, Atlas of depth-duration frequency of precipitation annual maxima for Texas: U.S. Geological Survey Scientific Investigations Report 2004–5041, 106 p.

# 54 Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas

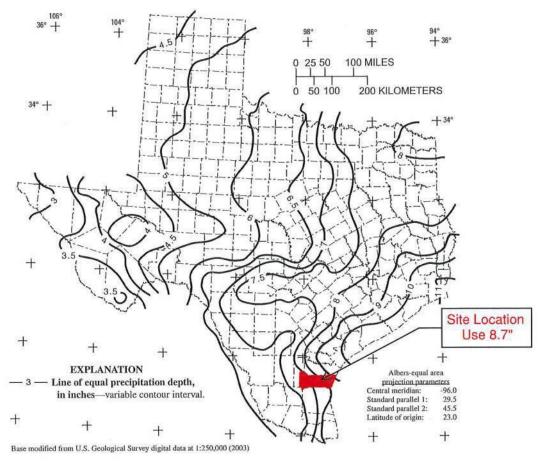



Figure 47. Depth of precipitation for 25-year storm for 1-day duration in Texas.

#### 78 Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas

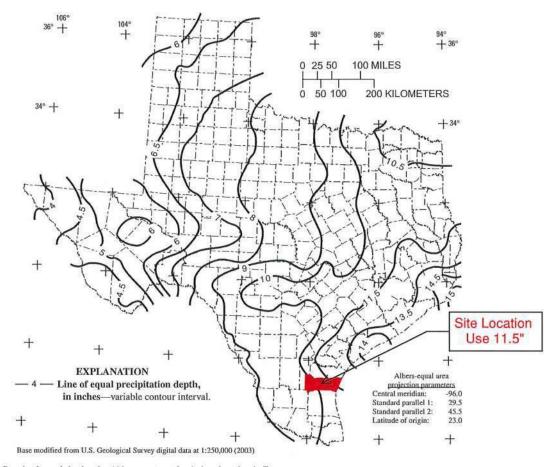



Figure 71. Depth of precipitation for 100-year storm for 1-day duration in Texas.

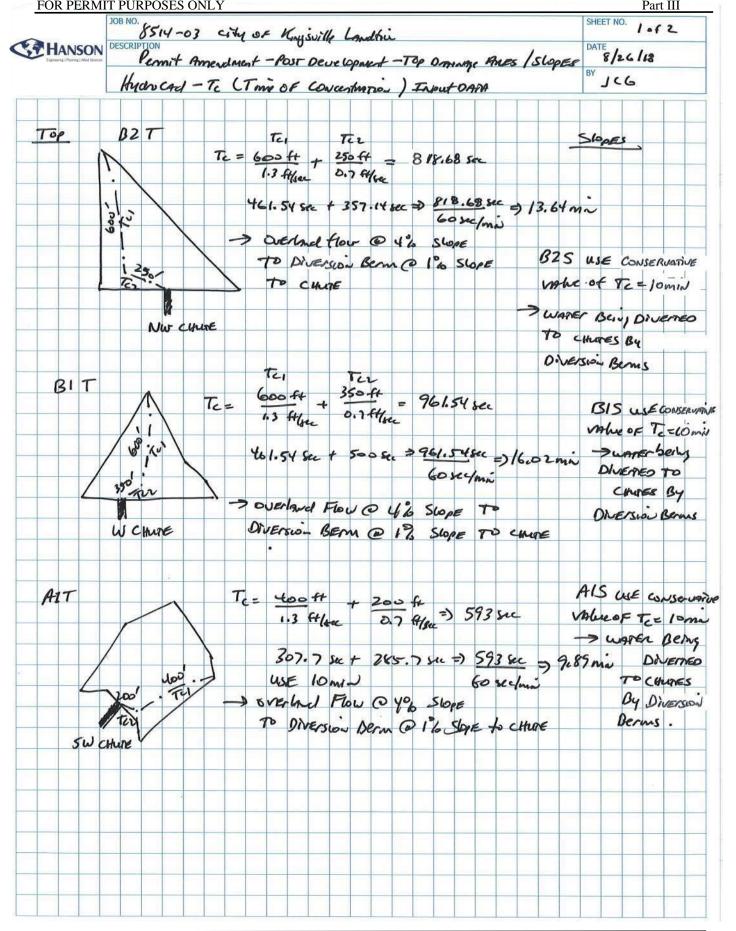
# **APPENDIX 6B.2**

TABLE 6B-1 HYDROLOGIC SOIL GROUPS FOR ON-SITE SOILS (FROM NRCS, 2015) AND CITY OF KINGSVILLE MUNICIPAL SOLID WASTE LANDFILL FINAL DRAINAGE AREAS



Table 6B-1. Hydrotogic Soil Groups for On-Site Soils (from NRCS, 2015)

|                                                               |                          |                  |                          |                                                     | _                                                      |                   |
|---------------------------------------------------------------|--------------------------|------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------------|-------------------|
|                                                               |                          | Representative V | % Sand % Sift            | 36.5                                                | 19.9                                                   |                   |
|                                                               | Repr                     | % Sand           | 33.5                     | 66.1                                                | ,                                                      |                   |
| g Counties, Texas                                             |                          |                  | 1 PRC10F                 | 5                                                   | \$                                                     | ,                 |
| RUSLE2 Relatef Attributes - Kenedy and Reberg Counties, Texas | ğ                        |                  | 0,24                     | 0,2                                                 |                                                        |                   |
|                                                               | Hydrologic<br>Soil Group |                  | ٥                        | æ                                                   |                                                        |                   |
|                                                               | a€o₁g                    | ###              | 86                       | 86                                                  |                                                        |                   |
|                                                               | Peter                    | Map Unit         | 8                        | 96                                                  |                                                        |                   |
|                                                               | RUSLE2 R                 | -                | Fercent of AUI           | 10.7                                                | 9.3                                                    | 600               |
|                                                               |                          |                  | Map Symbol and Soil Name | CkA - Clareville Clay Loum<br>0 to 1 percent stopes | CmA - Colmens Fine Sandy Loun<br>0 to 1 percent slopes | PtT - Pite Duscov |


| Area     |  |
|----------|--|
| Drainage |  |
|          |  |
| III pue  |  |
| Variet   |  |
| Volida   |  |
| ed cir   |  |
|          |  |
| Ž.       |  |
| y of Kă  |  |
|          |  |

| Designage Area | Area   |
|----------------|--------|
| A1T            | 7.425  |
| A1S            | 8.009  |
| A2T            | 5,120  |
| A2S            | 12.241 |
| ABT            | 7.489  |
| A35            | 10.760 |
| B1T            | 7.499  |
| 815            | 14.884 |
| 82T            | 4.309  |
| 625            | 8.806  |
| C1T            | 6.292  |
| C1S            | 11.506 |
| 727            | 5.249  |
| C2S            | 10.038 |
| 3              | 3.500  |
| C4             | 9.500  |
| CS             | 2,690  |
|                | 3.982  |
| 3.0            | 1,000  |
| 30             | 1.480  |
| 3C             | 1.640  |
| 40             | 0.910  |
| sc             | 1.000  |
| 90             | 1.000  |
| 75             | 1.00   |
| PAR            | 7,440  |
| PBR            | 4.290  |
| PCR            | 4.540  |
| CISNI          | 0.250  |
| C1SN2          | 0.250  |
| CISS1          | 0.250  |
| C1SS2          | 0.250  |
| Total          | 164.60 |

# **APPENDIX 6B.3**

PERMIT AMENDMENT-POST DEVELOPMENT-TOP DRAINAGE AREAS/SLOPES HYDROCAD (Tc-TIME OF CONCENTRATION) INPUT DATA



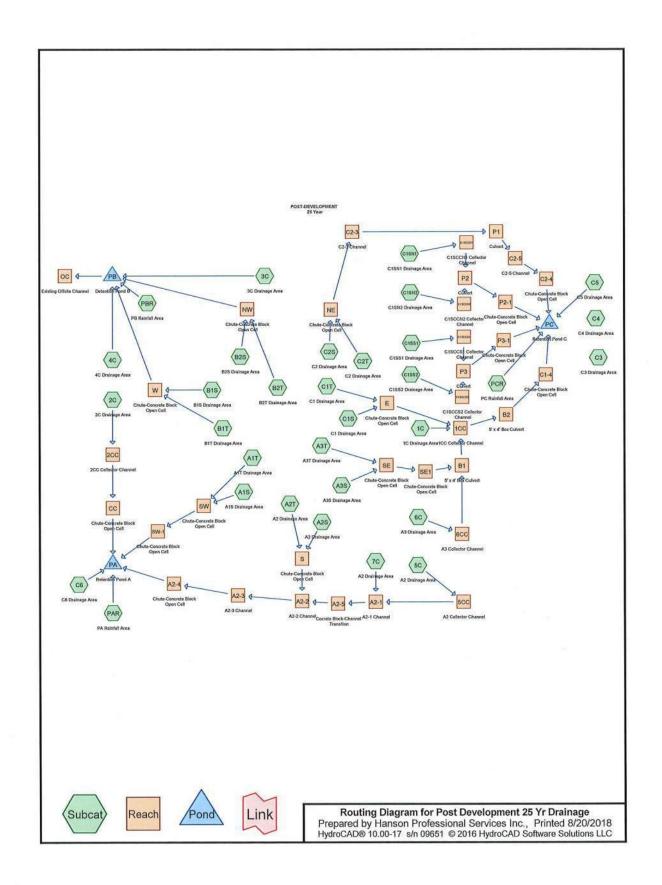


FOR PERMIT PURPOSES ONLY

FOR PERMIT PURPOSES UINL I

JOB NO. 85/4-03 City of Kingswille Landkin

DESCRIPTION


Permit Amendment - Post Development - Top Dominge Amens | BY

Slopes BY

JCG 8/26/18 Hydrocap - To (Time of Concertnation) INput DATA TOP 350 ft => 500 SEC Slopes AZT A25 USE CONSENTATIVE 500 Sec => 8,3 mi VALUE OF TC = 10 min, -> WATER BOING DIVETTED lomi TO CHUTES BY DIVERSION Benns. > Flow @ 1% Slope to CHATE S A3 T Te = 750 for + 300ft => 1005.48 SEC A35 USE CONSENUATIVE VALUE OF TEELOMIN -> WATER DELY Te = 576.92 + 428.57 => Lows.41 sec => 16.76 min ONETED TO CHUPES BY ? overland Flow @ 4 % slope DIVERSIÓN Berns To Disersion BEM @ 16 to CHARE CHUTE SE CIS USE CONSERVATIVE Tc: 600ff + 200ft => 747,25 Sec value of Te= 10 min To conges by Diverse Berns CIT -> Overhand Flour @ 40% Slope 60 Sec/min 12:45 min TO Olversion Benn @ 106 to chure CZS USE CONSCRUÇTIVE TC = 600 ft + 200 ft => 14-7.2 FER TO CHURES BY DIVERSION CHURE E Tei CZT 461.54 Sec + 285.71 Sec =>747.25 Sec => 12.45 Min - Overland FWWW Y'W Slope TO DIVERSION BERM @ 1 % Slope to CHUPE CHUTE NE

# APPENDIX 6B.4 HYDROCAD MODEL POST DEVELOPMENT-25 YEAR





Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

# Page 2

# Area Listing (all nodes)

| Area<br>(acres) | CN | Description (subcatchment-numbers)                                                                                                                             |
|-----------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>128.657     | 79 | 50-75% Grass cover, Fair, HSG C (1C, 2C, 3C, 4C, 5C, 6C, 7C, A1S, A1T, A2S, A2T, A3S, A3T, B1S, B1T, B2S, B2T, C1S, C1SN1, C1SN2, C1SS1, C1SS2, C1T, C2S, C2T) |
| 19.672          | 86 | <50% Grass cover, Poor, HSG C (C3, C4, C5, C6)                                                                                                                 |
| 16.270          | 98 | Water Surface, 0% imp, HSG C (PAR, PBR, PCR)                                                                                                                   |
| 164.599         | 82 | TOTAL AREA                                                                                                                                                     |

Prepared by Hanson Professional Services Inc. HydroCAD® 10,00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 3

# Soil Listing (all nodes)

| Area        | Soil  | Subcatchment                                                                                                                                                |
|-------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>(acres) | Group | Numbers                                                                                                                                                     |
| 0.000       | HSG A |                                                                                                                                                             |
| 0.000       | HSG B |                                                                                                                                                             |
| 164.599     | HSG C | 1C, 2C, 3C, 4C, 5C, 6C, 7C, A1S, A1T, A2S, A2T, A3S, A3T, B1S, B1T, B2S, B2T, C1S, C1SN1, C1SN2, C1SS1, C1SS2, C1T, C2S, C2T, C3, C4, C5, C6, PAR, PBR, PCR |
| 0.000       | HSG D |                                                                                                                                                             |
| 0.000       | Other |                                                                                                                                                             |
| 164.599     |       | TOTAL AREA                                                                                                                                                  |

Prepared by Hanson Professional Services Inc. HydroCAD® 10,00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 4

Part III

# Ground Covers (all nodes)

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres)    | Total<br>(acres) | Ground<br>Cover                | Subcatchment<br>Numbers          |
|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------------|----------------------------------|
| 0.000            | (acres)<br>0.000 | (acres) 128.657  | (acres)<br>0.000 | (acres)<br>0.000 | (acres) 128.657  | Cover 50-75% Grass cover, Fair |                                  |
|                  |                  |                  |                  |                  |                  |                                | C1SS1,<br>C1SS2,<br>C1T,<br>C2S, |
| 0.000            | 0.000            | 19.672           | 0,000            | 0.000            | 19.672           | <50% Grass cover, Poor         | C2T<br>C3, C4,<br>C5, C6         |
| 0,000            | 0.000            | 16.270           | 0.000            | 0.000            | 16,270           | Water Surface, 0% imp          | PAR,<br>PBR,<br>PCR              |
| 0.000            | 0.000            | 164.599          | 0.000            | 0.000            | 164.599          | TOTAL AREA                     | 1 011                            |

Submittal Date: September 2018

Revision: 0

Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 8/20/2018 Page 5

# Pipe Listing (all nodes)

|   | Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width<br>(inches) | Height (inches) | Inside-Fill<br>(inches) |
|---|-------|----------------|---------------------|----------------------|------------------|------------------|-------|------------------------|-----------------|-------------------------|
| _ | 1     | B1             | 56.54               | 53.89                | 464.0            | 0.0057           | 0.013 | 60.0                   | 48.0            | 0.0                     |
|   | 2     | B2             | 53.45               | 49.80                | 200.0            | 0,0183           | 0.013 | 60.0                   | 48.0            | 0.0                     |
|   | 3     | P1             | 51.75               | 51.11                | 64.0             | 0.0100           | 0.011 | 48.0                   | 0.0             | 0.0                     |
|   | 4     | P2             | 54.39               | 53.31                | 72.0             | 0.0150           | 0.011 | 18.0                   | 0.0             | 0.0                     |
|   | 5     | P3             | 55.41               | 54.33                | 72.0             | 0.0150           | 0.011 | 18.0                   | 0.0             | 0.0                     |
|   | 6     | PB             | 47.00               | 46.75                | 128.0            | 0.0020           | 0.013 | 21.0                   | 0.0             | 0.0                     |
|   | 7     | PB             | 47.00               | 46.75                | 128.0            | 0.0020           | 0.013 | 21.0                   | 0.0             | 0.0                     |

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment 1C: 1C Drainage Area        | Runoff Area=1.000 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=8.22 cfs 0.514 af                   |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 2C: 2C Drainage Area        | Runoff Area=1,480 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=9.20 cfs 0.760 af                   |
| Subcatchment 3C: 3C Drainage Area        | Runoff Area=1,640 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=10.20 cfs 0.842 af                  |
| Subcatchment 4C: 4C Drainage Area        | Runoff Area=0.910 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=5.66 cfs 0.467 af                   |
| Subcatchment 5C: A2 Drainage Area        | Runoff Area=1.000 ac 0.00% Impervious Runoff Depth∺6.16"<br>Tc=10.0 min CN=79 Runoff=6.22 cfs 0.514 af                   |
| Subcatchment 6C: A3 Drainage Area        | Runoff Area=1.000 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=6.22 cfs 0.514 af                   |
| Subcatchment 7C: A2 Drainage Area        | Runoff Area=1,000 ac 0.00% Impervious Runoff Depth=6.16°<br>Tc=10.0 min CN=79 Runoff=6.22 cfs 0.514 af                   |
| Subcatchment A1S: A1S Drainage Area      | Runoff Area=8.009 ac 0.00% impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=49.80 cfs 4.113 af                  |
| Subcatchment A1T: A1T Drainage Area      | Runoff Area=7.425 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=46.16 cfs 3.813 af                  |
| Subcatchment A2S: A2 Drainage Area       | Runoff Area=12.241 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=76.11 cfs 6.287 af                 |
| Subcatchment A2T: A2 Drainage Area       | Runoff Area=5.120 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10,0 min CN=79 Runoff=31.83 cfs 2.629 af                  |
| Subcatchment A3S: A3S Drainage Area      | Runoff Area=10.760 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=66.90 cfs 5.526 af                 |
| Subcatchment A3T: A3T Drainage Area Flow | Runoff Area=7.489 ac  0.00% Impervious Runoff Depth=6.16"<br>Length=1,050' Tc=16.7 min  CN=79 Runoff=38.81 cfs  3.846 af |
| Subcatchment B1S: B1S Drainage Area      | Runoff Area=14.884 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=92.54 cfs 7.644 af                 |
| Subcatchment B1T: B1T Drainage Area Flow | Runoff Area=7.499 ac 0.00% Impervious Runoff Depth=6.16" w Length=950' To=16.0 min CN=79 Runoff=39.52 cfs 3.851 af       |
| Subcatchment B2S: B2S Drainage Area      | Runoff Area=8.806 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=54.75 cfs 4.522 af                  |

Part III

| Post Development 25 Yr Drainage Prepared by Hanson Professional Services HydroCAD® 10.00-17 s/n 09651 © 2016 HydroC |                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Subcatchment B2T: B2T Drainage Area Flow                                                                            | Runoff Area=4.309 ac 0.00% Impervious Runoff Depth=6.16"<br>Length=850' Tc=13.7 min CN=79 Runoff=24.07 cfs 2.213 af |
| Subcatchment C1S: C1 Drainage Area                                                                                  | Runoff Area=11.506 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=71.54 cfs 5.909 af            |
| Subcatchment C1SN1: C1SN1 Drainage Area                                                                             | Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=1.55 cfs 0.128 af              |
| Subcatchment C1SN2: C1SN2 Drainage Area                                                                             | Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=1.55 cfs 0.128 af              |
| Subcatchment C1SS1: C1SS1 Drainage Area                                                                             | Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=1.55 cfs 0.128 af              |
| Subcatchment C1SS2: C1SS2 Drainage Area                                                                             | Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=6.16"<br>Tc=10.0 min CN=79 Runoff=1.55 cfs 0.128 af              |
| Subcatchment C1T: C1 Drainage Area Flow                                                                             | Runoff Area=6.292 ac 0.00% Impervious Runoff Depth=6.16"<br>Length=800' Tc=12.5 min CN=79 Runoff=36.29 cfs 3.231 af |
| Subcatchment C2S: C2 Drainage Area                                                                                  | Runoff Area=10.038 ac 0.00% Impervious Runoff Depth=6.16*<br>Tc=10.0 min CN=79 Runoff=62.41 cfs 5.155 af            |
| Subcatchment C2T: C2 Drainage Area Flow                                                                             | Runoff Area=5.249 ac 0.00% Impervious Runoff Depth=6.16"<br>Length=800' Tc=12.5 min CN=79 Runoff=30.27 cfs 2.696 af |
| Subcatchment C3; C3 Drainage Area                                                                                   | Runoff Area=3.500 ac 0.00% Impervious Runoff Depth=7.01"<br>Tc=10.0 min CN=86 Runoff=24.05 cfs 2.045 af             |
| Subcatchment C4: C4 Drainage Area                                                                                   | Runoff Area=9.500 ac 0.00% Impervious Runoff Depth=7.01" Tc=10.0 min CN=86 Runoff=65.28 cfs 5.551 af                |
| Subcatchment C5: C5 Drainage Area                                                                                   | Runoff Area=2.690 ac 0.00% Impervious Runoff Depth=7.01" Tc=10.0 min CN=86 Runoff=18.49 cfs 1.572 af                |
| Subcatchment C6: C6 Drainage Area                                                                                   | Runoff Area=3.982 ac 0.00% Impervious Runoff Depth=7.01" Tc=10.0 min CN=86 Runoff=27.36 cfs 2.327 af                |
| Subcatchment PAR: PA Rainfall Area                                                                                  | Runoff Area=7.440 ac 0.00% Impervious Runoff Depth=8.46" Tc=0.0 min CN=98 Runoff=77.55 cfs 5.245 af                 |
| Subcatchment PBR: PB Rainfall Area                                                                                  | Runoff Area=4,290 ac 0.00% Impervious Runoff Depth=8,46" Tc=0.0 min CN=98 Runoff=44,71 cfs 3,024 af                 |
| Subcatchment PCR: PC Rainfall Area                                                                                  | Runoff Area=4.540 ac 0.00% Impervious Runoff Depth=8.46"                                                            |

Reach 1CC: 1CC Collector Channel Avg. Flow Depth=4.52' Max Vel=3.89 fps Inflow=213.11 cfs 19.540 af n=0.030 L=222.0' S=0.0020 '/' Capacity=2,157.50 cfs Outflow=211.91 cfs 19.540 af

Tc=0.0 min CN=98 Runoff=47.32 cfs 3.201 af

Type III 24-hr 25-Year Rainfall=8.70"

Post Development 25 Yr Drainage

| Prepared by Hanson Professional Services Inc.  HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC  Printed 8/20/2018 Page 8                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reach 2CC: 2CC Collector Channel Avg. Flow Depth=1.28' Max Vel=1.58 fps Inflow=9.20 cfs 0.760 af n=0.030 L=650.0' S=0.0020 '/' Capacity=46.53 cfs Outflow=7.72 cfs 0.760 af                             |
| Reach 5CC: A2 Collector Channel Avg. Flow Depth=0.97' Max Vel=1.36 fps Inflow=6.22 cfs 0.514 af                                                                                                         |
| n=0.030 L=595.0' S=0.0015 '/' Capacity=68.72 cfs Outflow=5.17 cfs 0.514 af  Reach 6CC: A3 Collector Channel Avg. Flow Depth=0.77' Max Vel=1.97 fps Inflow=6.22 cfs 0.514 af                             |
| n=0,030 L=740.0' S=0.0040 '/' Capacity=50.02 cfs Outflow=5.34 cfs 0.514 af                                                                                                                              |
| Reach A2-1: A2-1 Channel  Avg. Flow Depth=1.24' Max Vel=1.57 fps Inflow=8.74 cfs 1.027 af n=0.030 L=250.5' S=0.0015 '/' Capacity=83.47 cfs Outflow=8.70 cfs 1.027 af                                    |
| Reach A2-2: A2-2 Channel Avg. Flow Depth=2.53' Max Vel=3.72 fps Inflow=114.51 cfs 9.943 af n=0.025 L=257.0' S=0.0020 '/' Capacity=338.68 cfs Outflow=113.50 cfs 9.943 af                                |
| Reach A2-3: A2-3 Channel Avg. Flow Depth=2.57' Max Vel=3.19 fps Inflow=113.50 cfs 9.943 af n=0.030 L=582.0' S=0.0020 7' Capacity=532.10 cfs Outflow=108.05 cfs 9.943 af                                 |
| Reach A2-4: Chute-Concrete Block Avg. Flow Depth=0.75' Max Vel=11.15 fps Inflow=108.05 cfs 9.943 af n=0.025 L=250.0' S=0.0697'/ Capacity=692.98 cfs Outflow=107.90 cfs 9.943 af                         |
| Reach A2-5: Cocrete Block-Channel Avg. Flow Depth=0.30' Max Vel=11.21 fps Inflow=8.70 cfs 1.027 af n=0.025 L=5.6' S=0.2482 '/' Capacity=903.50 cfs Outflow=8.70 cfs 1.027 af                            |
| Reach B1: 5' x 4' Box Culvert                                                                                                                                                                           |
| Reach B2: 5' x 4' Box Culvert Avg. Flow Depth=2.40' Max Vel=17.67 fps Inflow=211.91 cfs 19.540 af 60.0" x 48.0" Box Pipe n=0.013 L=200.0' S=0.0183 '/' Capacity=331.32 cfs Outflow=211.71 cfs 19.540 af |
| Reach C1-4: Chute-Concrete Block Avg. Flow Depth=1.01' Max Vet=23.03 fps Inflow=211.71 cfs 19.540 af n=0.025 L=76.0' S=0.2474 '/' Capacity=872.67 cfs Outflow=211.66 cfs 19.540 af                      |
| Reach C1SCCN1: C1SCCN1 Collector Avg. Flow Depth=0.33' Max Vel=1.19 fps Inflow=1.55 cfs 0.128 af n=0.030                                                                                                |
| Reach C1SCCN2; C1SCCN2 Collector Avg. Flow Depth=0.33¹ Max Vel=1.19 fps Inflow=1.55 cfs 0.128 af n=0.030 L=287.5¹ S=0.0033 ¹¹ Capacity=24.36 cfs Outflow=1.44 cfs 0.128 af                              |
| Reach C1SCCS1: C1SCCS1 Collector Avg. Flow Depth=0.33' Max Vel=1.19 fps Inflow=1.55 cfs 0.128 af n=0.030 L=280.0' S=0.0033 '/' Capacity=24.30 cfs Outflow=1.44 cfs 0.128 af                             |
| Reach C1SCCS2: C1SCCS2 Collector Avg. Flow Depth=0.33' Max Vel=1.19 fps Inflow=1.55 cfs 0.128 af n=0.030 L=280.0' S=0.0033'/ Capacity=24.30 cfs Outflow=1.44 cfs 0.128 af                               |
| Reach C2-3: C2-3 Channel Avg. Flow Depth=2.82' Max Vel=3.06 fps Inflow=91.74 cfs 7.851 af n=0.030 L=882.0' S=0.0020 '/' Capacity=178.76 cfs Outflow=82.99 cfs 7.851 af                                  |

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 9

- Reach C2-5; C2-5 Channel Avg. Flow Depth=1.08' Max Vel=8.22 fps Inflow=82.96 cfs 7.851 af n=0.025 L=106.0' S=0.0293'/' Capacity=492.25 cfs Outflow=82.89 cfs 7.851 af
- Reach CC: Chute-Concrete Block Open Avg. Flow Depth=0.21' Max Vel=6.18 fps Inflow=7.72 cfs 0.760 af n=0.025 L=160.0' S=0.1028 '/' Capacity=562.60 cfs Outflow=7.71 cfs 0.760 af

- Reach NW: Chute-Concrete Block n=0.025 L=464.0' S=0.2500 '/' Capacity=877.30 cfs Outflow=77.39 cfs 6.735 af
- Reach OC: Existing Offsite Channel Avg. Flow Depth=1.82' Max Vel=1.72 fps Inflow=33.70 cfs 21.821 af n=0.030 L=2,800.0' S=0.0010 V Capacity=44.23 cfs Outflow=32.78 cfs 21.722 af
- Reach P1: Culvert Avg. Flow Depth=1.97' Max Vel=13.43 fps Inflow=82.99 cfs 7.851 af 48.0" Round Pipe n=0.011 L=64.0' S=0.0100 '/' Capacity=169.76 cfs Outflow=82.96 cfs 7.851 af
- Reach P2: Culvert Avg. Flow Depth=0.44' Max Vel=6.62 fps Inflow=2.88 cfs 0.257 af 18.0" Round Pipe n=0.011 L=72.0' S=0.0150 '/ Capacity=15.20 cfs Outflow=2.88 cfs 0.257 af
- Reach P3: Culvert Avg. Flow Depth=0.44' Max Vel=6.62 fps Inflow=2.89 cfs 0.257 af 18.0" Round Pipe n=0.011 L=72.0' S=0.0150 '/' Capacity=15.20 cfs Outflow=2.89 cfs 0.257 af
- Reach S: Chute-Concrete Block | Avg. Flow Depth=0.72' | Max Vel=19.13 fps | Inflow=107.94 cfs | 8.916 af n=0.025 | L=459.0' | S=0.2500 '/' | Capacity=877.30 cfs | Outflow=107.70 cfs | 8.916 af

- Reach SW-1: Chute-Concrete Block Avg. Flow Depth=0.80' Max Vel=14.51 fps Inflow=95.76 cfs 7.926 af n=0.025 L=266.0' S=0.1269'/ Capacity=624.99 cfs Outflow=95.59 cfs 7.926 af
- Reach W: Chute-Concrete Block n=0.025 | Avg. Flow Depth=0.76' Max Vel=20.06 fps Inflow=127.46 cfs 11.495 af L=464.0' S=0.2500 '/' Capacity=877.30 cfs Outflow=127.27 cfs 11.495 af

Part III

Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 10

Pond PA: Retention Pond A

Peak Elev=47.33' Storage=26.200 af Inflow=225.75 cfs 26.201 af

Outflow=0.00 cfs 0.000 af

Pond PB: Detention Pond B

Peak Elev=50.87' Storage=11.562 af Inflow=235.89 cfs 22.565 af

Outflow=33.70 cfs 21.821 af

Pond PC: Retention Pond C

Peak Elev=42.36' Storage=32.676 af Inflow=313.19 cfs 32.676 af

Outflow=0.00 cfs 0.000 af

Total Runoff Area = 164.599 ac Runoff Volume = 89.038 af Average Runoff Depth = 6.49"

100.00% Pervious = 164.599 ac 0.00% Impervious = 0.000 ac

Runoff

### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

6.22 cfs @ 12.14 hrs, Volume=

Page 11

# Summary for Subcatchment 1C: 1C Drainage Area

Use Conservative Value of Tc=10 min

S-----

0.514 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)          | CN  | Desc             | cription             |                |                                                |
|-------------|---------------|-----|------------------|----------------------|----------------|------------------------------------------------|
| 1.          | 000           | 79  | 50-7             | 5% Grass             | cover, Fair,   | HSG C                                          |
| 1.          | 000           |     | 100.             | 00% Pervi            | ous Area       |                                                |
| Tc<br>(min) | Lengi<br>(fee |     | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |
| 10.0        | (icc          | ,,, | (ivit)           | (10300)              | (010)          | Direct Entry, Drainage Area at Bottom of Slope |

### Subcatchment 1C: 1C Drainage Area



Runoff

#### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

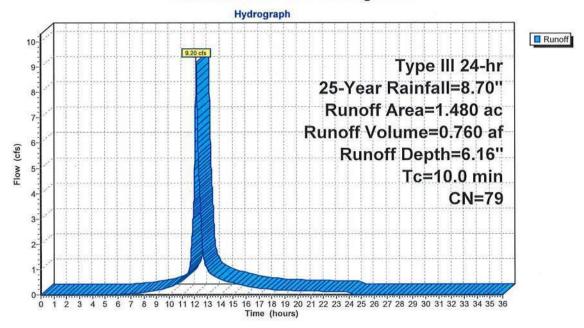
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

9.20 cfs @ 12.14 hrs, Volume=

Page 12

# Summary for Subcatchment 2C: 2C Drainage Area


Use Conservative Value of Tc=10 min

0.760 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area  | (ac) | CN  | Desc    | cription  |          |                                                       |
|-------|------|-----|---------|-----------|----------|-------------------------------------------------------|
| 1.    | 480  | 79  | 50-7    | 5% Grass  | HSG C    |                                                       |
| 1     | 480  |     | 100.    | 00% Pervi | ous Area |                                                       |
| Tc    | Leng | th  | Slope   | Velocity  | Capacity | Description                                           |
| (min) | (fee | et) | (ft/ft) | (ft/sec)  | (cfs)    | MIN-SADO-MANA 250 250 250 250 250 250 250 250 250 250 |
| 10.0  | 161  |     | 375     | 24        | 200      | Direct Entry, Drainage Area at Bottom of Slope        |

## Subcatchment 2C: 2C Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

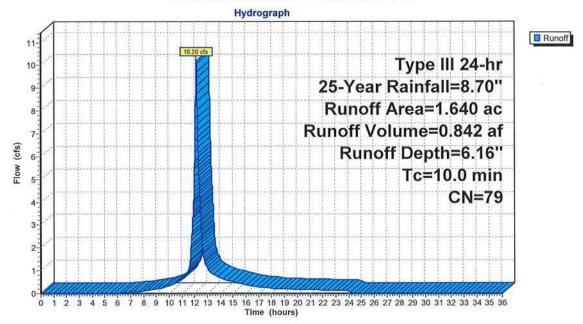
Prepared by Hanson Professional Services Inc.

Printed 8/20/2018 Page 13

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

## Summary for Subcatchment 3C: 3C Drainage Area

Use Conservative Value of Tc=10 min


Runoff = 10.20 cfs @ 12.14 hrs, Volume=

0.842 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)          | CN | Desc             | Description          |                |                                          |  |  |  |  |
|-------------|---------------|----|------------------|----------------------|----------------|------------------------------------------|--|--|--|--|
| 1.640       |               | 79 | 50-7             | 5% Grass             | cover, Fair    | , HSG C                                  |  |  |  |  |
| 1.          | 640           |    | 100.             | 00% Pervi            | ous Area       |                                          |  |  |  |  |
| Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                              |  |  |  |  |
| 10.0        |               |    | 70               |                      |                | Direct Entry, Surface Drainage to Pond B |  |  |  |  |

## Subcatchment 3C: 3C Drainage Area



#### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

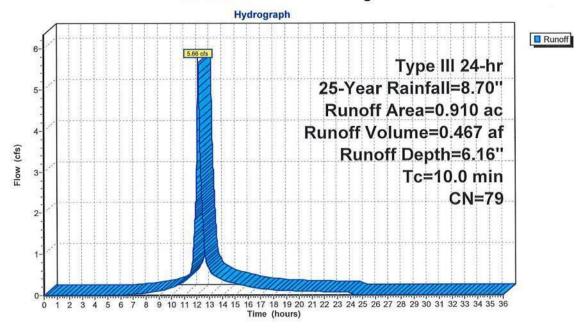
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

5.66 cfs @ 12.14 hrs, Volume=

Page 14

## Summary for Subcatchment 4C: 4C Drainage Area


Use Conservative Value of Tc=10 min

0.467 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN | Desc             | cription             |                |                                          |
|-------------|-----------------|----|------------------|----------------------|----------------|------------------------------------------|
| 0.          | .910            | 79 | 50-7             | 5% Grass             | cover, Fair,   | , HSG C                                  |
| 0.          | 910             |    | 100.             | 00% Pervi            | ous Area       |                                          |
| Tc<br>(min) | Lengtl<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                              |
| 10.0        | 70              |    | 100 0 200 -      | 7/2                  | - 12 (A)       | Direct Entry, Surface Drainage to Pond B |

#### Subcatchment 4C: 4C Drainage Area



#### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

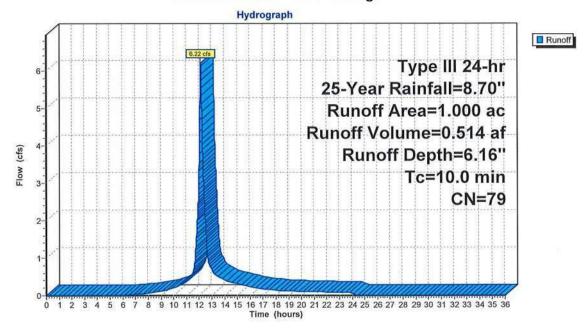
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

6.22 cfs @ 12.14 hrs, Volume=

Page 15

## Summary for Subcatchment 5C: A2 Drainage Area


Use Conservative Value of Tc=10 min

0.514 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)           | CN | Desc             | cription             |                |                                                |
|-------------|----------------|----|------------------|----------------------|----------------|------------------------------------------------|
| 1.          | .000           | 79 | 50-7             | 5% Grass             | cover, Fair    | , HSG C                                        |
| 1.          | .000           |    | 100.             | 00% Pervi            | ous Area       |                                                |
| Tc<br>(min) | Lengt<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |
| 10.0        |                |    | X                | **                   | 30-0-30-       | Direct Entry, Drainage Area at Bottom of Slope |

#### Subcatchment 5C: A2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

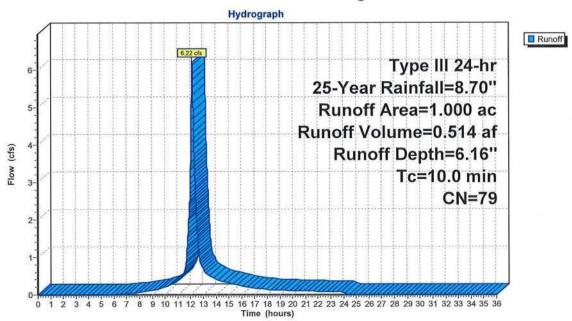
Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 16

## Summary for Subcatchment 6C: A3 Drainage Area


Use Conservative Value of Tc=10 min

Runoff = 6.22 cfs @ 12.14 hrs, Volume= 0.514 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN | Desc                            | cription             |                |                                                |  |  |  |  |
|-------------|-----------------|----|---------------------------------|----------------------|----------------|------------------------------------------------|--|--|--|--|
| 1.          | 1.000 79        |    | 50-75% Grass cover, Fair, HSG C |                      |                |                                                |  |  |  |  |
| 1.          | .000            |    | 100.                            | 00% Pervi            | ous Area       |                                                |  |  |  |  |
| Tc<br>(min) | Length<br>(feet |    | lope<br>ft/ft)                  | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |  |  |  |  |
| 10.0        | 2 - 2           |    | 200                             |                      |                | Direct Entry, Drainage Area at Bottom of Slope |  |  |  |  |

#### Subcatchment 6C: A3 Drainage Area



#### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018 Page 17

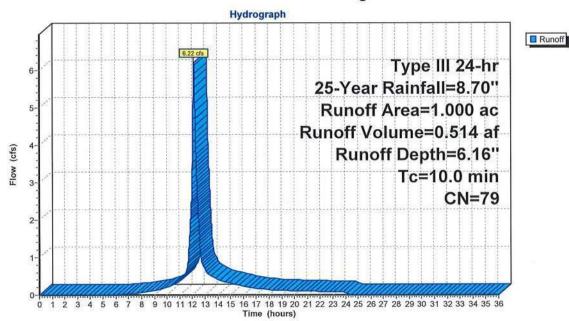
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

6.22 cfs @ 12.14 hrs, Volume=

#### ı ayı

# Summary for Subcatchment 7C: A2 Drainage Area

Use Conservative Value of Tc=10 min


.

0.514 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)         | CN | Des              | cription                        |                   |                                                |  |  |  |  |  |  |
|-------------|--------------|----|------------------|---------------------------------|-------------------|------------------------------------------------|--|--|--|--|--|--|
| 1.          | 1.000 7      |    | 50-7             | 50-75% Grass cover, Fair, HSG C |                   |                                                |  |  |  |  |  |  |
| 1.          | .000         |    | 100.             | 00% Pervi                       | ous Area          |                                                |  |  |  |  |  |  |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec)            | Capacity<br>(cfs) | Description                                    |  |  |  |  |  |  |
| 10.0        | 72           | 30 | -0.              | 10 10 E                         |                   | Direct Entry, Drainage Area at Bottom of Slope |  |  |  |  |  |  |

#### Subcatchment 7C: A2 Drainage Area



### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

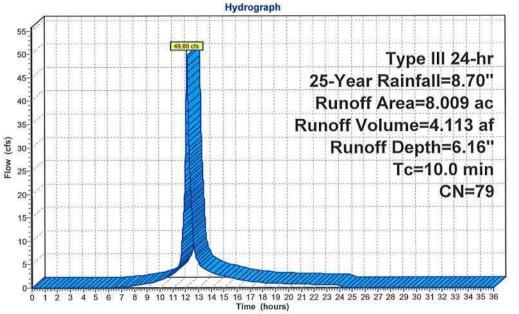
Prepared by Hanson Professional Services Inc.

Printed 8/20/2018 Page 18

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

49.80 cfs @ 12.14 hrs, Volume=

## Summary for Subcatchment A1S: A1S Drainage Area


Use Conservative Value of Tc=10 min.

4.113 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) (           | CN De   | scription                       |                |                                         |  |  |  |  |
|-------------|------------------|---------|---------------------------------|----------------|-----------------------------------------|--|--|--|--|
| 8           | .009             | 79 50-  | 50-75% Grass cover, Fair, HSG C |                |                                         |  |  |  |  |
| 8           | .009             | 100     | ).00% Perv                      | ious Area      |                                         |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | 1020000 | Velocity<br>(ft/sec)            | Capacity (cfs) | Description                             |  |  |  |  |
| 10.0        | - A - 10         |         | - 0                             | 7              | Direct Entry, A1S-Chute Flow Evaluation |  |  |  |  |

#### Subcatchment A1S: A1S Drainage Area



Runoff

Type III 24-hr 25-Year Rainfall=8.70"

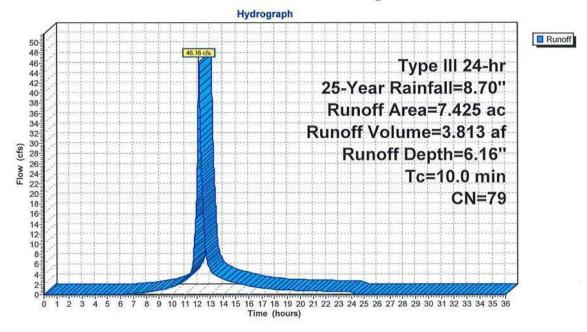
Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 19

# Summary for Subcatchment A1T: A1T Drainage Area


Runoff = 46.16 cfs @ 12.14 hrs, Volume=

3.813 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area              | (ac) C        | N Des            | cription             |                   |                                         |
|-------------------|---------------|------------------|----------------------|-------------------|-----------------------------------------|
| 7.425 79<br>7.425 |               | 79 50-7          | 5% Grass             | cover, Fair       | HSG C                                   |
|                   |               | 100.             | 00% Pervi            | ious Area         |                                         |
| Tc<br>(min)       | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
| 10.0              |               | 8                | 3                    | 3 1 8             | Direct Entry, A1T-Chute Flow Evaluation |

#### Subcatchment A1T: A1T Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

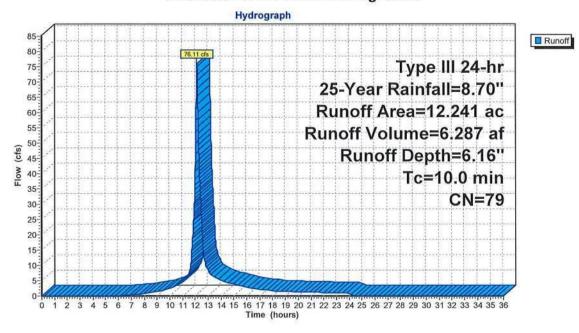
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 20

## Summary for Subcatchment A2S: A2 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff = 76.11 cfs @ 12.14 hrs, Volume=

6.287 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)          | CN | CN Description                     |                      |                |                                |  |  |  |
|-------------|---------------|----|------------------------------------|----------------------|----------------|--------------------------------|--|--|--|
| 12          | 12.241        |    | 79 50-75% Grass cover, Fair, HSG C |                      |                |                                |  |  |  |
| 12          | 241           |    | 100.                               | 00% Pervi            | ous Area       |                                |  |  |  |
| Tc<br>(min) | Lengt<br>(fee |    | lope<br>ft/ft)                     | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |  |  |  |
| 10.0        |               |    |                                    |                      |                | Direct Entry, A2 Drainage Area |  |  |  |

# Subcatchment A2S: A2 Drainage Area



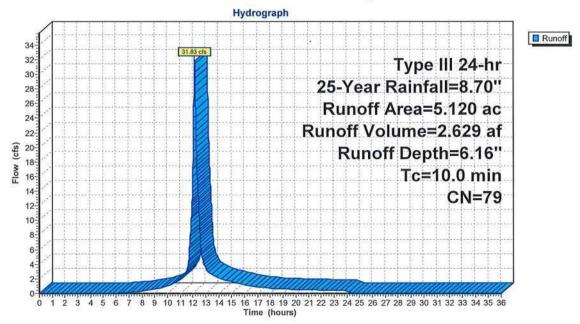
Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 21

## Summary for Subcatchment A2T: A2 Drainage Area

Runoff


31.83 cfs @ 12.14 hrs, Volume=

2.629 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | c) CN Description     |                                 |                      |                                       |                                |  |  |  |  |
|-------------|-----------------|-----------------------|---------------------------------|----------------------|---------------------------------------|--------------------------------|--|--|--|--|
| 5.120 79    |                 | 79                    | 50-75% Grass cover, Fair, HSG C |                      |                                       |                                |  |  |  |  |
| 5.120       |                 | 100.00% Pervious Area |                                 |                      |                                       |                                |  |  |  |  |
| Tc<br>(min) | Lengtl<br>(feet |                       | ope<br>ft/ft)                   | Velocity<br>(ft/sec) | Capacity<br>(cfs)                     | Description                    |  |  |  |  |
| 10.0        |                 |                       |                                 |                      | · · · · · · · · · · · · · · · · · · · | Direct Entry, A2 Drainage Area |  |  |  |  |

## Subcatchment A2T: A2 Drainage Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

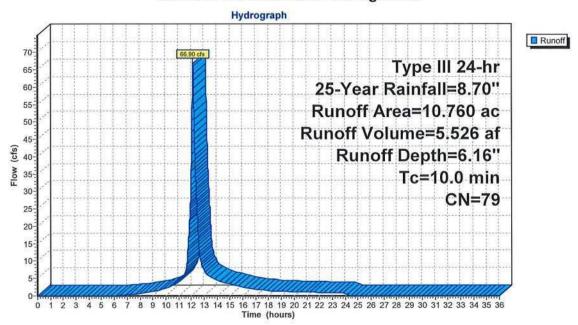
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

66.90 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 22

### Summary for Subcatchment A3S: A3S Drainage Area


Use Conservative Value of Tc=10 min.

5.526 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN I | Desc         | ription              |                |                                         |
|-------------|-----------------|------|--------------|----------------------|----------------|-----------------------------------------|
| 10.         | 760             | 79 5 | 50-75        | 5% Grass             | cover, Fair    | , HSG C                                 |
| 10.         | 760             | 8    | 100.0        | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min) | Length<br>(feet |      | ope<br>t/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 10.0        |                 |      |              |                      |                | Direct Entry, A3S-Chute Flow Evaluation |

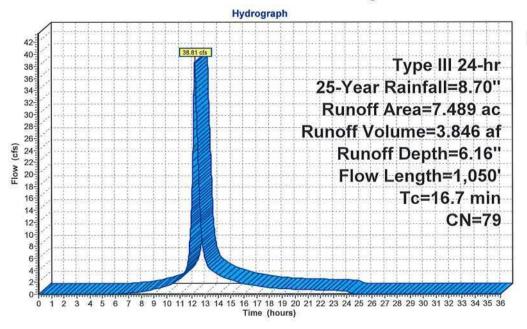
# Subcatchment A3S: A3S Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 23

### Summary for Subcatchment A3T: A3T Drainage Area


Runoff = 38.81 cfs @ 12.23 hrs, Volume=

3.846 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription             |                |                                         |
|-------------|---------------|------------------|----------------------|----------------|-----------------------------------------|
| 7.          | 7.489 7       |                  | 5% Grass             | cover, Fair    | r, HSG C                                |
| 7.489       |               | 100.             | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 9.6         | 750           |                  | 1.30                 |                | Direct Entry, A3T-Chute Flow Evaluation |
| 7.1         | 300           |                  | 0.70                 |                | Direct Entry,                           |
| 16.7        | 1 050         | Total            |                      |                |                                         |

### Subcatchment A3T: A3T Drainage Area



Runoff

## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

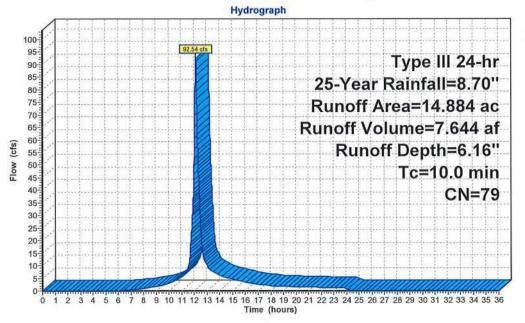
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

92.54 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 24

### Summary for Subcatchment B1S: B1S Drainage Area


Use Conservative Value of Tc= 10 min.

7.644 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN | Desc                            | cription             |                |                                         |  |  |  |  |
|-------------|-----------------|----|---------------------------------|----------------------|----------------|-----------------------------------------|--|--|--|--|
| 14.         | 14.884          |    | 50-75% Grass cover, Fair, HSG C |                      |                |                                         |  |  |  |  |
| 14.         | 884             |    | 100.                            | 00% Pervi            | ous Area       |                                         |  |  |  |  |
| Tc<br>(min) | Length<br>(feet | 7. | ope<br>ft/ft)                   | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |  |  |  |  |
| 10.0        |                 |    |                                 |                      |                | Direct Entry, B1S-Chute Flow Evaluation |  |  |  |  |

#### Subcatchment B1S: B1S Drainage Area



Runoff

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

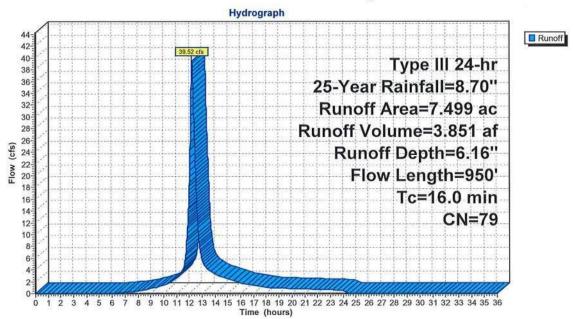
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 25

## Summary for Subcatchment B1T: B1T Drainage Area

Runoff


39.52 cfs @ 12.21 hrs, Volume=

3.851 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription             |                |                                         |
|-------------|---------------|------------------|----------------------|----------------|-----------------------------------------|
| 7.          | 499 7         | 9 50-7           | 5% Grass             | cover, Fair    | HSG C                                   |
| 7.          | 499           | 100.             | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 7.7         | 600           | - W - ST         | 1.30                 |                | Direct Entry, B1T-Chute Flow Evaluation |
| 8.3         | 350           |                  | 0.70                 |                | Direct Entry,                           |
| 16.0        | 950           | Total            |                      |                |                                         |

## Subcatchment B1T: B1T Drainage Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

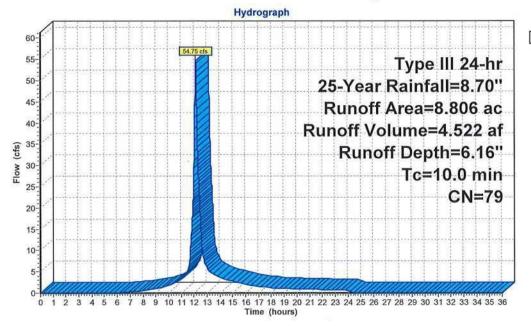
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

54.75 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 26

## Summary for Subcatchment B2S: B2S Drainage Area


Use Conservative Value of Tc=10 min.

4.522 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN  | Desc             | cription             |                |                                         |
|-------------|-----------------|-----|------------------|----------------------|----------------|-----------------------------------------|
| 8.          | .806            | 79  | 50-7             | 5% Grass             | cover, Fair    | , HSG C                                 |
| 8.          | .806            |     | 100.             | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min) | Lengtl<br>(feet | 200 | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 10.0        |                 |     |                  |                      |                | Direct Entry, B2S-Chute Flow Evaluation |

### Subcatchment B2S: B2S Drainage Area



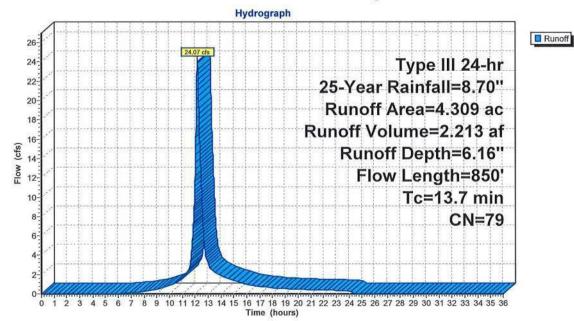
Runoff

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 27

## Summary for Subcatchment B2T: B2T Drainage Area


Runoff = 24.07 cfs @ 12.19 hrs, Volume=

2.213 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| 0-0 | Area        | (ac) C        | N Des            | cription             |                |                                         |
|-----|-------------|---------------|------------------|----------------------|----------------|-----------------------------------------|
| 00  | 4.          | .309 7        | 79 50-7          | 5% Grass             | cover, Fair    | HSG C                                   |
|     | 4.          | .309          | 100.             | 00% Pervi            | ous Area       |                                         |
|     | Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 1   | 7.7         | 600           |                  | 1.30                 |                | Direct Entry, B2T-Chute Flow Evaluation |
|     | 6.0         | 250           |                  | 0.70                 |                | Direct Entry,                           |
|     | 13.7        | 850           | Total            |                      |                |                                         |

## Subcatchment B2T: B2T Drainage Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

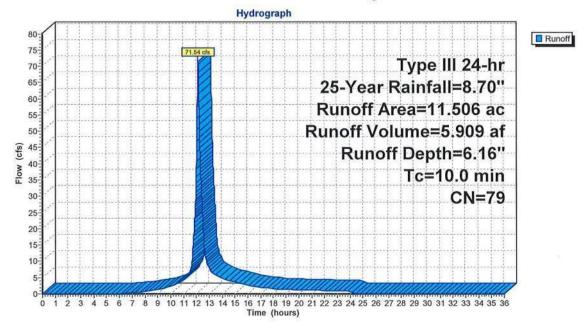
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

71.54 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 28

### Summary for Subcatchment C1S: C1 Drainage Area


Use Conservative Value of Tc=10 min.

5.909 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) (           | CN De            | scription                                                |                |                                |  |  |  |  |
|-------------|------------------|------------------|----------------------------------------------------------|----------------|--------------------------------|--|--|--|--|
| 11          | 506              | 79 50-           | 50-75% Grass cover, Fair, HSG C<br>100.00% Pervious Area |                |                                |  |  |  |  |
| 11          | 506              | 100              | 0.00% Perv                                               | ious Area      | 19                             |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec)                                     | Capacity (cfs) | Description                    |  |  |  |  |
| 10.0        |                  |                  |                                                          |                | Direct Entry, C1 Drainage Area |  |  |  |  |

# Subcatchment C1S: C1 Drainage Area



### Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

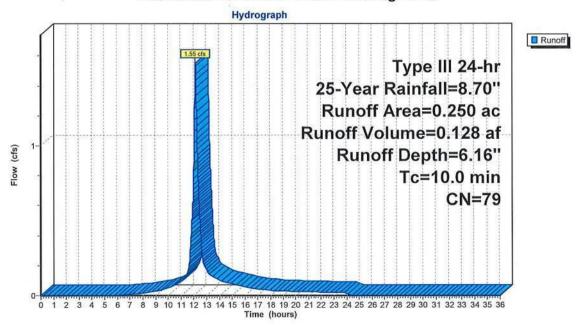
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

1.55 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 29

### Summary for Subcatchment C1SN1: C1SN1 Drainage Area


Use Conservative Value of Tc=10 min

0.128 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) | CN                                     | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cription  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|-------------|------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 0.          | 250  | 250 79 50-75% Grass cover, Fair, HSG C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250 79    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 0.          | 250  |                                        | 100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00% Pervi | ous Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| Tc<br>(min) | -    |                                        | The state of the s |           | A CONTRACTOR OF THE PARTY OF TH | Description                                    |
| 10.0        |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Direct Entry, Drainage Area at Bottom of Slope |

#### Subcatchment C1SN1: C1SN1 Drainage Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

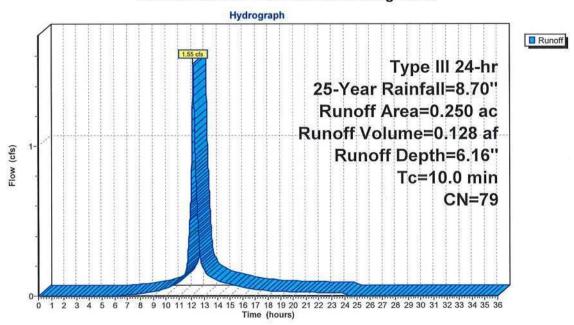
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 30

## Summary for Subcatchment C1SN2: C1SN2 Drainage Area

Use Conservative Value of Tc=10 min

\_\_\_\_\_


0.128 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

1.55 cfs @ 12.14 hrs, Volume=

| Area        | (ac)            | CN | Desc                            | cription             |                |                                                |  |  |  |
|-------------|-----------------|----|---------------------------------|----------------------|----------------|------------------------------------------------|--|--|--|
| 0.          | 0.250 79        |    | 50-75% Grass cover, Fair, HSG C |                      |                |                                                |  |  |  |
| 0.          | 250             |    | 100.                            | 00% Pervi            | ous Area       |                                                |  |  |  |
| Tc<br>(min) | Length<br>(feet |    | Slope<br>(ft/ft)                | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |  |  |  |
| 10.0        |                 |    |                                 |                      |                | Direct Entry, Drainage Area at Bottom of Slope |  |  |  |

#### Subcatchment C1SN2: C1SN2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018 Page 31

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

# Summary for Subcatchment C1SS1: C1SS1 Drainage Area

Use Conservative Value of Tc=10 min


Runoff = 1.55 cfs @ 12.14 hrs, Volume=

0.128 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)           | CN | Desc            | cription                        |                |                                                |  |  |  |  |
|-------------|----------------|----|-----------------|---------------------------------|----------------|------------------------------------------------|--|--|--|--|
| 0.          | 0.250 79       |    | 50-7            | 50-75% Grass cover, Fair, HSG C |                |                                                |  |  |  |  |
| 0.          | 250            |    | 100.            | 00% Pervi                       | ous Area       |                                                |  |  |  |  |
| Tc<br>(min) | Lengt<br>(feet |    | lope<br>(ft/ft) | Velocity<br>(ft/sec)            | Capacity (cfs) | Description                                    |  |  |  |  |
| 10.0        |                |    |                 |                                 |                | Direct Entry, Drainage Area at Bottom of Slope |  |  |  |  |

### Subcatchment C1SS1: C1SS1 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

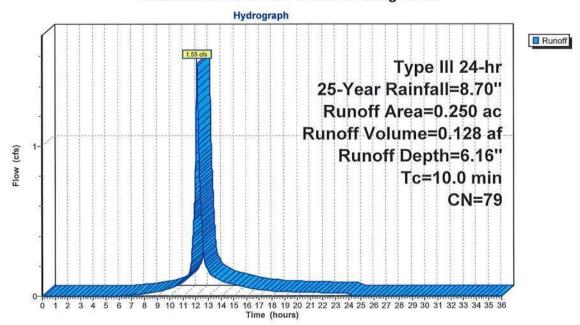
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 32

## Summary for Subcatchment C1SS2: C1SS2 Drainage Area

Use Conservative Value of Tc=10 min


Runoff = 1.55 cfs @ 12.14 hrs, Volume=

0.128 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN | Desc             | cription                        |                |                                                |  |  |  |  |
|-------------|-----------------|----|------------------|---------------------------------|----------------|------------------------------------------------|--|--|--|--|
| 0.250 79    |                 | 79 | 50-7             | 50-75% Grass cover, Fair, HSG C |                |                                                |  |  |  |  |
| 0.          | 250             |    | 100.             | 00% Pervi                       | ous Area       |                                                |  |  |  |  |
| Tc<br>(min) | Lengtl<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec)            | Capacity (cfs) | Description                                    |  |  |  |  |
| 10.0        |                 |    |                  |                                 |                | Direct Entry, Drainage Area at Bottom of Slope |  |  |  |  |

# Subcatchment C1SS2: C1SS2 Drainage Area

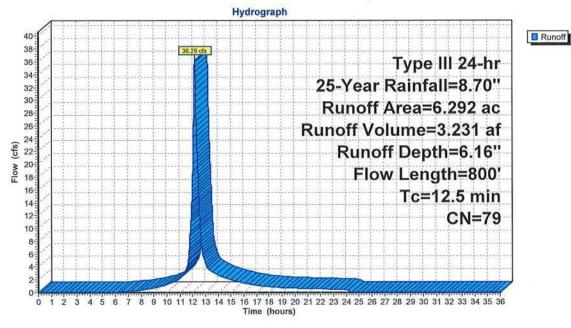


Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 33

## Summary for Subcatchment C1T: C1 Drainage Area


Runoff = 36.29 cfs @ 12.17 hrs, Volume=

3.231 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

|     | Area        | (ac) C        | N Des            | cription             |                                           |                                |  |
|-----|-------------|---------------|------------------|----------------------|-------------------------------------------|--------------------------------|--|
| 000 | 6.          | .292          | 79 50-7          | 5% Grass             | cover, Fair                               | , HSG C                        |  |
|     | 6.          | 6.292         |                  | 00% Pervi            | ious Area                                 |                                |  |
| 2   | Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs)                         | Description                    |  |
| Ò.  | 7.7         | 600           |                  | 1.30                 |                                           | Direct Entry, C1 Drainage Area |  |
|     | 4.8         | 200           |                  | 0.70                 | A 67 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - | Direct Entry,                  |  |
|     | 12.5        | 800           | Total            |                      |                                           |                                |  |

# Subcatchment C1T: C1 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

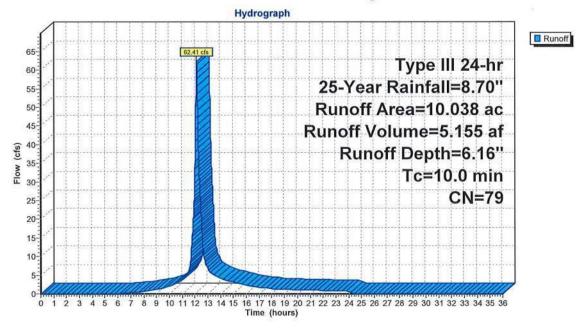
Prepared by Hanson Professional Services Inc.

Printed 8/20/2018 Page 34

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

### Summary for Subcatchment C2S: C2 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff = 62.41 cfs @ 12.14 hrs, Volume= 5.155 af,

5.155 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) (           | CN Des           | cription                                                 |                   |                                |  |  |  |  |
|-------------|------------------|------------------|----------------------------------------------------------|-------------------|--------------------------------|--|--|--|--|
| 10          | .038             | 79 50-7          | 50-75% Grass cover, Fair, HSG C<br>100.00% Pervious Area |                   |                                |  |  |  |  |
| 10          | .038             | 100              | .00% Pervi                                               | ous Area          |                                |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec)                                     | Capacity<br>(cfs) | Description                    |  |  |  |  |
| 10.0        |                  |                  |                                                          |                   | Direct Entry, C2 Drainage Area |  |  |  |  |

## Subcatchment C2S: C2 Drainage Area

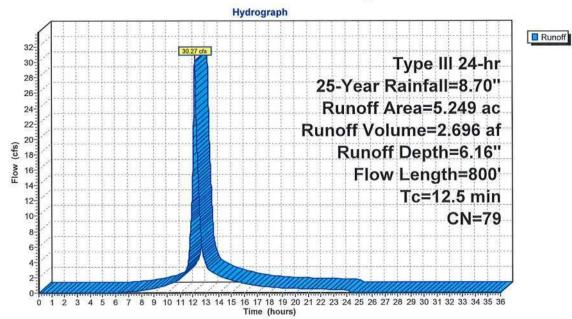


Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 35

## Summary for Subcatchment C2T: C2 Drainage Area


Runoff = 30.27 cfs @ 12.17 hrs, Volume=

2.696 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ac) C | N Des      | cription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|--|
| Area (ac)         CN         Description           5.249         79         50-75% Grass cover, Fair, HSG C           5.249         100.00% Pervious Area           Tc         Length         Slope         Velocity         Capacity         Description           (min)         (feet)         (ft/ft)         (ft/sec)         (cfs)           7.7         600         1.30         Direct Entry, C2 Drainage Area           4.8         200         0.70         Direct Entry, |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                |  |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 249    | 100.       | 00% Pervi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ous Area |                                |  |
| 18 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      | 1240010000 | Service Control of the Control of th |          | Description                    |  |
| 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600    |            | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Direct Entry, C2 Drainage Area |  |
| 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200    |            | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Direct Entry,                  |  |
| 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800    | Total      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                |  |

# Subcatchment C2T: C2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

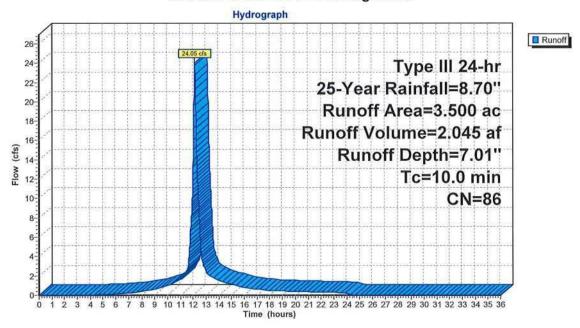
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 36

# Summary for Subcatchment C3: C3 Drainage Area

Existing Drainage Area Surface Drains to the North, Into Existing Low-Lying Excavated Pit C4 Drainage

Runoff


24.05 cfs @ 12.14 hrs, Volume=

2.045 af, Depth= 7.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) | CN De                                                                                                                                    | scription  |           |                                |  |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|--------------------------------|--|
| 3           | 500  | 500 86 <50% Grass cover, Poor, HSG C 500 100.00% Pervious Area  Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs) |            |           |                                |  |
| 3           | .500 | 100                                                                                                                                      | 0.00% Perv | ious Area |                                |  |
| Tc<br>(min) | -    |                                                                                                                                          |            |           | Description                    |  |
| 10.0        |      |                                                                                                                                          |            | X         | Direct Entry, C3 Drainage Area |  |

#### Subcatchment C3: C3 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

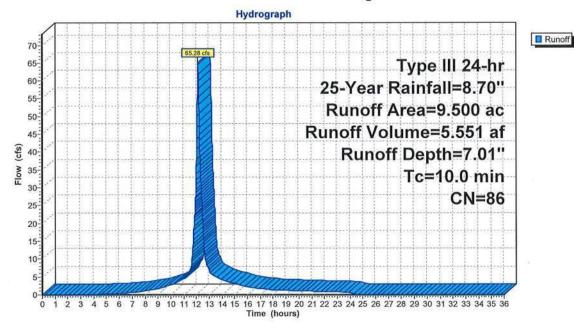
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 37

## Summary for Subcatchment C4: C4 Drainage Area

Existing Low-Lying Excavated Pit Area. Infiltration and Evaporation Occur Here.

Runoff


65.28 cfs @ 12.14 hrs, Volume=

5.551 af, Depth= 7.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN | Desc             | cription             |                |                                |  |
|-------------|-----------------|----|------------------|----------------------|----------------|--------------------------------|--|
| 9           | 9.500 86        |    | <50%             | % Grass co           | over, Poor,    | HSG C                          |  |
| 9           | .500            |    | 100.             | 00% Pervi            | ous Area       |                                |  |
| Tc<br>(min) | Length<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |  |
| 10.0        |                 |    | 7/7: V           |                      |                | Direct Entry, C4 Drainage Area |  |

### Subcatchment C4: C4 Drainage Area



### Post Development 25 Yr Drainage

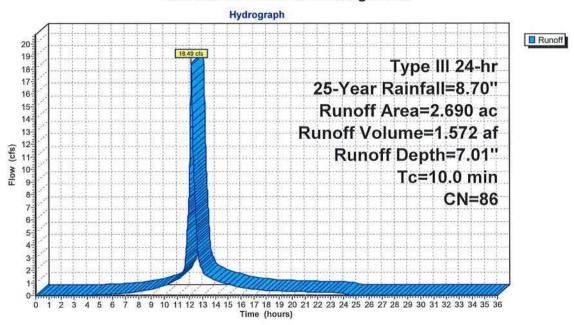
Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 38

## Summary for Subcatchment C5: C5 Drainage Area

Side Slope Drainage Area that Flows Into Pond C.


18.49 cfs @ 12.14 hrs, Volume=

1.572 af, Depth= 7.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)                                   | CN  | Desc           | cription             |                |                                |  |
|-------------|----------------------------------------|-----|----------------|----------------------|----------------|--------------------------------|--|
| 2           | 2.690 86 <50% Grass cover, Poor, HSG C |     |                |                      |                |                                |  |
| 2.          | .690                                   |     | 100.           | 00% Pervi            | ous Area       |                                |  |
| Tc<br>(min) | Lengt<br>(fee                          | 700 | lope<br>ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |  |
| 10.0        | (100                                   | (   | 1010           | (10000)              | (010)          | Direct Entry, C5 Drainage Area |  |

#### Subcatchment C5: C5 Drainage Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

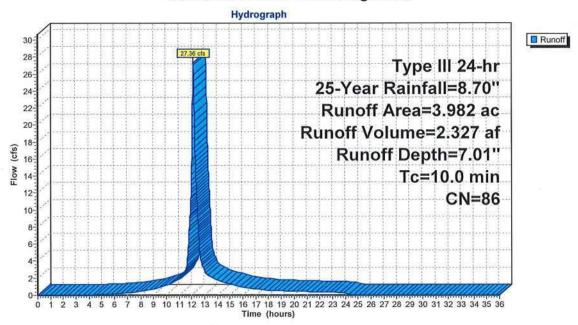
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 39

#### Summary for Subcatchment C6: C6 Drainage Area

Surrounding Drainage Area that Flows Into Pond A.

\_\_\_\_\_


27.36 cfs @ 12.14 hrs, Volume=

2.327 af, Depth= 7.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN | Desc             | cription                      |                |                                |  |  |  |  |
|-------------|-----------------|----|------------------|-------------------------------|----------------|--------------------------------|--|--|--|--|
| 3.          | 3.982 86        |    |                  | <50% Grass cover, Poor, HSG C |                |                                |  |  |  |  |
| 3.          | .982            |    | 100.             | 00% Pervi                     | ous Area       |                                |  |  |  |  |
| Tc<br>(min) | Lengtl<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec)          | Capacity (cfs) | Description                    |  |  |  |  |
| 10.0        |                 |    |                  |                               |                | Direct Entry, C6 Drainage Area |  |  |  |  |

#### Subcatchment C6: C6 Drainage Area



Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

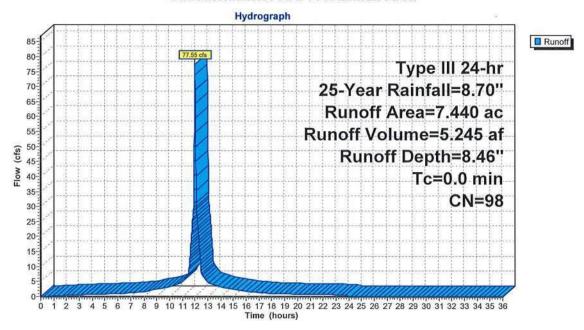
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

77.55 cfs @ 12.00 hrs, Volume=

Printed 8/20/2018

Page 40

## Summary for Subcatchment PAR: PA Rainfall Area


Use Conservative Value of Tc=10 min

5.245 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)         | CN | Des              | cription                     |                |                                  |  |  |  |  |
|-------------|--------------|----|------------------|------------------------------|----------------|----------------------------------|--|--|--|--|
| 7           | 7.440 98     |    |                  | Water Surface, 0% imp, HSG C |                |                                  |  |  |  |  |
| 7           | 440          |    | 100.             | 00% Pervi                    | ous Area       |                                  |  |  |  |  |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity (ft/sec)            | Capacity (cfs) | Description                      |  |  |  |  |
| 0.0         | 1.5.         |    | 1/               | 1                            | (0.0)          | Direct Entry, Rainfall at Pond A |  |  |  |  |

#### Subcatchment PAR: PA Rainfall Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

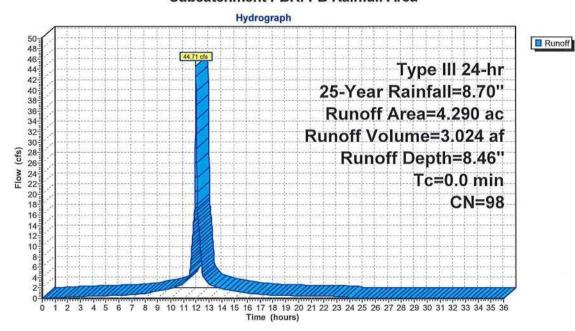
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

44.71 cfs @ 12.00 hrs, Volume=

Printed 8/20/2018

Page 41

#### Summary for Subcatchment PBR: PB Rainfall Area


Use Conservative Value of Tc=10 min

3.024 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) Cl       | V Des            | cription             |                |                                  |
|-------------|---------------|------------------|----------------------|----------------|----------------------------------|
| 4.          | 290 9         | 8 Wat            | er Surface           | , 0% imp, l    | HSG C                            |
| 4.          | 290           | 100.             | 00% Pervi            | ous Area       |                                  |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                      |
| 0.0         |               |                  |                      |                | Direct Entry, Rainfall at Pond B |

#### Subcatchment PBR: PB Rainfall Area



## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

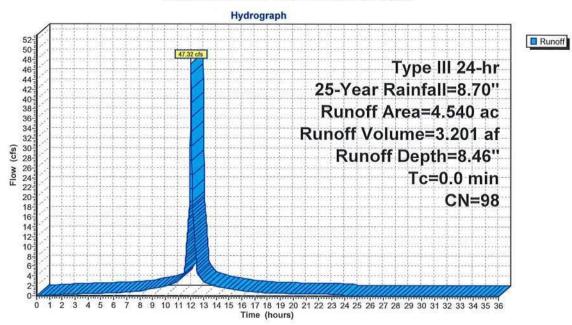
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

47.32 cfs @ 12.00 hrs, Volume=

Page 42

## Summary for Subcatchment PCR: PC Rainfall Area


Use Conservative Value of Tc=10 min

3.201 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)           | CN | Desc                         | cription             |                   |                                  |  |  |  |
|-------------|----------------|----|------------------------------|----------------------|-------------------|----------------------------------|--|--|--|
| 4           | 4.540 98       |    | Water Surface, 0% imp, HSG C |                      |                   |                                  |  |  |  |
| 4.          | .540           |    | 100.0                        | 00% Pervi            | ous Area          |                                  |  |  |  |
| Tc<br>(min) | Lengt<br>(feet |    | lope<br>ft/ft)               | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                      |  |  |  |
| 0.0         |                |    |                              |                      |                   | Direct Entry, Rainfall at Pond C |  |  |  |

#### Subcatchment PCR: PC Rainfall Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 43

## Summary for Reach 1CC: 1CC Collector Channel

Inflow Area = 38.047 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 213.11 cfs @ 12.17 hrs, Volume= 19.540 af

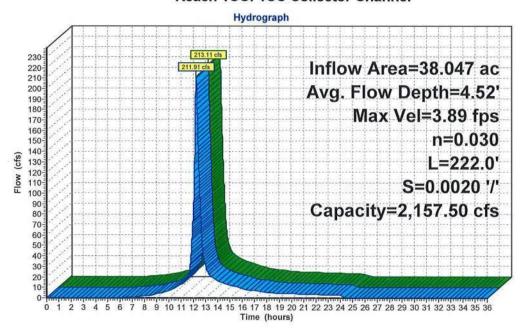
Outflow = 211.91 cfs @ 12.20 hrs, Volume= 19.540 af, Atten= 1%, Lag= 1.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.89 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 2.8 min

Peak Storage= 12,092 cf @ 12.19 hrs Average Depth at Peak Storage= 4.52'

Bank-Full Depth= 11.73' Flow Area= 310.4 sf, Capacity= 2,157.50 cfs


3.00' x 11.73' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 2.0 '/' Top Width= 49.92'

Length= 222.0' Slope= 0.0020 '/'
Inlet Invert= 53.89', Outlet Invert= 53.45'



#### Reach 1CC: 1CC Collector Channel



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 44

## Summary for Reach 2CC: 2CC Collector Channel

Inflow Area = 1.480 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow 9.20 cfs @ 12.14 hrs, Volume= 0.760 af

Outflow 7.72 cfs @ 12.32 hrs, Volume= 0.760 af, Atten= 16%, Lag= 11.0 min

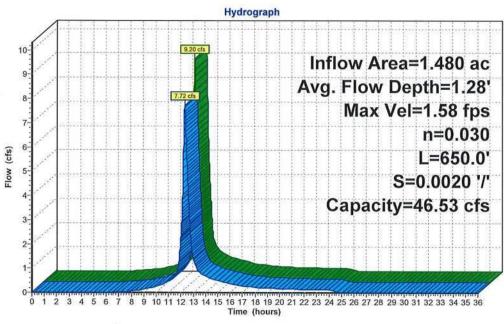
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.58 fps, Min. Travel Time= 6.8 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 20.9 min

Peak Storage= 3,170 cf @ 12.21 hrs Average Depth at Peak Storage= 1.28'

Bank-Full Depth= 2.50' Flow Area= 18.8 sf, Capacity= 46.53 cfs

0.00' x 2.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 3.0 '/' Top Width= 15.00'

Length= 650.0' Slope= 0.0020 '/'

Inlet Invert= 54.50', Outlet Invert= 53.20'



#### Reach 2CC: 2CC Collector Channel



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 45

## Summary for Reach 5CC: A2 Collector Channel

Inflow Area = 1.000 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 6.22 cfs @ 12.14 hrs, Volume= 0.514 af

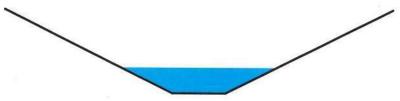
Outflow = 5.17 cfs @ 12.33 hrs, Volume= 0.514 af, Atten= 17%, Lag= 11.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

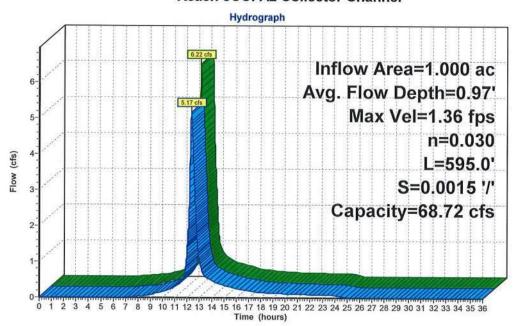
Max. Velocity= 1.36 fps, Min. Travel Time= 7.3 min

Avg. Velocity = 0.42 fps, Avg. Travel Time= 23.7 min

Peak Storage= 2,258 cf @ 12.21 hrs Average Depth at Peak Storage= 0.97


Bank-Full Depth= 3.14' Flow Area= 26.0 sf, Capacity= 68.72 cfs

2.00' x 3.14' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 14.56'

Length= 595.0' Slope= 0.0015 '/'

Inlet Invert= 58.50', Outlet Invert= 57.61'



#### Reach 5CC: A2 Collector Channel



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 46

## Summary for Reach 6CC: A3 Collector Channel

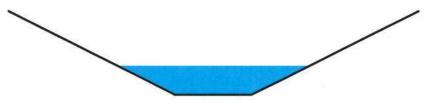
Inflow Area = 1.000 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 6.22 cfs @ 12.14 hrs, Volume= 0.514 af

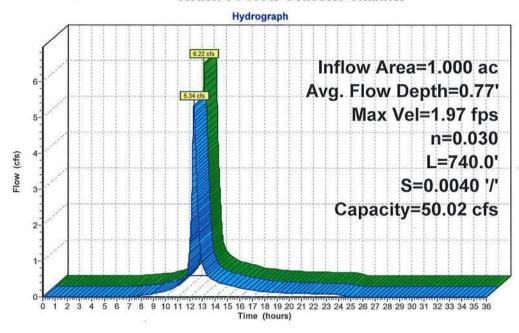
Outflow = 5.34 cfs @ 12.30 hrs, Volume= 0.514 af, Atten= 14%, Lag= 10.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.97 fps, Min. Travel Time= 6.3 min Avg. Velocity = 0.58 fps, Avg. Travel Time= 21.1 min


Peak Storage= 2,006 cf @ 12.20 hrs Average Depth at Peak Storage= 0.77'

Bank-Full Depth= 2.21' Flow Area= 14.2 sf, Capacity= 50.02 cfs


2.00' x 2.21' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 2.0 '/' Top Width= 10.84' Length= 740.0' Slope= 0.0040 '/'

Inlet Invert= 59.50', Outlet Invert= 56.54'



#### Reach 6CC: A3 Collector Channel



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 47

## Summary for Reach A2-1: A2-1 Channel

Inflow Area = 2.000 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

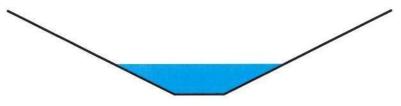
Inflow = 8.74 cfs @ 12.28 hrs, Volume= 1.027 af

Outflow = 8.70 cfs @ 12.35 hrs, Volume= 1.027 af, Atten= 0%, Lag= 3.9 min

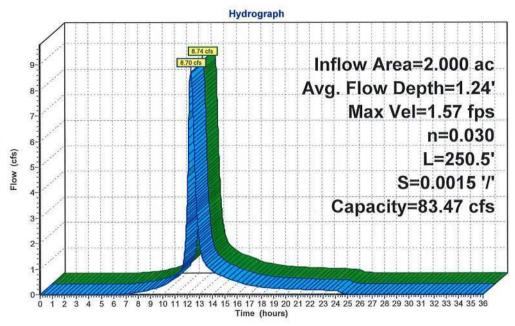
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.57 fps, Min. Travel Time= 2.7 min Avg. Velocity = 0.51 fps, Avg. Travel Time= 8.2 min

Peak Storage= 1,387 cf @ 12.30 hrs Average Depth at Peak Storage= 1.24'


Bank-Full Depth= 3.40' Flow Area= 29.9 sf, Capacity= 83.47 cfs

2.00' x 3.40' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 15.60'

Length= 250.5' Slope= 0.0015 '/'

Inlet Invert= 57.61', Outlet Invert= 57.23'



### Reach A2-1: A2-1 Channel





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 48

#### Summary for Reach A2-2: A2-2 Channel

Inflow Area = 19.361 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 114.51 cfs @ 12.15 hrs, Volume= 9.943 af

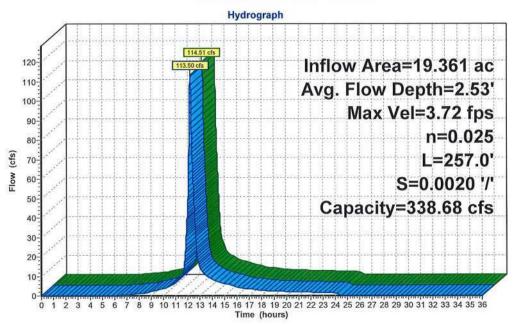
Outflow = 113.50 cfs @ 12.19 hrs, Volume= 9.943 af, Atten= 1%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.72 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.00 fps, Avg. Travel Time= 4.3 min

Peak Storage= 7,841 cf @ 12.17 hrs Average Depth at Peak Storage= 2.53'

Bank-Full Depth= 4.34' Flow Area= 68.1 sf, Capacity= 338.68 cfs


7.00' x 4.34' deep channel, n= 0.025 Rubble masonry, cemented

Side Slope Z-value= 2.0 '/' Top Width= 24.36'

Length= 257.0' Slope= 0.0020 '/' Inlet Invert= 55.84', Outlet Invert= 55.33'



#### Reach A2-2: A2-2 Channel



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 49

## Summary for Reach A2-3: A2-3 Channel

Inflow Area = 19.361 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 113.50 cfs @ 12.19 hrs, Volume= 9.943 af

Outflow = 108.05 cfs @ 12.27 hrs, Volume= 9.943 af, Atten= 5%, Lag= 5.2 min

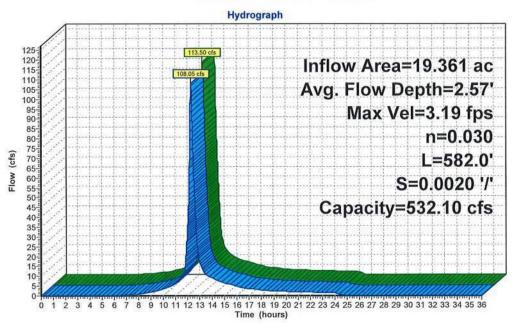
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.19 fps, Min. Travel Time= 3.0 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 11.3 min

Peak Storage= 19,700 cf @ 12.22 hrs Average Depth at Peak Storage= 2.57

Bank-Full Depth= 5.65' Flow Area= 109.0 sf, Capacity= 532.10 cfs

8.00' x 5.65' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 30.60'

Length= 582.0' Slope= 0.0020 '/'

Inlet Invert= 55.33', Outlet Invert= 54.17'



#### Reach A2-3: A2-3 Channel





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 50

# Summary for Reach A2-4: Chute-Concrete Block Open Cell

Inflow Area = 19.361 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 108.05 cfs @ 12.27 hrs, Volume= 9.943 af

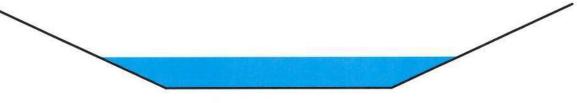
Outflow = 107.90 cfs @ 12.28 hrs, Volume= 9.943 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

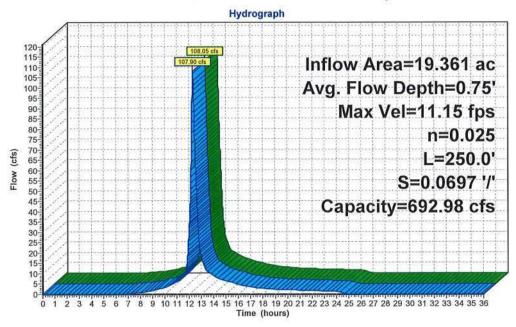
Max. Velocity= 11.15 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.81 fps, Avg. Travel Time= 1.5 min

Peak Storage= 2,420 cf @ 12.28 hrs Average Depth at Peak Storage= 0.75

Bank-Full Depth= 2.00' Flow Area= 36.0 sf, Capacity= 692.98 cfs


10.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented

Side Slope Z-value= 4.0 '/' Top Width= 26.00'


Length= 250.0' Slope= 0.0697 '/'

#

Inlet Invert= 54.17', Outlet Invert= 36.75'



Reach A2-4: Chute-Concrete Block Open Cell





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 51

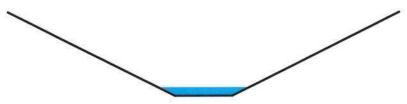
## Summary for Reach A2-5: Cocrete Block-Channel Transition

Inflow Area = 2.000 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

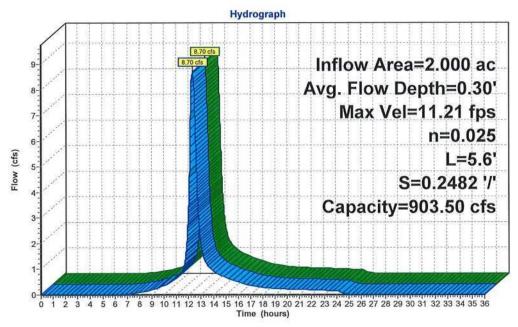
Inflow = 8.70 cfs @ 12.35 hrs, Volume= 1.027 af

Outflow = 8.70 cfs @ 12.35 hrs, Volume= 1.027 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 11.21 fps, Min. Travel Time= 0.0 min


Avg. Velocity = 3.73 fps, Avg. Travel Time= 0.0 min

Peak Storage= 4 cf @ 12.35 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 2.93' Flow Area= 23.0 sf, Capacity= 903.50 cfs


2.00' x 2.93' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 2.0 '/' Top Width= 13.72'

Length= 5.6' Slope= 0.2482 '/'

Inlet Invert= 57.23', Outlet Invert= 55.84'



Reach A2-5: Cocrete Block-Channel Transition



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 52

# Summary for Reach B1: 5' x 4' Box Culvert

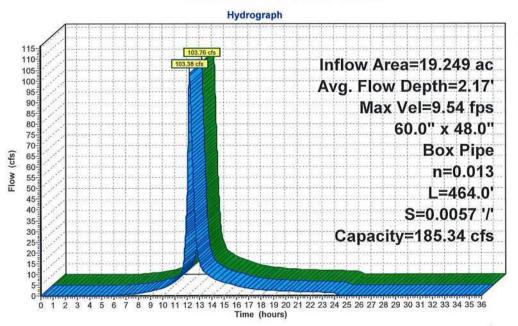
Inflow Area = 19.249 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 103.76 cfs @ 12.17 hrs, Volume= 9.886 af

Outflow = 103.38 cfs @ 12.20 hrs, Volume= 9.886 af, Atten= 0%, Lag= 1.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 9.54 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.65 fps, Avg. Travel Time= 2.9 min


Peak Storage= 5,030 cf @ 12.18 hrs Average Depth at Peak Storage= 2.17

Bank-Full Depth= 4.00' Flow Area= 20.0 sf, Capacity= 185.34 cfs

60.0" W x 48.0" H Box Pipe n= 0.013 Concrete pipe, bends & connections Length= 464.0' Slope= 0.0057 '/' Inlet Invert= 56.54', Outlet Invert= 53.89'



#### Reach B1: 5' x 4' Box Culvert



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 53

## Summary for Reach B2: 5' x 4' Box Culvert

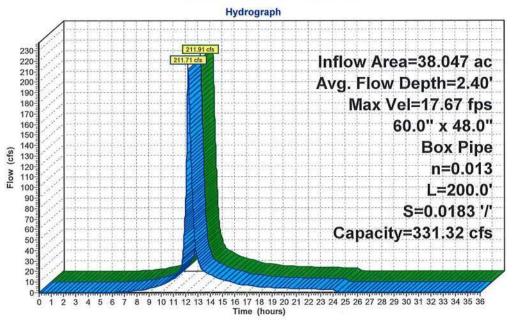
Inflow Area = 38.047 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 211.91 cfs @ 12.20 hrs, Volume= 19.540 af

Outflow = 211.71 cfs @ 12.21 hrs, Volume= 19.540 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 17.67 fps, Min. Travel Time= 0.2 min Avg. Velocity = 4.94 fps, Avg. Travel Time= 0.7 min


Peak Storage= 2,398 cf @ 12.20 hrs Average Depth at Peak Storage= 2.40'

Bank-Full Depth= 4.00' Flow Area= 20.0 sf, Capacity= 331.32 cfs

60.0" W x 48.0" H Box Pipe n= 0.013 Concrete pipe, bends & connections Length= 200.0' Slope= 0.0183 '/' Inlet Invert= 53.45', Outlet Invert= 49.80'



#### Reach B2: 5' x 4' Box Culvert



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 54

# Summary for Reach C1-4: Chute-Concrete Block Open Cell

Inflow Area = 38.047 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 211.71 cfs @ 12.21 hrs, Volume= 19.540 af

Outflow = 211.66 cfs @ 12.21 hrs, Volume= 19.540 af, Atten= 0%, Lag= 0.1 min

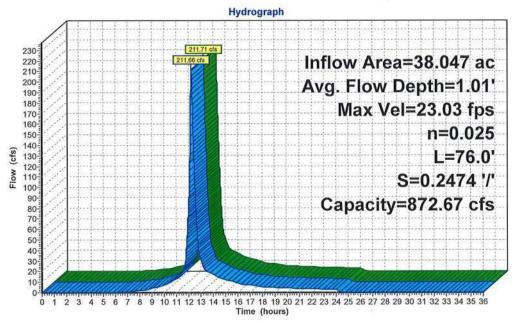
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 23.03 fps, Min. Travel Time= 0.1 min Avg. Velocity = 6.80 fps, Avg. Travel Time= 0.2 min

Peak Storage= 699 cf @ 12.21 hrs Average Depth at Peak Storage= 1.01

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 872.67 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 76.0' Slope= 0.2474 '/'

Inlet Invert= 49.80', Outlet Invert= 31.00'



Reach C1-4: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 55

#### Summary for Reach C1SCCN1: C1SCCN1 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 1.55 cfs @ 12.14 hrs, Volume= 0.128 af

Outflow = 1.44 cfs @ 12.25 hrs, Volume= 0.128 af, Atten= 7%, Lag= 6.5 min

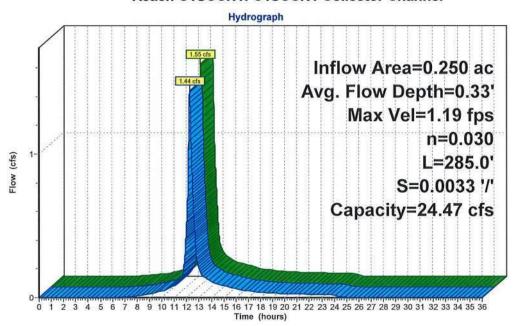
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.19 fps, Min. Travel Time= 4.0 min Avg. Velocity = 0.33 fps, Avg. Travel Time= 14.4 min

Peak Storage= 344 cf @ 12.18 hrs Average Depth at Peak Storage= 0.33'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.47 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 285.0' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.55'



#### Reach C1SCCN1: C1SCCN1 Collector Channel





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 56

## Summary for Reach C1SCCN2: C1SCCN2 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 1.55 cfs @ 12.14 hrs, Volume= 0.128 af

Outflow = 1.44 cfs @ 12.25 hrs, Volume= 0.128 af, Atten= 7%, Lag= 6.6 min

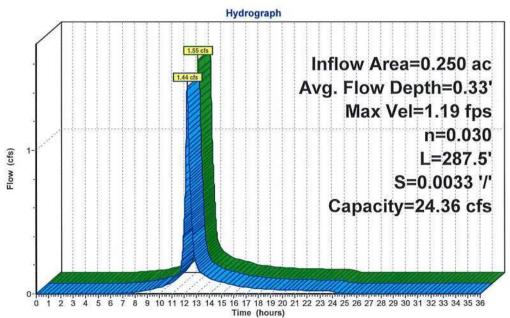
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.19 fps, Min. Travel Time= 4.0 min Avg. Velocity = 0.33 fps, Avg. Travel Time= 14.6 min

Peak Storage= 348 cf @ 12.18 hrs Average Depth at Peak Storage= 0.33'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.36 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 287.5' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.55'



## Reach C1SCCN2: C1SCCN2 Collector Channel





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 57

## Summary for Reach C1SCCS1: C1SCCS1 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 1.55 cfs @ 12.14 hrs, Volume= 0.128 af

Outflow = 1.44 cfs @ 12.24 hrs, Volume= 0.128 af, Atten= 7%, Lag= 6.4 min

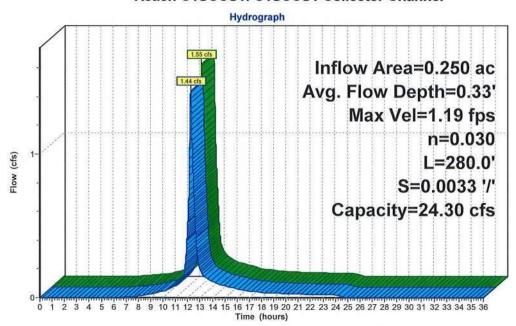
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.19 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.33 fps, Avg. Travel Time= 14.2 min

Peak Storage= 340 cf @ 12.18 hrs Average Depth at Peak Storage= 0.33'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.30 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 280.0' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.58'



#### Reach C1SCCS1: C1SCCS1 Collector Channel



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 58

## Summary for Reach C1SCCS2: C1SCCS2 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 1.55 cfs @ 12.14 hrs, Volume= 0.128 af

Outflow = 1.44 cfs @ 12.24 hrs, Volume= 0.128 af, Atten= 7%, Lag= 6.4 min

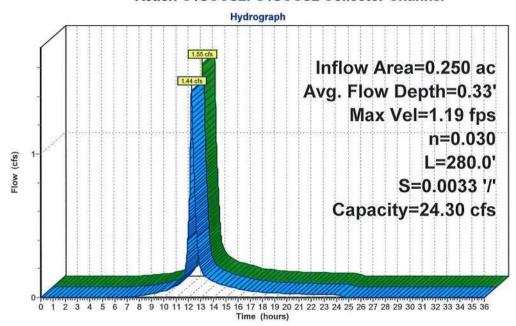
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.19 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.33 fps, Avg. Travel Time= 14.2 min

Peak Storage= 340 cf @ 12.18 hrs Average Depth at Peak Storage= 0.33'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.30 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 280.0' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.58'



#### Reach C1SCCS2: C1SCCS2 Collector Channel



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 59

## Summary for Reach C2-3: C2-3 Channel

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 91.74 cfs @ 12.16 hrs, Volume= 7.851 af

Outflow = 82.99 cfs @ 12.29 hrs, Volume= 7.851 af, Atten= 10%, Lag= 8.1 min

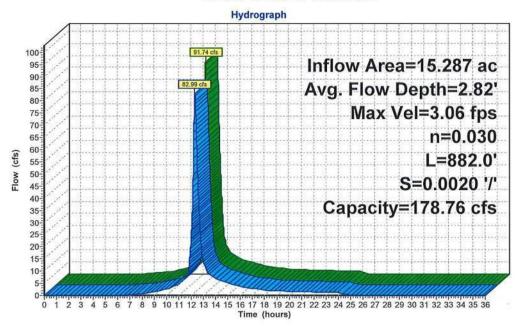
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.06 fps, Min. Travel Time= 4.8 min Avg. Velocity = 0.88 fps, Avg. Travel Time= 16.8 min

Peak Storage= 23,911 cf @ 12.21 hrs Average Depth at Peak Storage= 2.82


Bank-Full Depth= 4.00' Flow Area= 48.0 sf, Capacity= 178.76 cfs

4.00' x 4.00' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 20.00'

Length= 882.0' Slope= 0.0020 '/'

Inlet Invert= 53.50', Outlet Invert= 51.75'



#### Reach C2-3: C2-3 Channel





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 60

# Summary for Reach C2-4: Chute-Concrete Block Open Cell

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 82.89 cfs @ 12.30 hrs, Volume= 7.851 af

Outflow = 82.88 cfs @ 12.30 hrs, Volume= 7.851 af, Atten= 0%, Lag= 0.1 min

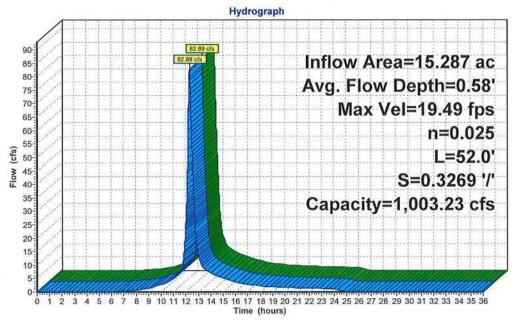
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.49 fps, Min. Travel Time= 0.0 min Avg. Velocity = 5.37 fps, Avg. Travel Time= 0.2 min

Peak Storage= 221 cf @ 12.30 hrs Average Depth at Peak Storage= 0.58

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 1,003.23 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 52.0' Slope= 0.3269 '/'

Inlet Invert= 48.00', Outlet Invert= 31.00'



Reach C2-4: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 61

#### Summary for Reach C2-5: C2-5 Channel

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 82.96 cfs @ 12.29 hrs, Volume= 7.851 af

Outflow = 82.89 cfs @ 12.30 hrs, Volume= 7.851 af, Atten= 0%, Lag= 0.4 min

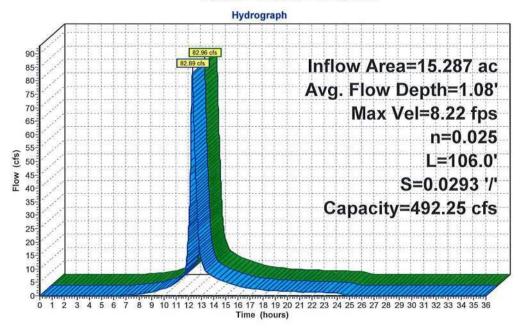
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 8.22 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.31 fps, Avg. Travel Time= 0.8 min

Peak Storage= 1,070 cf @ 12.30 hrs Average Depth at Peak Storage= 1.08'

Bank-Full Depth= 2.50' Flow Area= 37.5 sf, Capacity= 492.25 cfs

5.00' x 2.50' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 25.00'

Length= 106.0' Slope= 0.0293 '/'

Inlet Invert= 51.11', Outlet Invert= 48.00'



#### Reach C2-5: C2-5 Channel



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 62

## Summary for Reach CC: Chute-Concrete Block Open Cell

Inflow Area = 1.480 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 7.72 cfs @ 12.32 hrs, Volume= 0.760 af

Outflow = 7.71 cfs @ 12.33 hrs, Volume= 0.760 af, Atten= 0%, Lag= 0.7 min

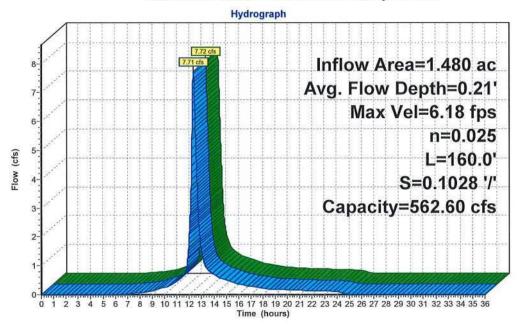
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 6.18 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.85 fps, Avg. Travel Time= 1.4 min

Peak Storage= 200 cf @ 12.32 hrs Average Depth at Peak Storage= 0.21

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 562.60 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 160.0' Slope= 0.1028 '/'

Inlet Invert= 53.20', Outlet Invert= 36.75'



Reach CC: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 63

# Summary for Reach E: Chute-Concrete Block Open Cell

Inflow Area = 17.798 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 106.93 cfs @ 12.15 hrs, Volume= 9.140 af

Outflow = 106.72 cfs @ 12.16 hrs, Volume= 9.140 af, Atten= 0%, Lag= 0.7 min

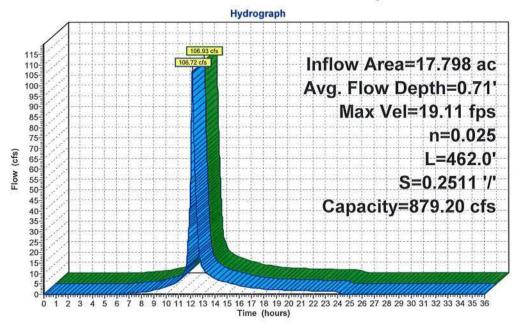
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.11 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.96 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,582 cf @ 12.15 hrs Average Depth at Peak Storage= 0.71'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 879.20 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 462.0' Slope= 0.2511 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



#### Reach E: Chute-Concrete Block Open Cell





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 64

## Summary for Reach NE: Chute-Concrete Block Open Cell

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 91.93 cfs @ 12.15 hrs, Volume= 7.851 af

Outflow = 91.74 cfs @ 12.16 hrs, Volume= 7.851 af, Atten= 0%, Lag= 0.7 min

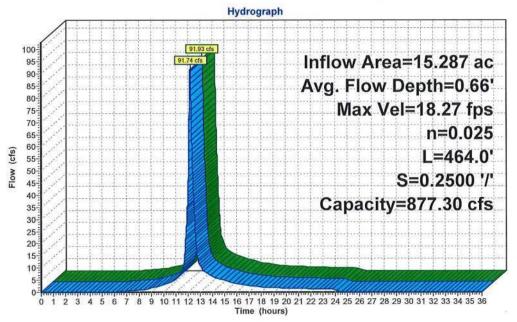
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.27 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.65 fps, Avg. Travel Time= 1.4 min

Peak Storage= 2,332 cf @ 12.15 hrs Average Depth at Peak Storage= 0.66

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 464.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



#### Reach NE: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 65

# Summary for Reach NW: Chute-Concrete Block Open Cell

Inflow Area = 13.115 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 77.52 cfs @ 12.15 hrs, Volume= 6.735 af

Outflow = 77.39 cfs @ 12.16 hrs, Volume= 6.735 af, Atten= 0%, Lag= 0.8 min

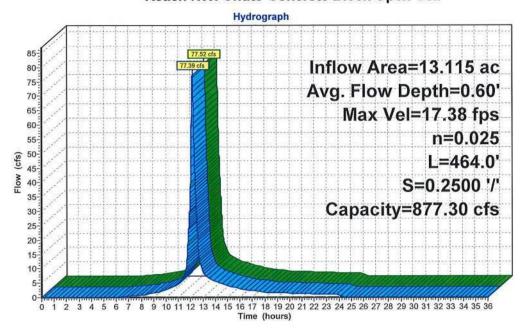
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 17.38 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.36 fps, Avg. Travel Time= 1.4 min

Peak Storage= 2,067 cf @ 12.15 hrs Average Depth at Peak Storage= 0.60'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 464.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



#### Reach NW: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 66

Inflow
Outflow

# Summary for Reach OC: Existing Offsite Channel

Inflow Area = 42.338 ac, 0.00% Impervious, Inflow Depth > 6.18" for 25-Year event

Inflow = 33.70 cfs @ 12.91 hrs, Volume= 21.821 af

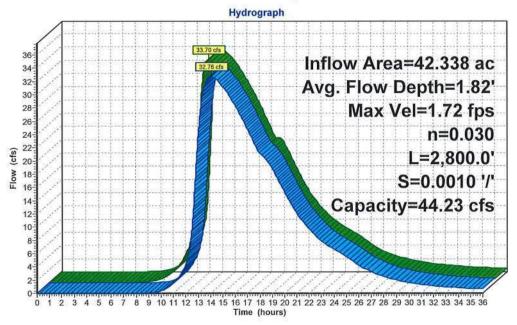
Outflow = 32.78 cfs @ 14.06 hrs, Volume= 21.722 af, Atten= 3%, Lag= 68.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.72 fps, Min. Travel Time= 27.1 min Avg. Velocity = 0.84 fps, Avg. Travel Time= 55.4 min

Peak Storage= 53,292 cf @ 13.60 hrs Average Depth at Peak Storage= 1.82

Bank-Full Depth= 2.10' Flow Area= 23.7 sf, Capacity= 44.23 cfs


5.00' x 2.10' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 3.0 '/' Top Width= 17.60'

Length= 2,800.0' Slope= 0.0010 '/' Inlet Invert= 46.66', Outlet Invert= 43.86'



## Reach OC: Existing Offsite Channel



Part III, Attachment 6, Appendix 6B.4, p.g.-66

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 67

## Summary for Reach P1: Culvert

Inflow Area =

15.287 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow

82.99 cfs @ 12.29 hrs, Volume=

7.851 af

Outflow

82.96 cfs @ 12.29 hrs, Volume=

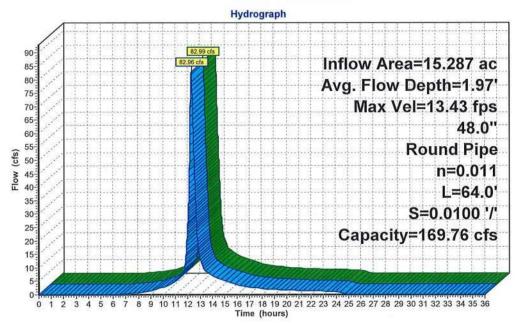
7.851 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 13.43 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.02 fps, Avg. Travel Time= 0.3 min

Peak Storage= 395 cf @ 12.29 hrs Average Depth at Peak Storage= 1.97'

Bank-Full Depth= 4.00' Flow Area= 12.6 sf, Capacity= 169.76 cfs


48.0" Round Pipe

n= 0.011 Concrete pipe, straight & clean Length= 64.0' Slope= 0.0100 '/'

Inlet Invert= 51.75', Outlet Invert= 51.11'



#### Reach P1: Culvert





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 68

## Summary for Reach P2: Culvert

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 2.88 cfs @ 12.25 hrs, Volume= 0.257 af

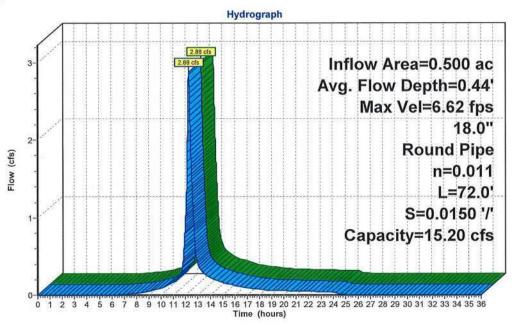
Outflow = 2.88 cfs @ 12.25 hrs, Volume= 0.257 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 6.62 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.18 fps, Avg. Travel Time= 0.6 min

Peak Storage= 31 cf @ 12.25 hrs Average Depth at Peak Storage= 0.44'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.20 cfs


18.0" Round Pipe

n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0150 '/'

Inlet Invert= 54.39', Outlet Invert= 53.31'



#### Reach P2: Culvert



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 69

# Summary for Reach P2-1: Chute-Concrete Block Open Cell

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 2.88 cfs @ 12.25 hrs, Volume= 0.257 af

Outflow = 2.88 cfs @ 12.25 hrs, Volume= 0.257 af, Atten= 0%, Lag= 0.2 min

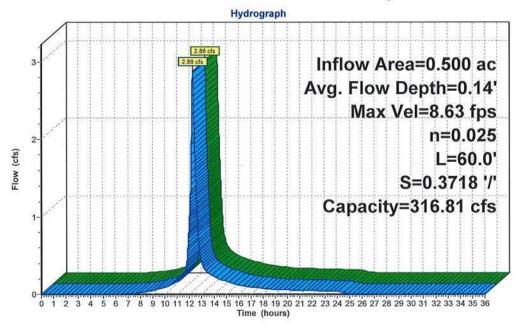
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 8.63 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.71 fps, Avg. Travel Time= 0.4 min

Peak Storage= 20 cf @ 12.25 hrs Average Depth at Peak Storage= 0.14'

Bank-Full Depth= 1.50' Flow Area= 9.8 sf, Capacity= 316.81 cfs

2.00' x 1.50' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 3.0 '/' Top Width= 11.00'

Length= 60.0' Slope= 0.3718 '/'

Inlet Invert= 53.31', Outlet Invert= 31.00'



Reach P2-1: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 70

## Summary for Reach P3: Culvert

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

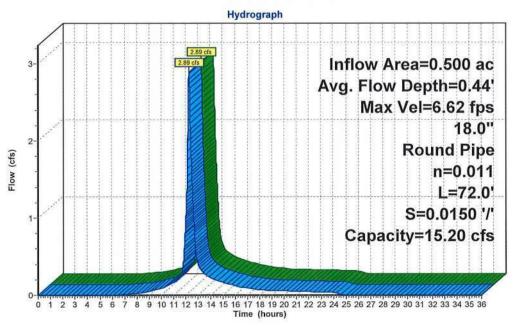
Inflow = 2.89 cfs @ 12.24 hrs, Volume= 0.257 af

Outflow = 2.89 cfs @ 12.25 hrs, Volume= 0.257 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 6.62 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.18 fps, Avg. Travel Time= 0.6 min

Peak Storage= 31 cf @ 12.25 hrs Average Depth at Peak Storage= 0.44'


Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.20 cfs

18.0" Round Pipe

n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0150 '/' Inlet Invert= 55.41', Outlet Invert= 54.33'



#### Reach P3: Culvert





Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 71

# Summary for Reach P3-1: Chute-Concrete Block Open Cell

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 2.89 cfs @ 12.25 hrs, Volume= 0.257 af

Outflow = 2.89 cfs @ 12.25 hrs, Volume= 0.257 af, Atten= 0%, Lag= 0.2 min

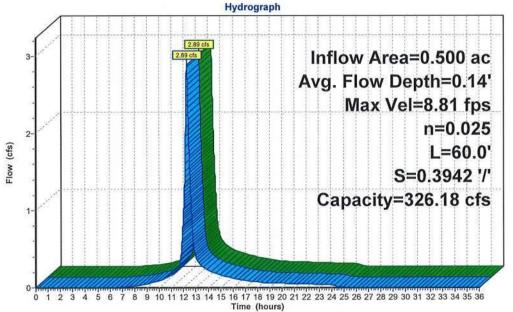
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 8.81 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.78 fps, Avg. Travel Time= 0.4 min

Peak Storage= 20 cf @ 12.25 hrs Average Depth at Peak Storage= 0.14'

Bank-Full Depth= 1.50' Flow Area= 9.8 sf. Capacity= 326.18 cfs

2.00' x 1.50' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 3.0 '/' Top Width= 11.00'

Length= 60.0' Slope= 0.3942 '/'

Inlet Invert= 54.65', Outlet Invert= 31.00'



Reach P3-1: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 72

## Summary for Reach S: Chute-Concrete Block Open Cell

Inflow Area = 17.361 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 107.94 cfs @ 12.14 hrs, Volume= 8.916 af

Outflow = 107.70 cfs @ 12.15 hrs, Volume= 8.916 af, Atten= 0%, Lag= 0.7 min

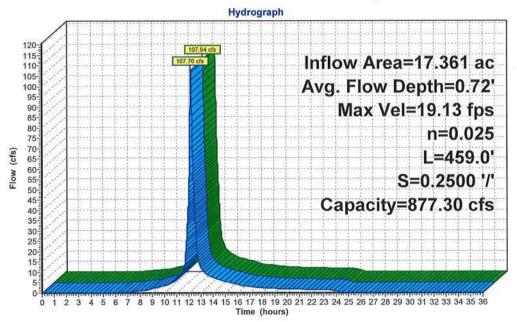
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.13 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.91 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,586 cf @ 12.14 hrs Average Depth at Peak Storage= 0.72'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 459.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 59.25'



Reach S: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 73

Inflow
Outflow

## Summary for Reach SE: Chute-Concrete Block Open Cell

Inflow Area = 18.249 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 100.71 cfs @ 12.16 hrs, Volume= 9.372 af

Outflow = 100.58 cfs @ 12.17 hrs, Volume= 9.372 af, Atten= 0%, Lag= 0.7 min

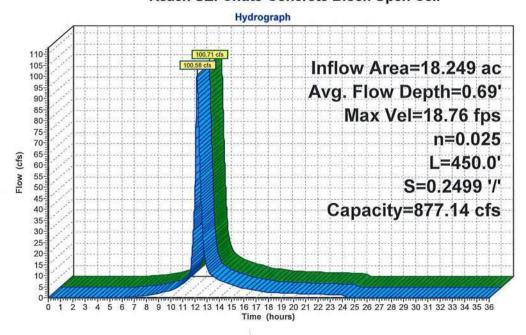
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.76 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.97 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,415 cf @ 12.16 hrs Average Depth at Peak Storage= 0.69

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.14 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 450.0' Slope= 0.2499 '/'

Inlet Invert= 174.00', Outlet Invert= 61.54'



#### Reach SE: Chute-Concrete Block Open Cell



Part III, Attachment 6, Appendix 6B.4, p.g.-73

Submittal Date: September 2018

Revision: 0

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 74

## Summary for Reach SE1: Chute-Concrete Block Open Cell

Inflow Area = 18.249 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 100.58 cfs @ 12.17 hrs, Volume= 9.372 af

Outflow = 100.54 cfs @ 12.17 hrs, Volume= 9.372 af, Atten= 0%, Lag= 0.1 min

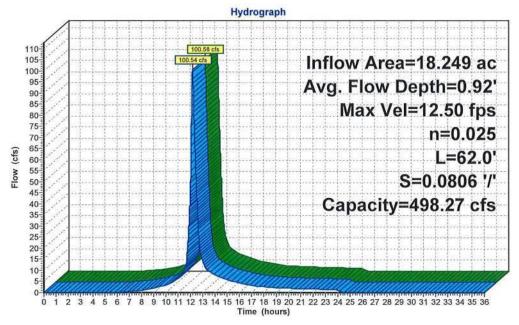
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 12.50 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.11 fps, Avg. Travel Time= 0.3 min

Peak Storage= 499 cf @ 12.17 hrs Average Depth at Peak Storage= 0.92

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 498.27 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 62.0' Slope= 0.0806 '/'

Inlet Invert= 61.54', Outlet Invert= 56.54'



# Reach SE1: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 75

# Summary for Reach SW: Chute-Concrete Block Open Cell

Inflow Area = 15.434 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 95.96 cfs @ 12.14 hrs, Volume= 7.926 af

Outflow = 95.76 cfs @ 12.15 hrs, Volume= 7.926 af, Atten= 0%, Lag= 0.6 min

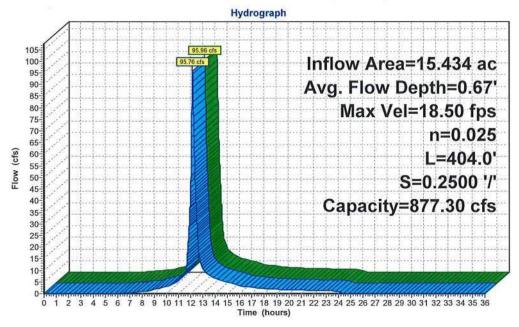
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.50 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.68 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,094 cf @ 12.14 hrs Average Depth at Peak Storage= 0.67

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 404.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 73.00'



#### Reach SW: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 76

# Summary for Reach SW-1: Chute-Concrete Block Open Cell

Inflow Area =

15.434 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = Outflow

95.76 cfs @ 12.15 hrs, Volume=

95.59 cfs @ 12.16 hrs, Volume=

7.926 af 7.926 af, Atten= 0%, Lag= 0.5 min

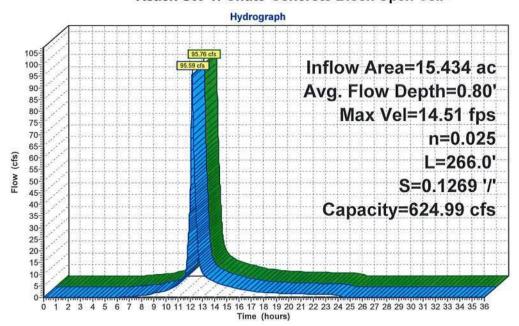
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 14.51 fps, Min. Travel Time= 0.3 min Avg. Velocity = 4.54 fps, Avg. Travel Time= 1.0 min

Peak Storage= 1,754 cf @ 12.15 hrs Average Depth at Peak Storage= 0.80'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 624.99 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 266.0' Slope= 0.1269 '/'

Inlet Invert= 70.50', Outlet Invert= 36.75'



#### Reach SW-1: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 77

#### Summary for Reach W: Chute-Concrete Block Open Cell

Inflow Area = 22.383 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 127.46 cfs @ 12.15 hrs, Volume= 11.495 af

Outflow = 127.27 cfs @ 12.16 hrs, Volume= 11.495 af, Atten= 0%, Lag= 0.7 min

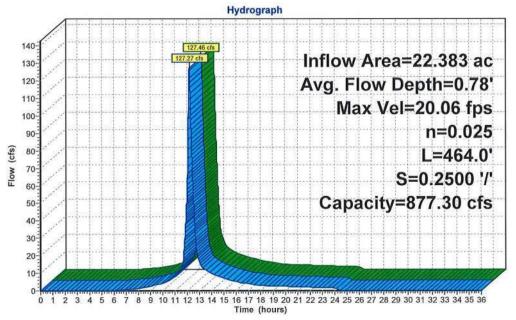
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 20.06 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.41 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,946 cf @ 12.15 hrs Average Depth at Peak Storage= 0.78'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 464.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



Reach W: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

Page 78

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

# Summary for Pond PA: Retention Pond A

No Discharge, Reshaping of Existing Pond A Bottom Required.

Inflow Area = 47.697 ac, 0.00% Impervious, Inflow Depth = 6.59" for 25-Year event

Inflow = 225.75 cfs @ 12.22 hrs, Volume= 26.201 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 47.33' @ 36.00 hrs Surf.Area= 4.028 ac Storage= 26.200 af

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

| Volume    | Invert Av | ail.Storage | Storage Descrip | tion                   |                       |  |
|-----------|-----------|-------------|-----------------|------------------------|-----------------------|--|
| #1        | 36.75'    | 82.379 af   | Custom Stage [  | Data (Irregular) i     | Listed below (Recalc) |  |
| Elevation | Surf,Area | Perim.      | Inc.Store       | Cum.Store              | Wet.Area              |  |
| (feet)    | (acres)   | (feet)      | (acre-feet)     | (acre-feet)            | (acres)               |  |
| 36.75     | 1.340     | 1,049.8     | 0.000           | 0.000                  | 1.340                 |  |
| 37.00     | 1.380     | 1,064.9     | 0.340           | 0.340                  | 1.399                 |  |
| 38,00     | 1.540     | 1,125.4     | 1.459           | 1.799                  | 1.642                 |  |
| 39.00     | 1.720     | 1,171.5     | 1.629           | 3.428                  | 1.837                 |  |
| 40.00     | 1.890     | 1,216.8     | 1.804           | 5.233                  | 2.037                 |  |
| 41.00     | 2.120     | 1,292.5     | 2.004           | 7.237                  | 2.385                 |  |
| 42.00     | 2.360     | 1,370.6     | 2.239           | 9.476                  | 2.766                 |  |
| 43.00     | 2.620     | 1,447.9     | 2.489           | 11.964                 | 3.166                 |  |
| 44.00     | 2.900     | 1,537.3     | 2.759           | 14.723                 | 3.654                 |  |
| 45.00     | 3.210     | 1,623.3     | 3.054           | 17.777                 | 4.152                 |  |
| 46.00     | 3,550     | 1,699.4     | 3,379           | 21,156                 | 4.616                 |  |
| 47.00     | 3.910     | 1,769.6     | 3.729           | 24,884                 | 5.062                 |  |
| 48.00     | 4.270     | 1,832.8     | 4.089           | 28.973                 | 5.480                 |  |
| 49.00     | 4.640     | 1,894.6     | 4,454           | 33,426                 | 5.903                 |  |
| 50.00     | 5.020     | 1,956.1     | 4.829           | 38.255                 | 6.338                 |  |
| 51.00     | 5.450     | 2,024.3     | 5.234           | 43.489                 | 6.836                 |  |
| 52.00     | 5.860     | 2,075.6     | 5.654           | 49.143                 | 7.223                 |  |
| 53.00     | 6.180     | 2,125.3     | 6.019           | 55.162                 | 7.608                 |  |
| 54.00     | 6.490     | 2,167.2     | 6.334           | 61.496                 | 7.940                 |  |
| 55.00     | 6.800     | 2,209.1     | 6.644           | <b>68</b> .1 <b>41</b> | 8.279                 |  |
| 56.00     | 7.120     | 2,250.9     | 6.959           | 75.100                 | 8.623                 |  |
| 57.00     | 7.440     | 2,292.6     | 7.279           | 82.379                 | 8.973                 |  |

Type III 24-hr 25-Year Rainfall=8.70"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 79

# Pond PA: Retention Pond A



Volume

#1

## Post Development 25 Yr Drainage

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 80

# Summary for Pond PB: Detention Pond B

Inflow Area = 42.338 ac. 0.00% Impervious, Inflow Depth = 6.40" for 25-Year event

Inflow 235,89 cfs @ 12.16 hrs, Volume= 22.565 af

Outflow 33.70 cfs @ 12.91 hrs, Volume= 21.821 af, Atten= 86%, Lag= 45.0 min

Primary 33.70 cfs @ 12.91 hrs, Volume= 21.821 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 50.87' @ 12.91 hrs Surf.Area= 3.532 ac Storage= 11.562 af

Plug-Flow detention time= 244.2 min calculated for 21.821 af (97% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 224.8 min ( 1,023.3 - 798.5 )

Invert

47.00"

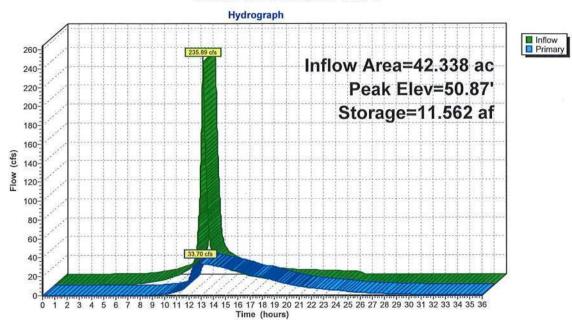
| Elevation | on Surf.A | Area | Perim  | n. Inc.Store                                                              | Cum.Store          | Wet.Area                          |       |  |
|-----------|-----------|------|--------|---------------------------------------------------------------------------|--------------------|-----------------------------------|-------|--|
| (fee      | et) (ac   | res) | (feet  | ) (acre-feet)                                                             | (acre-feet)        | (acres)                           |       |  |
| 47.0      | 00 2.     | .450 | 3,998. | 7 0.000                                                                   | 0.000              | 2,450                             |       |  |
| 48.0      | 00 2.     | .730 | 4,022. | 7 2.589                                                                   | 2.589              | 2.814                             |       |  |
| 49.0      | 00 3.     | .010 | 4,046. | 7 2.869                                                                   | <b>5.45</b> 8      | 3.179                             |       |  |
| 50.0      | 00 3.     | .290 | 4,070. | 7 3.149                                                                   | 8.607              | 3.547                             |       |  |
| 51.0      | 00 3.     | .570 | 4,094. | 6 3.429                                                                   | 12.036             | 3.916                             |       |  |
| 52.0      | 00 3.     | .850 | 4,118. | 8 3.709                                                                   | 15,745             | 4.291                             |       |  |
| 53.0      | 00 4.     | .140 | 4,158. | 1 3.994                                                                   | 19.739             | 4.893                             |       |  |
|           |           |      |        |                                                                           |                    |                                   |       |  |
| Device    | Routing   |      | Invert | Outlet Devices                                                            |                    |                                   |       |  |
| #1        | Primary   |      | 47.00' | 21.0" Round RCF                                                           | P_Round 21"        |                                   |       |  |
|           |           |      |        | L= 128.0' RCP, g                                                          |                    |                                   |       |  |
|           |           |      |        |                                                                           |                    | S= 0.0020 '/' Cc= 0.900           |       |  |
|           |           |      |        |                                                                           |                    | onnections, Flow Area= 2.         | .41 s |  |
| #2        | Primary   |      | 47.00' | 21.0" Round RCP_Round 21" L= 128.0' RCP, groove end projecting, Ke= 0.200 |                    |                                   |       |  |
|           |           |      |        |                                                                           |                    |                                   |       |  |
|           |           |      |        | Inlet / Outlet Inven                                                      | t= 47.00' / 46.75' | S= 0.0020 \( \text{Cc} = 0.900 \) |       |  |
|           |           |      |        | n= 0.013 Concret                                                          | e pipe, bends & c  | onnections, Flow Area≒ 2.         | .41 s |  |
|           |           |      |        |                                                                           |                    |                                   |       |  |

19,739 af Custom Stage Data (Irregular) Listed below (Recalc)

Primary OutFlow Max=33.70 cfs @ 12.91 hrs HW=50.87' (Free Discharge)

-1=RCP\_Round 21" (Barrel Controls 16.85 cfs @ 7.00 fps)
-2=RCP\_Round 21" (Barrel Controls 16.85 cfs @ 7.00 fps)

Type III 24-hr 25-Year Rainfall=8.70"


Printed 8/20/2018

Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 81

#### Pond PB: Detention Pond B



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 82

## Summary for Pond PC: Retention Pond C

No Discharge, Constructrion of Perimeter Berm to Elevation 48 ft. Required.

Inflow Area = 61.564 ac, 0.00% Impervious, Inflow Depth = 6.37" for 25-Year event

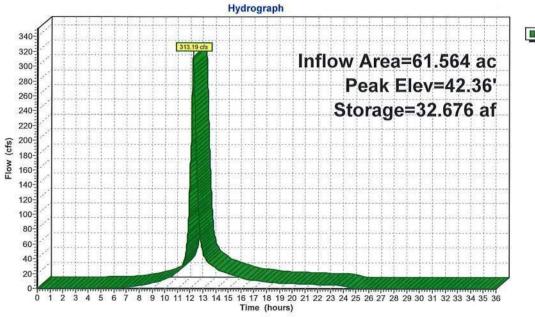
Inflow = 313.19 cfs @ 12.23 hrs, Volume= 32.676 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 42.36' @ 36.00 hrs Surf.Area= 3.718 ac Storage= 32.676 af

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


| Volume              | Invert Av            | /ail.Storage     | Storage Descrip          | tion                     |                       |  |
|---------------------|----------------------|------------------|--------------------------|--------------------------|-----------------------|--|
| #1                  | 31.00'               | 56.115 af        | Custom Stage I           | Data (Irregular)         | Listed below (Recalc) |  |
| Elevation<br>(feet) | Surf.Area<br>(acres) | Perim.<br>(feet) | Inc.Store<br>(acre-feet) | Cum.Store<br>(acre-feet) | Wet.Area<br>(acres)   |  |
| 31.00               | 2.060                | 2,014.1          | 0.000                    | 0.000                    | 2.060                 |  |
| 32.00               | 2.200                | 2,032.9          | 2.130                    | 2.130                    | 2.207                 |  |
| 33.00               | 2.340                | 2,051.7          | 2.270                    | 4.399                    | 2.354                 |  |
| 34.00               | 2.480                | 2,070.5          | 2.410                    | 6.809                    | 2.504                 |  |
| 35.00               | 2.630                | 2,089.2          | 2.555                    | 9.364                    | 2.654                 |  |
| 36.00               | 2.770                | 2,108.0          | 2.700                    | 12.063                   | 2.806                 |  |
| 37.00               | 2.920                | 2,126.8          | 2.845                    | 14.908                   | 2.959                 |  |
| 38.00               | 3.060                | 2,145.6          | 2.990                    | 17.898                   | 3.114                 |  |
| 39.00               | 3.210                | 2,164.4          | 3,135                    | 21,032                   | 3.270                 |  |
| 40.00               | 3.360                | 2,183.2          | 3.285                    | 24.317                   | 3.427                 |  |
| 41.00               | 3.510                | 2,201.9          | 3.435                    | 27.752                   | 3.585                 |  |
| 42.00               | 3.660                | 2,220.7          | 3,585                    | 31.337                   | 3.745                 |  |
| 43.00               | 3,820                | 2,239.5          | 3.740                    | 35.076                   | 3.907                 |  |
| 44.00               | 3.970                | 2,258.3          | 3,895                    | 38.971                   | 4.070                 |  |
| 45.00               | 4.130                | 2,277.1          | 4.050                    | 43.021                   | 4.234                 |  |
| 46.00               | 4,290                | 2,295.9          | 4,210                    | 47,230                   | 4.400                 |  |
| 47.00               | 4.440                | 2,314.6          | 4.365                    | 51.595                   | 4.566                 |  |
| 48.00               | 4.600                | 2,333.4          | 4.520                    | 56.115                   | 4.734                 |  |

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 83

# Pond PC: Retention Pond C



■ Inflow

## Part III

# APPENDIX 6B.5 HYDROCAD MODEL POST DEVELOPMENT-100 YEAR



Submittal Date: September 2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 8/20/2018 Page 2

# Area Listing (all nodes)

|   | Area<br>(acres) | CN | Description (subcatchment-numbers)                                                                                                                             |
|---|-----------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | 128.657         | 79 | 50-75% Grass cover, Fair, HSG C (1C, 2C, 3C, 4C, 5C, 6C, 7C, A1S, A1T, A2S, A2T, A3S, A3T, B1S, B1T, B2S, B2T, C1S, C1SN1, C1SN2, C1SS1, C1SS2, C1T, C2S, C2T) |
|   | 19.672          | 86 | <50% Grass cover, Poor, HSG C (C3, C4, C5, C6)                                                                                                                 |
|   | 16.270          | 98 | Water Surface, 0% imp, HSG C (PAR, PBR, PCR)                                                                                                                   |
|   | 164.599         | 82 | TOTAL AREA                                                                                                                                                     |

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 3

# Soil Listing (all nodes)

| Area    | Soil  | Subcatchment                                                                                                                                                |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (acres) | Group | Numbers                                                                                                                                                     |
| 0.000   | HSG A |                                                                                                                                                             |
| 0.000   | HSG B |                                                                                                                                                             |
| 164.599 | HSG C | 1C, 2C, 3C, 4C, 5C, 6C, 7C, A1S, A1T, A2S, A2T, A3S, A3T, B1S, B1T, B2S, B2T, C1S, C1SN1, C1SN2, C1SS1, C1SS2, C1T, C2S, C2T, C3, C4, C5, C6, PAR, PBR, PCR |
| 0.000   | HSG D |                                                                                                                                                             |
| 0.000   | Other |                                                                                                                                                             |
| 164.599 |       | TOTAL AREA                                                                                                                                                  |

Revision: 0

Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 8/20/2018 Page 4

### **Ground Covers (all nodes)**

| HSG-A<br>(acres) | H\$G-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total<br>(acres)    | Ground<br>Cover          | Subcatchment<br>Numbers |
|------------------|-------------------|------------------|------------------|---------------|---------------------|--------------------------|-------------------------|
| <br>0.000        | 0.000             | 128.657          | 0.000            | 0.000         | 128.657             | 50-75% Grass cover, Fair | 1C. 2C.                 |
|                  |                   | •                |                  |               |                     | •                        | 3C, 4C,                 |
|                  |                   |                  |                  |               |                     |                          | 5C, 6C,                 |
|                  |                   |                  |                  |               |                     |                          | 7C,                     |
|                  |                   |                  |                  |               |                     |                          | A1S,                    |
|                  |                   |                  |                  |               |                     |                          | A1T,                    |
|                  |                   |                  |                  |               |                     |                          | A2S,                    |
|                  |                   |                  |                  |               |                     |                          | A2T,                    |
|                  |                   |                  |                  |               |                     |                          | A3S,                    |
|                  |                   |                  |                  |               |                     |                          | A3T,                    |
|                  |                   |                  |                  |               |                     |                          | B1S,                    |
|                  |                   |                  |                  |               |                     |                          | B1T,                    |
|                  |                   |                  |                  |               |                     |                          | B2S,                    |
|                  |                   |                  |                  |               |                     |                          | B2T,                    |
|                  |                   |                  |                  |               |                     |                          | C1S,                    |
|                  |                   |                  |                  |               |                     |                          | C1SN1,                  |
|                  |                   |                  |                  |               |                     |                          | C1SN2,                  |
|                  |                   |                  |                  |               |                     |                          | C1SS1,                  |
|                  |                   |                  |                  |               |                     |                          | C1SS2,                  |
|                  |                   |                  |                  |               |                     |                          | C1T,                    |
|                  |                   |                  |                  |               |                     |                          | C2S,                    |
|                  |                   |                  |                  |               |                     |                          | C2T                     |
| 0.000            | 0.000             | 19.672           | 0.000            | 0.000         | 19. <del>6</del> 72 | <50% Grass cover, Poor   | C3, C4,                 |
|                  |                   |                  |                  |               |                     |                          | C5, C6                  |
| 0.000            | 0.000             | 16.270           | 0.000            | 0.000         | 16.270              | Water Surface, 0% imp    | PAR,                    |
|                  |                   |                  |                  |               |                     |                          | PBR,                    |
|                  |                   |                  |                  |               |                     |                          | PCR                     |
| 0.000            | 0.000             | 164.599          | 0.000            | 0.000         | 164.599             | TOTAL AREA               |                         |

Prepared by Hanson Professional Services Inc.

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Printed 8/20/2018 Page 5

### Pipe Listing (all nodes)

|   | Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width (inches) | Height (inches) | inside-Fill<br>(inches) |
|---|-------|----------------|---------------------|----------------------|------------------|------------------|-------|---------------------|-----------------|-------------------------|
| _ | 1     | B1             | 56,54               | 53.89                | 464.0            | 0.0057           | 0.013 | 60.0                | 48.0            | 0.0                     |
|   | 2     | B2             | 53.45               | 49.80                | 200.0            | 0.0182           | 0.013 | 60.0                | 48.0            | 0.0                     |
|   | 3     | P1             | 51.75               | 51, <del>1</del> 1   | 64.0             | 0.0100           | 0.011 | 48.0                | 0.0             | 0.0                     |
|   | 4     | P2             | 54.39               | 53.31                | 72.0             | 0.0150           | 0.011 | 18.0                | 0.0             | 0.0                     |
|   | 5     | P3             | 55.41               | 54.33                | 72.0             | 0.0150           | 0.011 | 18.0                | 0.0             | 0.0                     |
|   | 6     | PB             | 47.00               | 46.75                | 128.0            | 0.0020           | 0.013 | 21.0                | 0.0             | 0.0                     |
|   | 7     | PB             | 47.00               | 46.75                | 128.0            | 0.0020           | 0.013 | 21.0                | 0.0             | 0.0                     |

Revision: 0

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment 1C: 1C Drainage Area        | Runoff Area=1,000 ac 0.00% Impervious Runoff Depth=8.83"<br>To=10.0 min CN=79 Runoff=8.77 cfs 0.736 af                |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Subcatchment 2C: 2C Drainage Area        | Runoff Area=1.480 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=12.98 cfs 1.089 af               |
| Subcatchment 3C: 3C Drainage Area        | Runoff Area=1.640 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=14.38 cfs 1.207 af               |
| Subcatchment 4C: 4C Drainage Area        | Runoff Area=0.910 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=7.98 cfs 0.670 af                |
| Subcatchment 5C: A2 Drainage Area        | Runoff Area=1.000 ac 0.00% Impervious Runoff Depth=8.83"<br>To=10.0 min CN=79 Runoff=8.77 cfs 0.736 af                |
| Subcatchment 6C: A3 Drainage Area        | Runoff Area=1.000 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=8.77 cfs 0.736 af                |
| Subcatchment 7C: A2 Drainage Area        | Runoff Area=1.000 ac 0.00% Impervious Runoff Depth⇒8.83"<br>Tc=10.0 min CN=79 Runoff=8.77 cfs 0.736 af                |
| Subcatchment A1S: A1S Drainage Area      | Runoff Area=8.009 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=70.23 cfs 5.892 af               |
| Subcatchment A1T: A1T Drainage Area      | Runoff Area=7.425 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=65,11 cfs 5.463 af               |
| Subcatchment A2S: A2 Drainage Area       | Runoff Area=12.241 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=107.35 cfs 9.006 af             |
| Subcatchment A2T: A2 Drainage Area       | Runoff Area=5.120 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=44.90 cfs 3.767 af               |
| Subcatchment A3S: A3S Drainage Area      | Runoff Area=10.760 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=94.36 cfs 7.916 af              |
| Subcatchment A3T: A3T Drainage Area Flow | Runoff Area=7.489 ac 0.00% Impervious Runoff Depth=8.83"<br>Length=1,050' Tc=16.7 min CN=79 Runoff=54.75 cfs 5.510 af |
| Subcatchment B1S: B1S Drainage Area      | Runoff Area=14.884 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=130.52 cfs 10.951 af            |
| Subcatchment B1T: B1T Drainage Area Flow | Runoff Area=7.499 ac 0.00% Impervious Runoff Depth=8.83" w Length=950' Tc=16.0 min CN=79 Runoff=55.80 cfs 5.517 af    |
| Subcatchment B2S: B2S Drainage Area      | Runoff Area=8.806 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=77.22 cfs 6.479 af               |

Part III, Attachment 6, Appendix 6B.5, p.g.-6

Part III

Subcatchment PAR: PA Rainfall Area

Subcatchment PBR: PB Rainfall Area

Subcatchment PCR: PC Rainfall Area

| Post Development 100 Yr Drainag<br>Prepared by Hanson Professional Ser<br>HydroCAD® 10.00-17 s/n 09651 © 2016 H | rvices Inc. Printed 8/20/2018                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Subcatchment B2T: B2T Drainage Area                                                                             | Runoff Area=4.309 ac 0.00% Impervious Runoff Depth=8.83" Flow Length=850' Tc=13.7 min CN=79 Runoff=33.95 cfs 3.170 af |
| Subcatchment C1S: C1 Drainage Area                                                                              | Runoff Area=11.506 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=100.90 cfs 8.465 af             |
| Subcatchment C1SN1: C1SN1 Drainage                                                                              | Area Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=2.19 cfs 0.184 af           |
| Subcatchment C1SN2: C1SN2 Drainage                                                                              | Area Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=2.19 cfs 0.184 af           |
| Subcatchment C1SS1: C1SS1 Drainage                                                                              | Area Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=2.19 cfs 0.184 af           |
| Subcatchment C1SS2: C1SS2 Drainage                                                                              | Area Runoff Area=0.250 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=2.19 cfs 0.184 af           |
| Subcatchment C1T: C1 Drainage Area                                                                              | Runoff Area=6.292 ac 0.00% Impervious Runoff Depth=8.83" Flow Length=800' Tc=12.5 min CN=79 Runoff=51.20 cfs 4.629 af |
| Subcatchment C2S: C2 Drainage Area                                                                              | Runoff Area=10.038 ac 0.00% Impervious Runoff Depth=8.83"<br>Tc=10.0 min CN=79 Runoff=88.03 cfs 7.385 af              |
| Subcatchment C2T: C2 Drainage Area                                                                              | Runoff Area=5.249 ac 0.00% Impervious Runoff Depth=8.83" Flow Length=800' Tc=12.5 min CN=79 Runoff=42.72 cfs 3.862 af |
| Subcatchment C3: C3 Drainage Area                                                                               | Runoff Area=3.500 ac 0.00% Impervious Runoff Depth=9.75"<br>Tc=10.0 min CN=86 Runoff=32.84 cfs 2.845 af               |

Runoff Area=7,440 ac 0.00% Impervious Runoff Depth=11.26"

Runoff Area=4.290 ac 0.00% Impervious Runoff Depth=11.26"

Runoff Area=4,540 ac 0.00% Impervious Runoff Depth=11.26"

Tc=0.0 min CN=98 Runoff=102.59 cfs 6.980 af

Tc=0.0 min CN=98 Runoff=59.15 cfs 4.025 af

Tc=0.0 min CN=98 Runoff=62.60 cfs 4.260 af

Subcatchment C2S: C2 Drainage Area Runoff Area=10 Subcatchment C2T: C2 Drainage Area Runoff Area=5 Flow Length=800' Subcatchment C3: C3 Drainage Area Runoff Area≖3 Runoff Area=9.500 ac 0.00% Impervious Runoff Depth=9.75" Subcatchment C4: C4 Drainage Area Tc=10.0 min CN=86 Runoff=89.15 cfs 7.722 af Runoff Area=2.690 ac 0.00% Impervious Runoff Depth=9.75" Subcatchment C5: C5 Drainage Area Tc=10.0 min CN=86 Runoff=25.24 cfs 2.186 af Runoff Area=3.982 ac 0.00% Impervious Runoff Depth=9.75" Subcatchment C6: C6 Drainage Area Tc=10.0 min CN=86 Runoff=37.37 cfs 3.237 af

Reach 1CC: 1CC Collector Channel Avg. Flow Depth=5.24' Max Vel=4.25 fps Inflow=301.75 cfs 27.992 af n=0.030 L=222.0' S=0.0020'/ Capacity=2,157.50 cfs Outflow=300.25 cfs 27.992 af

> Hanson Professional Services Inc. Submittal Date: September 2018

Revision: 0

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 8

- Reach 2CC: 2CC Collector Channel Avg. Flow Depth=1.46' Max Vel=1.74 fps inflow=12.98 cfs 1.089 af n=0.030 L=650.0' S=0.0020'' Capacity=46.53 cfs Outflow=11.11 cfs 1.089 af
- Reach 5CC: A2 Collector Channel Avg. Flow Depth=1.15′ Max Vel=1.50 fps Inflow=8.77 cfs 0.736 af n=0.030 L=595.0′ S=0.0015 '/′ Capacity=68.72 cfs Outflow=7.45 cfs 0.736 af
- Reach 6CC: A3 Collector Channel Avg. Flow Depth=0.92' Max Vel=2.17 fps Inflow=8.77 cfs 0.736 af n=0,030 L=740.0' S=0.0040 '/' Capacity=50.02 cfs Outflow=7.67 cfs 0.736 af
- Reach A2-1: A2-1 Channel Avg. Flow Depth=1.48' Max Vel=1.73 fps Inflow=12.75 cfs 1.471 af n=0.030 L=250.5' S=0.0015 '/' Capacity=83.47 cfs Outflow=12.71 cfs 1.471 af
- Reach A2-2: A2-2 Channel Avg. Flow Depth=3.02' Max Vel=4.09 fps Inflow=162.11 cfs 14.244 af n=0.025 L=257.0' S=0.0020 7' Capacity=338.68 cfs Outflow=160.83 cfs 14.244 af
- Reach A2-3: A2-3 Channel Avg. Flow Depth=3.09' Max Vel=3.52 fps Inflow=160.83 cfs 14.244 af n=0.030 L=582.0' S=0.0020 '/' Capacity=532.10 cfs Outflow=154.07 cfs 14.244 af
- Reach A2-4; Chute-Concrete Block Avg. Flow Depth=0.91' Max Vel=12.45 fps Inflow=154.07 cfs 14.244 af n=0.025 L=250.0' S=0.0697 '/' Capacity=692.98 cfs Outflow=153.86 cfs 14.244 af
- Reach A2-5: Cocrete Block-Channel Avg. Flow Depth=0.37' Max Vel=12.58 fps Inflow=12.71 cfs 1.471 af n=0.025 L=5.6' S=0.2482 // Capacity=903.50 cfs Outflow=12.71 cfs 1.471 af
- Reach B1: 5' x 4' Box Culvert Avg. Flow Depth=2.81' Max Vel=10.42 fps Inflow=146.99 cfs 14.162 af 60.0" x 48.0" Box Pipe n=0.013 L=464.0' S=0.0057 '/' Capacity=185.34 cfs Outflow=146.52 cfs 14.162 af
- Reach B2: 5' x 4' Box Culvert Avg. Flow Depth=3.12' Max Vel=19.22 fps Inflow=300.25 cfs 27.992 af 60.0" x 48.0" Box Pipe n=0.013 L=200.0' S=0.0182 '/ Capacity=331.32 cfs Outflow=300.01 cfs 27.992 af
- Reach C1-4: Chute-Concrete Block Avg. Flow Depth=1.21' Max Vel=25.32 fps inflow=300.01 cfs 27.992 af n=0.025 L=76.0' S=0.2474 '/' Capacity=872.67 cfs Outflow=299.94 cfs 27.992 af
- Reach C1SCCN1: C1SCCN1 Collector Avg. Flow Depth=0.40' Max Vel=1.34 fps Inflow=2.19 cfs 0.184 af n=0.030 L=285.0' S=0.0033 '/' Capacity=24.47 cfs Outflow=2.06 cfs 0.184 af
- Reach C1SCCN2: C1SCCN2 Collector Avg. Flow Depth=0.40' Max Vel=1.33 fps Inflow=2.19 cfs 0.184 af n=0.030 L=287.5' S=0.0033 '/' Capacity=24.36 cfs Outflow=2.06 cfs 0.184 af
- Reach C1SCCS1: C1SCCS1 Collector Avg. Flow Depth=0.41' Max Vel=1.33 fps Inflow=2.19 cfs 0.184 af n=0.030 L=280.0' S=0.0033 'f' Capacity=24.30 cfs Outflow=2.06 cfs 0.184 af
- Reach C1SCCS2: C1SCCS2 Collector Avg. Ftow Depth=0.41¹ Max Vel=1.33 fps Inflow=2.19 cfs 0.184 af n=0,030 L=280.0¹ S=0.0033 ¹/ Capacity=24.30 cfs Outflow=2.06 cfs 0.184 af
- Reach C2-3: C2-3 Channel Avg. Flow Depth=3.32' Max Vel=3.35 fps Inflow=129.45 cfs 11.247 af n=0.030 L=882.0' S=0.0020 '/' Capacity=178.76 cfs Outflow=118.51 cfs 11.247 af
- Reach C2-4: Chute-Concrete Block Avg. Flow Depth=0.70' Max Vel=21.63 fps Inflow=118.38 cfs 11.247 af n=0.025 L=52.0' S=0.3269 '/' Capacity=1,003.23 cfs Outflow=118.36 cfs 11.247 af

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 9

- Avg. Flow Depth=1.29' Max Vel=9.05 fps Inflow=118.48 cfs 11.247 af Reach C2-5: C2-5 Channel n=0.025 L=106,0' S=0.0293'7' Capacity=492.25 cfs Outflow=118.38 cfs 11.247 af
- Avg. Flow Depth=0.26' Max Vel=6.99 fps Inflow=11.11 cfs 1.089 af Reach CC: Chute-Concrete Block n=0.025 L=160.0' S=0.1028'/ Capacity=562.60 cfs Outflow=11.10 cfs 1.089 af
- Avg. Flow Depth=0.85' Max Vel=21.08 fps Inflow=150.87 cfs 13.094 af Reach E: Chute-Concrete Block n=0.025 L=462.0' S=0.2511 '/' Capacity=879.20 cfs Outflow=150.58 cfs 13.094 af
- Reach NE: Chute-Concrete Block Avg. Flow Depth=0.79' Max Vel=20.16 fps Inflow=129.70 cfs 11.247 af n=0.025 L=464.0' S=0.2500 // Capacity=877.30 cfs Outflow=129.45 cfs 11.247 af
- Avg. Flow Depth=0.72' Max Vel=19.21 fps inflow=109.40 cfs 9.649 af Reach NW: Chute-Concrete Block n=0.025 L=464.0' S=0.2500 '/ Capacity=877.30 cfs Outflow=109.21 cfs 9.649 af
- Reach OC: Existing Offsite Channel Avg. Flow Depth=2.04' Max Vel=1.83 fps Inflow=42.26 cfs 31.217 af n=0.030 L=2,800.0' S=0.0010 '/' Capacity=44.23 cfs Outflow=41.59 cfs 31.108 af
- Reach P1: Culvert Avg. Flow Depth=2.46' Max Vel=14.61 fps Inflow=118.51 cfs 11.247 af 48.0" Round Pipe n=0.011 L=64.0' S=0.0100 '/ Capacity=169.76 cfs Outflow=118.48 cfs 11.247 af
- Reach P2: Culvert Avg. Flow Depth=0.53' Max Vel=7.31 fps Inflow=4.12 cfs 0.368 af 18.0" Round Pipe n=0.011 L=72.0' S=0.0150 "/ Capacity=15.20 cfs Outflow=4.11 cfs 0.368 af
- Avg. Flow Depth=0.17' Max Vel=9.69 fps Inflow=4.11 cfs 0.368 af Reach P2-1: Chute-Concrete Block n=0.025 L=60.0' S=0.3718 // Capacity=316.81 cfs Outflow=4.11 cfs 0.368 af
- Avg. Flow Depth=0.53' Max Vel=7.31 fps Inflow=4.12 cfs 0.368 af Reach P3: Culvert 18.0" Round Pipe n=0.011 L=72.0' S=0.0150 " Capacity=15.20 cfs Outflow=4.12 cfs 0.368 af
- Avg. Flow Depth=0.17' Max Vel=9.89 fps Inflow=4.12 cfs 0.368 af Reach P3-1: Chute-Concrete Block n=0.025 L=60.0' S=0.3942'/ Capacity=326.18 cfs Outflow=4.12 cfs 0.368 af
- Reach S: Chute-Concrete Block Avg. Flow Depth=0.86' Max Vel=21.09 fps Inflow=152.24 cfs 12.773 af n=0.025 L=459.0' S=0.2500'/' Capacity=877.30 cfs Outflow=151.93 cfs 12.773 af
- Reach SE: Chute-Concrete Block Avg. Flow Depth=0.831 Max Vel=20.70 fps Inflow=142.28 cfs 13.426 af n=0.025 L=450.0' S=0.2499 '/' Capacity=877.14 cfs Outflow=142.07 cfs 13.426 af
- Reach SE1: Chute-Concrete Block Avg. Flow Depth=1.101 Max Vel=13.74 fps Inflow=142.07 cfs 13.426 af n=0.025 L=62.0' S=0.0806'/ Capacity=498.27 cfs Outflow=142.01 cfs 13.426 af
- Reach SW: Chute-Concrete Block Avg. Flow Depth=0.81' Max Vel=20.41 fps Inflow=135.35 cfs 11.355 af n=0.025 L=404.0' S=0.2500 '/' Capacity=877.30 efs Outflow=135.10 efs 11.355 af
- Reach SW-1: Chute-Concrete Block Avg. Flow Depth=0.96' Max Vel=15.98 fps Inflow=135.10 cfs 11.355 af n=0.025 L=266.0' S=0.1269'/' Capacity=624.99 cfs Outflow=134.87 cfs 11.355 af
- Avg. Flow Depth=0.93' Max Vel=22.10 fps Inflow=179.96 cfs 16.468 af Reach W: Chute-Concrete Block n=0.025 L=464.0' S=0.2500 '/' Capacity=877.30 cfs Outflow=179.70 cfs 16.468 af

Type III 24-hr 100-Year Rainfall≔11.50"

Post Development 100 Yr Drainage Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 10

Pond PA: Retention Pond A Peak Elev=49.73' Storage=36.905 af Inflow=324.39 cfs 36.905 af

Outflow=0.00 cfs 0.000 af

Pond PB: Detention Pond B Peak Elev=52.22 Storage=16.607 af Inflow=331.73 cfs 32.018 af

Outflow=42.26 cfs 31.217 af

Pond PC: Retention Pond C Peak Elev=45.81' Storage=46.421 af Inflow=446.58 cfs 46.421 af

Outflow=0.00 cfs 0.000 at

Total Runoff Area = 164.599 ac Runoff Volume = 125.910 af Average Runoff Depth = 9.18" 100.00% Pervious = 164.599 ac 0.00% Impervious = 0.000 ac

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

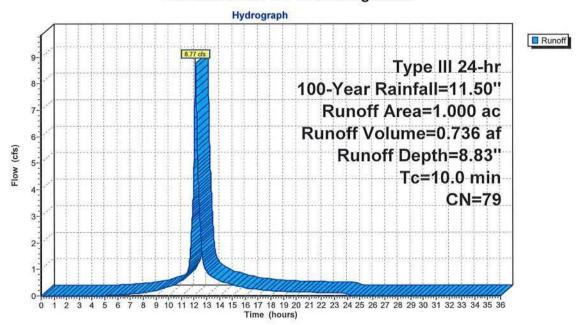
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 11

# Summary for Subcatchment 1C: 1C Drainage Area

Use Conservative Value of Tc=10 min


Runoff = 8.77 cfs @ 12.14 hrs, Volume=

0.736 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)           | CN                                   | Desc             | cription             |                |                                                |  |
|-------------|----------------|--------------------------------------|------------------|----------------------|----------------|------------------------------------------------|--|
| 1.          | .000           | 0 79 50-75% Grass cover, Fair, HSG C |                  |                      |                |                                                |  |
| 1.          | .000           |                                      | 100.             | 00% Pervi            | ous Area       |                                                |  |
| Tc<br>(min) | Lengt<br>(feet |                                      | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |  |
| 10.0        |                |                                      |                  |                      |                | Direct Entry, Drainage Area at Bottom of Slope |  |

#### Subcatchment 1C: 1C Drainage Area



Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

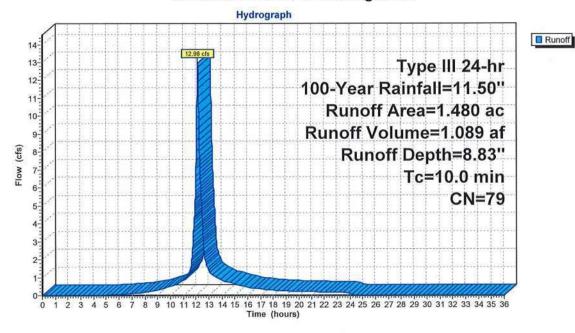
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

12.98 cfs @ 12.14 hrs, Volume=

Page 12

# Summary for Subcatchment 2C: 2C Drainage Area

Use Conservative Value of Tc=10 min


A5

1.089 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area                                     | (ac) | CN | Desc             | cription             |                   |                                                |
|------------------------------------------|------|----|------------------|----------------------|-------------------|------------------------------------------------|
| 1.480 79 50-75% Grass cover, Fair, HSG C |      |    |                  |                      |                   | HSG C                                          |
| 1.                                       | 480  |    | 100.             | 00% Pervi            | ous Area          |                                                |
| Tc<br>(min)                              | Leng |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                    |
| 10.0                                     |      |    |                  |                      |                   | Direct Entry, Drainage Area at Bottom of Slope |

#### Subcatchment 2C: 2C Drainage Area



### Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

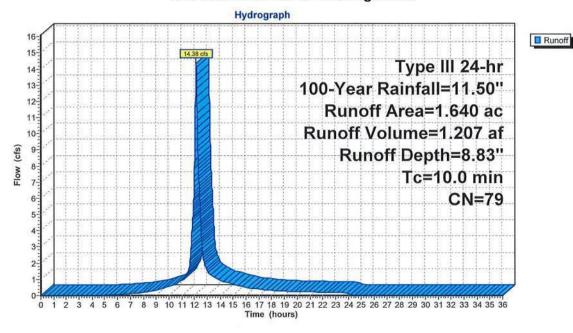
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

14.38 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 13

## Summary for Subcatchment 3C: 3C Drainage Area


Use Conservative Value of Tc=10 min

1.207 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN | Desc             | cription             |                |                                          |
|-------------|-----------------|----|------------------|----------------------|----------------|------------------------------------------|
| 1.          | 640             | 79 | 50-7             | 5% Grass             | cover, Fair    | , HSG C                                  |
| 1.          | 640             |    | 100.             | 00% Pervi            | ous Area       |                                          |
| Tc<br>(min) | Length<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                              |
| 10.0        |                 |    |                  |                      |                | Direct Entry, Surface Drainage to Pond B |

#### Subcatchment 3C: 3C Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

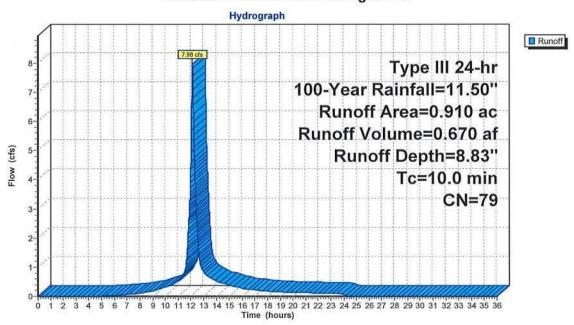
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 14

## Summary for Subcatchment 4C: 4C Drainage Area

Use Conservative Value of Tc=10 min


Runoff = 7.98 cfs @ 12.14 hrs, Volume=

0.670 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN                                 | Desc             | cription             |                |                                          |  |
|-------------|-----------------|------------------------------------|------------------|----------------------|----------------|------------------------------------------|--|
| 0.          | .910            | 79 50-75% Grass cover, Fair, HSG C |                  |                      |                |                                          |  |
| 0.          | 910             |                                    | 100.             | 00% Pervi            | ous Area       |                                          |  |
| Tc<br>(min) | Lengti<br>(feet |                                    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                              |  |
| 10.0        |                 |                                    |                  |                      |                | Direct Entry, Surface Drainage to Pond B |  |

#### Subcatchment 4C: 4C Drainage Area



Post Development 100 Yr Drainage

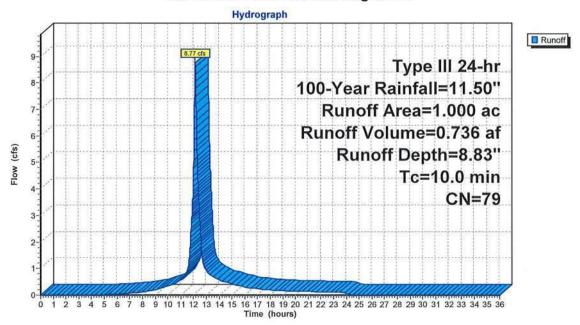
Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 15

#### Summary for Subcatchment 5C: A2 Drainage Area

Use Conservative Value of Tc=10 min


0.736 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

8.77 cfs @ 12.14 hrs, Volume=

| Area        | (ac)           | CN | Desc                            | cription             |                | 4                                              |  |  |
|-------------|----------------|----|---------------------------------|----------------------|----------------|------------------------------------------------|--|--|
| 1           | .000           | 79 | 50-75% Grass cover, Fair, HSG C |                      |                |                                                |  |  |
| 1           | 1.000          |    | 100.                            | 00% Pervi            | ous Area       |                                                |  |  |
| Tc<br>(min) | Lengt<br>(feet |    | lope<br>(ft/ft)                 | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |  |  |
| 10.0        |                |    |                                 |                      |                | Direct Entry, Drainage Area at Bottom of Slope |  |  |

#### Subcatchment 5C: A2 Drainage Area



# Post Development 100 Yr Drainage

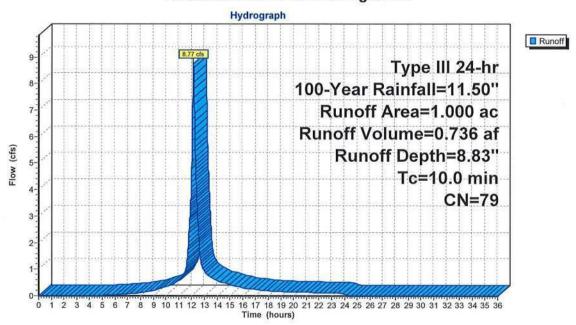
Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

8.77 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018 Page 16

### Summary for Subcatchment 6C: A3 Drainage Area


#### Use Conservative Value of Tc=10 min

0.736 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)           | CN | Des              | cription             |                |                                                |
|-------------|----------------|----|------------------|----------------------|----------------|------------------------------------------------|
| 1           | .000           | 79 | 50-7             | 5% Grass             | cover, Fair    | , HSG C                                        |
| 1           | .000           |    | 100.             | 00% Pervi            | ous Area       |                                                |
| Tc<br>(min) | Lengt<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |
| 10.0        |                |    |                  |                      |                | Direct Entry, Drainage Area at Bottom of Slope |

#### Subcatchment 6C: A3 Drainage Area



# Post Development 100 Yr Drainage

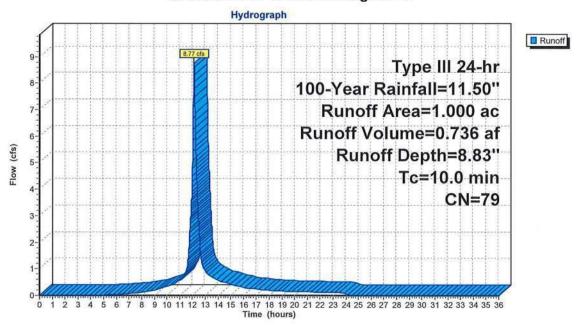
Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 17

# Summary for Subcatchment 7C: A2 Drainage Area

#### Use Conservative Value of Tc=10 min


0.736 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

8.77 cfs @ 12.14 hrs, Volume=

| Area (ac) CN Description        |       |  |                 |                      |                                         |                                               |
|---------------------------------|-------|--|-----------------|----------------------|-----------------------------------------|-----------------------------------------------|
| 1.000 79 50-75% Grass cover, Fa |       |  |                 | 5% Grass             | cover, Fair                             | , HSG C                                       |
| 1.                              | 000   |  | 100.            | 00% Pervi            | ous Area                                |                                               |
| Tc<br>(min)                     | Lengt |  | lope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs)                          | Description                                   |
| 10.0                            |       |  |                 |                      | , , , , , , , , , , , , , , , , , , , , | Direct Entry Drainage Area at Bottom of Slone |

#### Subcatchment 7C: A2 Drainage Area



### Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

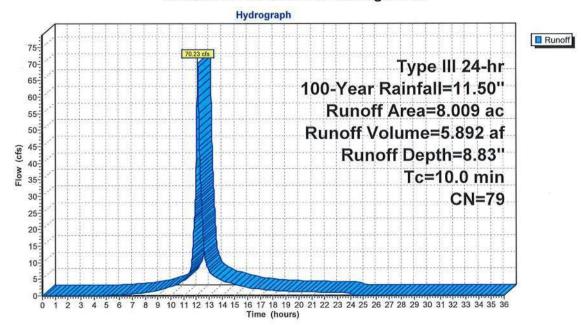
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

70.23 cfs @ 12.14 hrs, Volume=

Page 18

### Summary for Subcatchment A1S: A1S Drainage Area

Use Conservative Value of Tc=10 min.


\_\_\_\_

5.892 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area (ac) CN Description                 |               |  |                  |                      |                |                                        |
|------------------------------------------|---------------|--|------------------|----------------------|----------------|----------------------------------------|
| 8.009 79 50-75% Grass cover, Fair, HSG ( |               |  |                  |                      | cover, Fair    | , HSG C                                |
| 8.                                       | 009           |  | 100.             | 00% Pervi            | ous Area       | ***                                    |
| Tc<br>(min)                              | Lengt<br>(fee |  | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                            |
| 10.0                                     |               |  |                  |                      |                | Direct Entry A1S-Chute Flow Evaluation |

#### Subcatchment A1S: A1S Drainage Area

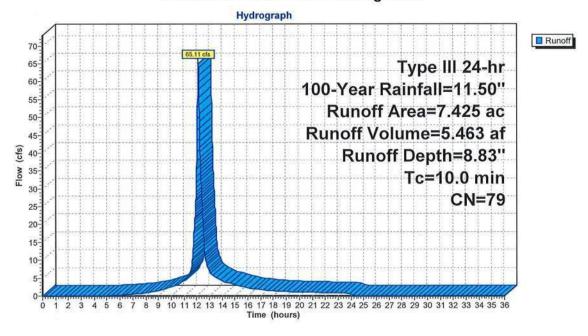


Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 19

## Summary for Subcatchment A1T: A1T Drainage Area


Runoff = 65.11 cfs @ 12.14 hrs, Volume=

5.463 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area (ac) CN Description |                |    |                                    |                      |                |                                         |  |  |  |  |
|--------------------------|----------------|----|------------------------------------|----------------------|----------------|-----------------------------------------|--|--|--|--|
| 7.425                    |                | 79 | 79 50-75% Grass cover, Fair, HSG C |                      |                |                                         |  |  |  |  |
| 7.                       | 425            |    | 100.                               | 00% Pervi            | ous Area       |                                         |  |  |  |  |
| Tc<br>(min)              | Lengt<br>(feet |    | Slope<br>(ft/ft)                   | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |  |  |  |  |
| 10.0                     | <u> </u>       |    |                                    |                      |                | Direct Entry, A1T-Chute Flow Evaluation |  |  |  |  |

# Subcatchment A1T: A1T Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

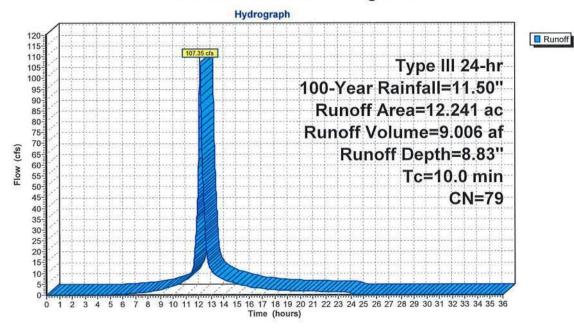
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 20

### Summary for Subcatchment A2S: A2 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff = 107.35 cfs @ 12.14 hrs, Volume=

9.006 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Are       | ea (ac) | CN | Des              | Description          |                   |                               |  |  |  |  |
|-----------|---------|----|------------------|----------------------|-------------------|-------------------------------|--|--|--|--|
| 122       | 12.241  | 79 | 50-7             | 5% Grass             | *                 |                               |  |  |  |  |
|           | 12.241  |    | 100.             | 00% Pervi            | ious Area         |                               |  |  |  |  |
| T<br>(mir | c Leng  |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                   |  |  |  |  |
| 10        | 0       |    |                  |                      |                   | Direct Entry A2 Drainage Area |  |  |  |  |

#### Subcatchment A2S: A2 Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

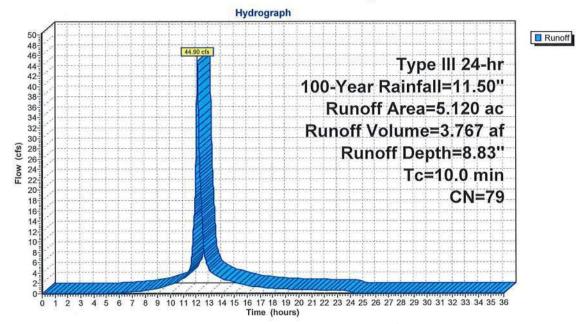
Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 21

## Summary for Subcatchment A2T: A2 Drainage Area


Runoff = 44.90 cfs @ 12.14 hrs, Volume=

3.767 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | Area (ac) CN Description |                       |                                 |                |             |  |  |  |  |  |
|-------------|--------------------------|-----------------------|---------------------------------|----------------|-------------|--|--|--|--|--|
| 5.120 7     |                          | 79 50-7               | 50-75% Grass cover, Fair, HSG C |                |             |  |  |  |  |  |
| 5.          | .120                     | 100.00% Pervious Area |                                 |                |             |  |  |  |  |  |
| Tc<br>(min) | Length<br>(feet)         |                       | Velocity<br>(ft/sec)            | Capacity (cfs) | Description |  |  |  |  |  |
| 10.0        |                          |                       |                                 |                |             |  |  |  |  |  |

# Subcatchment A2T: A2 Drainage Area



# Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

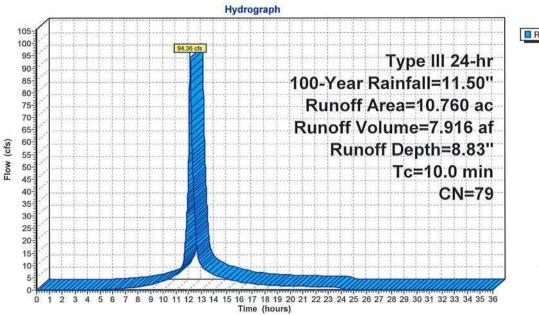
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

94.36 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 22

## Summary for Subcatchment A3S: A3S Drainage Area


Use Conservative Value of Tc=10 min.

7.916 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area (ac) CN Description |                  |    |               | ription              |                |                                         |
|--------------------------|------------------|----|---------------|----------------------|----------------|-----------------------------------------|
| 10.760                   |                  | 79 | 50-7          | 5% Grass             | cover, Fair    | , HSG C                                 |
| 10.                      | 760              | 85 | 100.          | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min)              | Length<br>(feet) |    | ope<br>ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 10.0                     |                  |    |               |                      |                | Direct Entry, A3S-Chute Flow Evaluation |

### Subcatchment A3S: A3S Drainage Area



Runoff

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

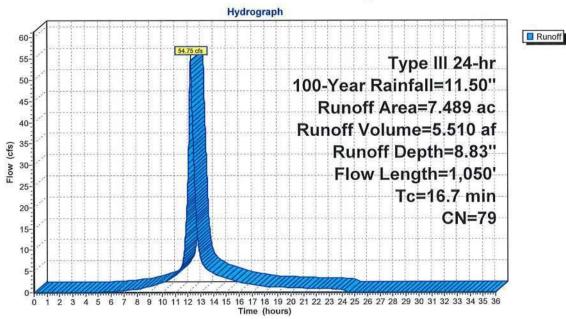
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 23

## Summary for Subcatchment A3T: A3T Drainage Area

Runoff


54.75 cfs @ 12.22 hrs, Volume=

5.510 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac) C           | N Des            | cription             |                |                                         |
|-------------|------------------|------------------|----------------------|----------------|-----------------------------------------|
| 7.          | 489              | 79 50-7          | 5% Grass             | cover, Fair    | HSG C                                   |
| 7.489       |                  | 100.             | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 9.6         | 750              |                  | 1.30                 |                | Direct Entry, A3T-Chute Flow Evaluation |
| 7.1         | 300              |                  | 0.70                 |                | Direct Entry,                           |
| 16.7        | 1.050            | Total            |                      |                |                                         |

# Subcatchment A3T: A3T Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

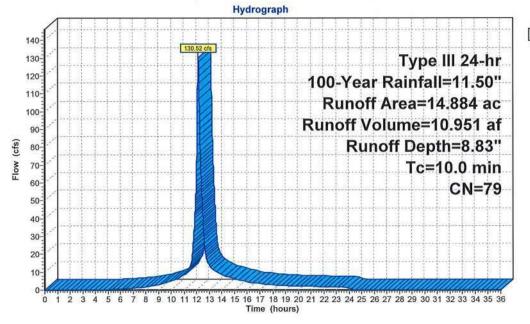
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 24

#### Summary for Subcatchment B1S: B1S Drainage Area

Use Conservative Value of Tc= 10 min.

Runoff =


130.52 cfs @ 12.14 hrs, Volume=

10.951 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area (ac) CN Description |                 |    |                       | cription             |                | *                                       |
|--------------------------|-----------------|----|-----------------------|----------------------|----------------|-----------------------------------------|
| 14.884                   |                 | 79 | 50-7                  | 5% Grass             | cover, Fair    | , HSG C                                 |
| 14.                      | 884             |    | 100.00% Pervious Area |                      |                |                                         |
| Tc<br>(min)              | Length<br>(feet |    | lope<br>(ft/ft)       | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 10.0                     |                 |    |                       |                      |                | Direct Entry, B1S-Chute Flow Evaluation |

# Subcatchment B1S: B1S Drainage Area



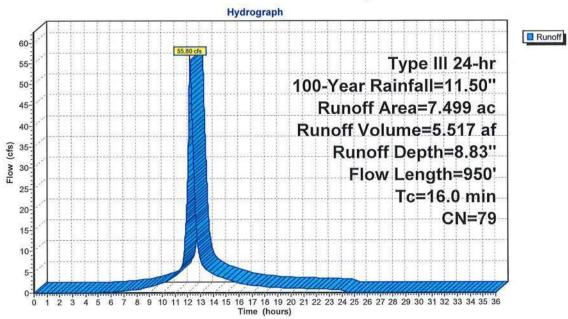
Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 25

## Summary for Subcatchment B1T: B1T Drainage Area

Runoff


55.80 cfs @ 12.21 hrs, Volume=

5.517 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac) (           | CN Des           | cription             |                   |                                         |
|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------------|
| 7.          | 499              | 79 50-           | 75% Grass            | cover, Fair       | , HSG C                                 |
| 7.          | 499              | 100              | .00% Pervi           | ous Area          |                                         |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
| 7.7         | 600              |                  | 1.30                 |                   | Direct Entry, B1T-Chute Flow Evaluation |
| 8.3         | 350              |                  | 0.70                 |                   | Direct Entry,                           |
| 16.0        | 950              | Total            |                      |                   |                                         |

# Subcatchment B1T: B1T Drainage Area



### Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

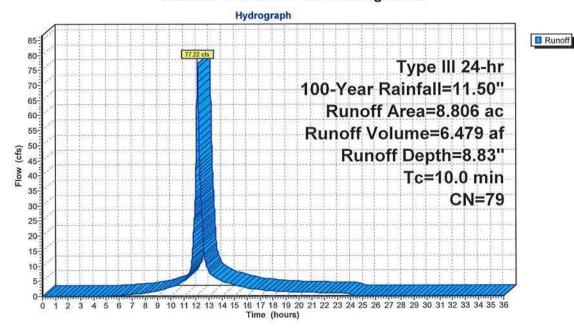
Printed 8/20/2018 Page 26

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

77.22 cfs @ 12.14 hrs, Volume=

# Summary for Subcatchment B2S: B2S Drainage Area

Use Conservative Value of Tc=10 min.


.

6.479 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

|   | Area        | (ac)          | CN | Desc             | cription             |                |                                         |
|---|-------------|---------------|----|------------------|----------------------|----------------|-----------------------------------------|
|   | 8.          | 806           | 79 | 50-7             | 5% Grass             | cover, Fair    | , HSG C                                 |
|   | 8.          | 806           |    | 100.             | 00% Pervi            | ous Area       |                                         |
|   | Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 3 | 10.0        |               |    |                  |                      |                | Direct Entry, B2S-Chute Flow Evaluation |

#### Subcatchment B2S: B2S Drainage Area

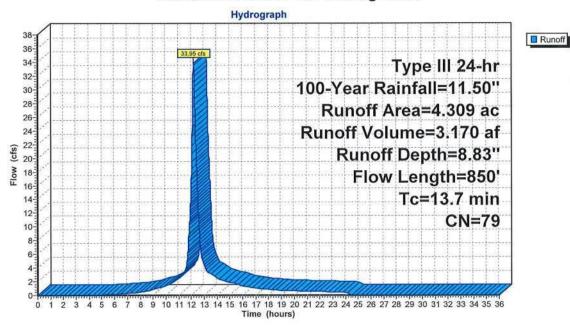


Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 27

## Summary for Subcatchment B2T: B2T Drainage Area


Runoff = 33.95 cfs @ 12.18 hrs, Volume=

3.170 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

|     | Area        | (ac) C           | N Des            | cription             |                   |                                         |
|-----|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------------|
| 990 | 4.          | .309             | 79 50-7          | 5% Grass             | cover, Fair       | HSG C                                   |
|     | 4.309       |                  | 100.             | 00% Pervi            | ious Area         |                                         |
|     | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
|     | 7.7         | 600              |                  | 1.30                 |                   | Direct Entry, B2T-Chute Flow Evaluation |
| 2   | 6.0         | 250              |                  | 0.70                 |                   | Direct Entry,                           |
| 10. | 13.7        | 850              | Total            |                      |                   |                                         |

### Subcatchment B2T: B2T Drainage Area



Part III, Attachment 6, Appendix 6B.5, p.g.-27

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

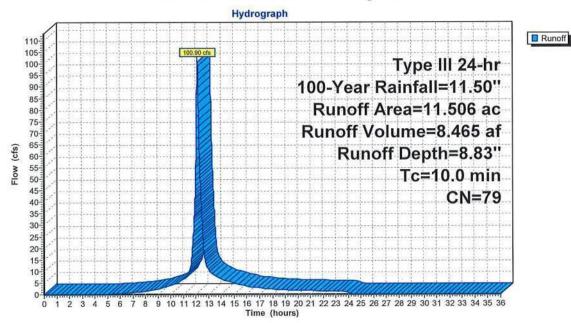
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 28

## Summary for Subcatchment C1S: C1 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff = 100.90 cfs @ 12.14 hrs, Volume=

8.465 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac) (           | CN Des           | Description          |                |                                |  |  |  |  |
|-------------|------------------|------------------|----------------------|----------------|--------------------------------|--|--|--|--|
| 11.         | .506             | 79 50-7          | 75% Grass            | cover, Fair    | HSG C                          |  |  |  |  |
| 11.         | .506             | 100              | .00% Perv            | ious Area      |                                |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |  |  |  |  |
| 10.0        |                  |                  |                      |                | Direct Entry, C1 Drainage Area |  |  |  |  |

#### Subcatchment C1S: C1 Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

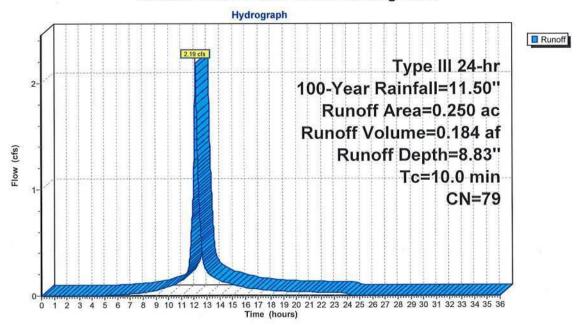
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 29

# Summary for Subcatchment C1SN1: C1SN1 Drainage Area

Use Conservative Value of Tc=10 min


Runoff = 2.19 cfs @ 12.14 hrs, Volume=

0.184 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN   | Desc             | cription             |                |                                                |
|-------------|-----------------|------|------------------|----------------------|----------------|------------------------------------------------|
| 0.          | 0.250 79        |      | 50-7             | 5% Grass             | cover, Fair    | HSG C                                          |
| 0.          | .250            |      | 100.             | 00% Pervi            | ous Area       |                                                |
| Tc<br>(min) | Length<br>(feet | 19.0 | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |
| 10.0        | -               |      |                  |                      |                | Direct Entry, Drainage Area at Bottom of Slope |

### Subcatchment C1SN1: C1SN1 Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

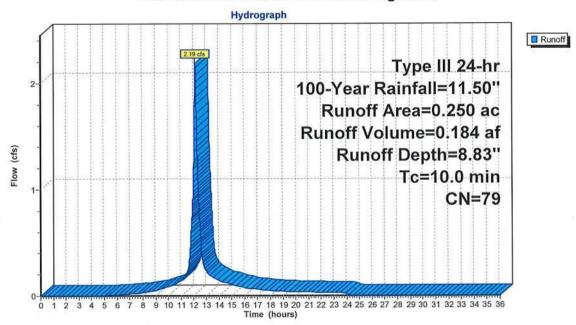
Page 30

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

### Summary for Subcatchment C1SN2: C1SN2 Drainage Area

Use Conservative Value of Tc=10 min


Runoff 2.19 cfs @ 12.14 hrs, Volume=

0.184 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN | Desc             | cription             |                |                                                |  |  |
|-------------|-----------------|----|------------------|----------------------|----------------|------------------------------------------------|--|--|
| 0.          | 0.250 79        |    | 50-7             | 5% Grass             | cover, Fair    | r, HSG C                                       |  |  |
| 0.          | 250             |    | 100.             | 00% Pervi            | ous Area       |                                                |  |  |
| Tc<br>(min) | Length<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |  |  |
| 10.0        |                 |    |                  |                      |                | Direct Entry, Drainage Area at Bottom of Slope |  |  |

### Subcatchment C1SN2: C1SN2 Drainage Area



#### Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

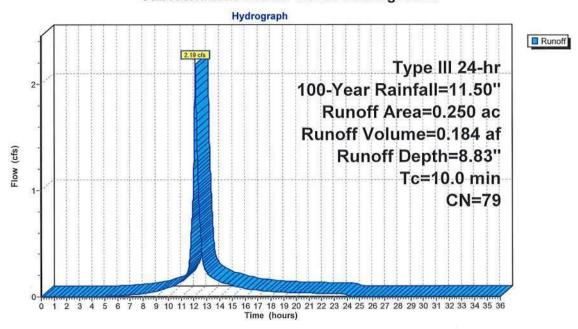
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

2.19 cfs @ 12.14 hrs, Volume=

Printed 8/20/2018

Page 31

#### Summary for Subcatchment C1SS1: C1SS1 Drainage Area


Use Conservative Value of Tc=10 min

0.184 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

|     | Area              | (ac)           | CN   | Desc                | cription             |                |                                                |
|-----|-------------------|----------------|------|---------------------|----------------------|----------------|------------------------------------------------|
| 915 | 0.250 79<br>0.250 |                | 50-7 | 5% Grass            | cover, Fair          | , HSG C        |                                                |
|     |                   |                |      | 100.00% Pervious Ar |                      | ous Area       |                                                |
| 702 | Tc<br>(min)       | Lengt<br>(feet |      | Slope<br>(ft/ft)    | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |
|     | 10.0              |                |      |                     |                      |                | Direct Entry, Drainage Area at Bottom of Slope |

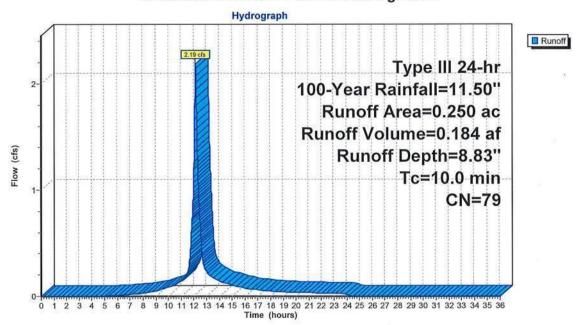
#### Subcatchment C1SS1: C1SS1 Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 32

### Summary for Subcatchment C1SS2: C1SS2 Drainage Area


Use Conservative Value of Tc=10 min

Runoff = 2.19 cfs @ 12.14 hrs, Volume= 0.184 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN | Desc            | cription             |                |                                                |
|-------------|-----------------|----|-----------------|----------------------|----------------|------------------------------------------------|
| 0.          | 250             | 79 | 50-7            | 5% Grass             | cover, Fair,   | , HSG C                                        |
| 0.          | 250             |    | 100.            | 00% Pervi            | ous Area       |                                                |
| Tc<br>(min) | Length<br>(feet |    | lope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                    |
| 10.0        |                 |    |                 |                      |                | Direct Entry, Drainage Area at Bottom of Slope |

#### Subcatchment C1SS2: C1SS2 Drainage Area

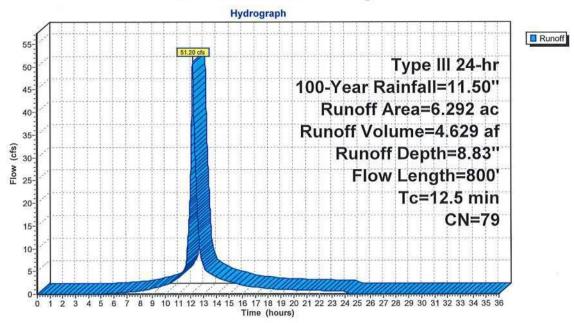


Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 33

## Summary for Subcatchment C1T: C1 Drainage Area


Runoff = 51.20 cfs @ 12.17 hrs, Volume=

4.629 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac) C        | N Des            | cription             |                   |                                |  |
|-------------|---------------|------------------|----------------------|-------------------|--------------------------------|--|
| 6.292 79    |               | 79 50-7          | 5% Grass             | cover, Fair       | ; HSG C                        |  |
| 6.          | 292           | 100.             | 00% Pervi            | ious Area         |                                |  |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                    |  |
| 7.7         | 600           |                  | 1.30                 |                   | Direct Entry, C1 Drainage Area |  |
| 4.8         | 200           |                  | 0.70                 |                   | Direct Entry,                  |  |
| 12.5        | 800           | Total            |                      |                   |                                |  |

## Subcatchment C1T: C1 Drainage Area



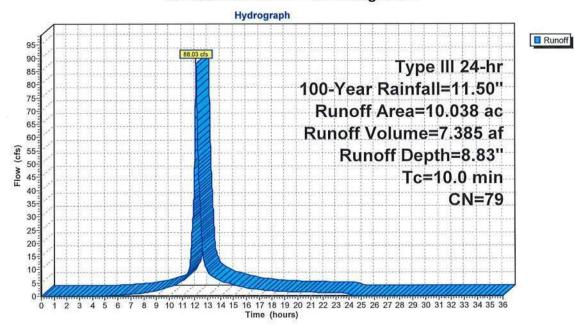
# Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 34

## Summary for Subcatchment C2S: C2 Drainage Area


Use Conservative Value of Tc=10 min.

88.03 cfs @ 12.14 hrs, Volume= 7.385 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)           | CN | Desc             | cription             |                |                                |  |  |
|-------------|----------------|----|------------------|----------------------|----------------|--------------------------------|--|--|
| 10          | 10.038 7       |    | 50-7             | 5% Grass             | cover, Fair,   | r, HSG C                       |  |  |
| 10          | .038           |    | 100.             | 00% Pervi            | ous Area       |                                |  |  |
| Tc<br>(min) | Lengt<br>(feet |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |  |  |
| 10.0        |                |    |                  |                      |                | Direct Entry, C2 Drainage Area |  |  |

#### Subcatchment C2S: C2 Drainage Area

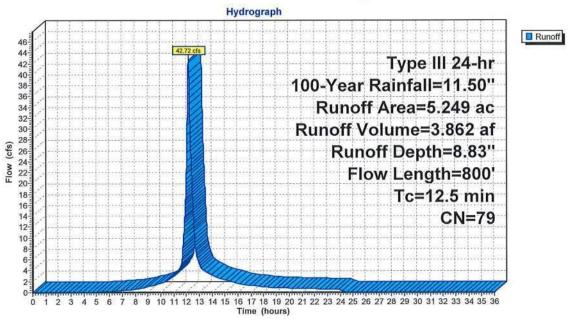


Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 35

# Summary for Subcatchment C2T: C2 Drainage Area


Runoff = 42.72 cfs @ 12.17 hrs, Volume=

3.862 af, Depth= 8.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac) C           | N Des            | cription             |                   |                                |  |
|-------------|------------------|------------------|----------------------|-------------------|--------------------------------|--|
| 5.          | 249              | 79 50-7          | 5% Grass             | cover, Fair       | , HSG C                        |  |
| 5.          | 249              | 100.             | 00% Pervi            | ous Area          |                                |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                    |  |
| 7.7         | 600              |                  | 1.30                 |                   | Direct Entry, C2 Drainage Area |  |
| 4.8         | 200              |                  | 0.70                 |                   | Direct Entry,                  |  |
| 12.5        | 800              | Total            |                      |                   |                                |  |

# Subcatchment C2T: C2 Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 36

## Summary for Subcatchment C3: C3 Drainage Area

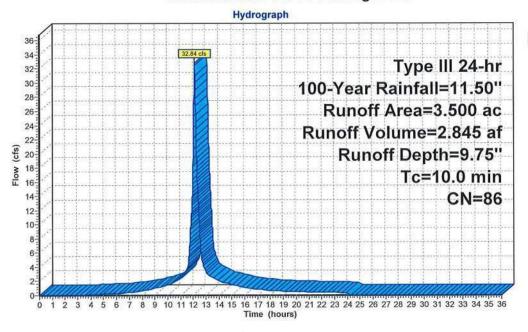
Existing Drainage Area Surface Drains to the North, Into Existing Low-Lying Excavated Pit C4 Drainage Area.

Runoff

3

32.84 cfs @ 12.13 hrs, Volume=

2.845 af, Depth= 9.75"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area  | (ac)  | CN  | Des   | cription   |             |             |  |  |  |
|-------|-------|-----|-------|------------|-------------|-------------|--|--|--|
| 3.    | 500   | 86  | <509  | % Grass co | over, Poor, | HSG C       |  |  |  |
| 3.500 |       |     | 100.  | 00% Pervi  | ous Area    |             |  |  |  |
| Tc    | Lengt | h S | Slope | Velocity   | Capacity    | Description |  |  |  |

(min) (feet) (ft/ft) (ft/sec) (cfs)

10.0 Direct Entry, C3 Drainage Area

### Subcatchment C3: C3 Drainage Area



Runoff

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

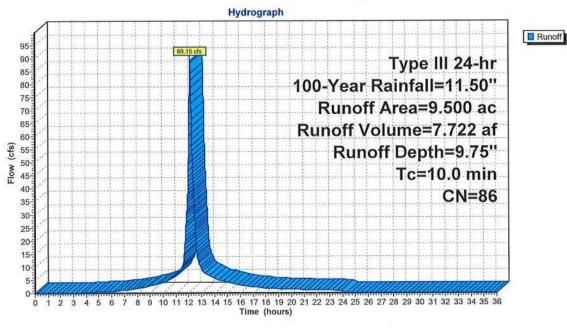
Page 37

# Summary for Subcatchment C4: C4 Drainage Area

Existing Low-Lying Excavated Pit Area. Infiltration and Evaporation Occur Here.

Runoff =

89.15 cfs @ 12.13 hrs, Volume=


7.722 af, Depth= 9.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| <br>Area (ac) | CN | Description                   |
|---------------|----|-------------------------------|
| 9.500         | 86 | <50% Grass cover, Poor, HSG C |
| 9.500         |    | 100.00% Pervious Area         |

| Tc<br>(min) | Length<br>(feet) | Velocity (ft/sec) | All Control of the Co | Description                    |
|-------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 10.0        |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Direct Entry, C4 Drainage Area |

# Subcatchment C4: C4 Drainage Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

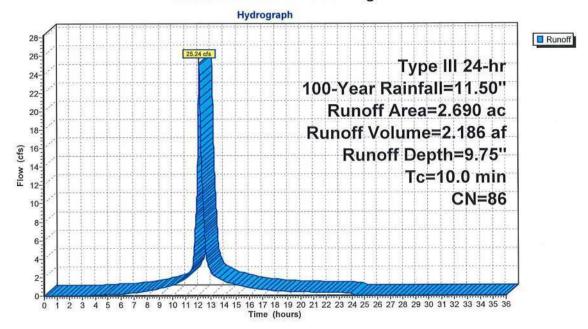
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 38

# Summary for Subcatchment C5: C5 Drainage Area

Side Slope Drainage Area that Flows Into Pond C.


Runoff = 25.24 cfs @ 12.13 hrs, Volume=

2.186 af, Depth= 9.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)             | CN | Desc            | cription             |                |                                |
|-------------|------------------|----|-----------------|----------------------|----------------|--------------------------------|
| 2.          | 690              | 86 | <50%            | 6 Grass co           | over, Poor,    | HSG C                          |
| 2.          | 690              |    | 100.            | 00% Pervi            | ous Area       |                                |
| Tc<br>(min) | Length<br>(feet) |    | lope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |
| 10.0        | - 60             | 7  | 1               | - 0                  |                | Direct Entry, C5 Drainage Area |

#### Subcatchment C5: C5 Drainage Area



10.0

## Post Development 100 Yr Drainage

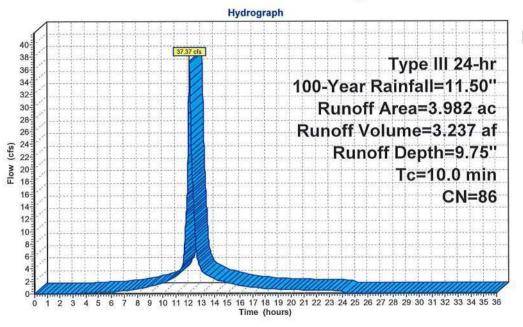
Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 39

# Summary for Subcatchment C6: C6 Drainage Area

Surrounding Drainage Area that Flows Into Pond A.

Runoff = 37.37 cfs @ 12.13 hrs, Volume=


3.237 af, Depth= 9.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN | Desc           | cription             |                   |             |  |
|-------------|-----------------|----|----------------|----------------------|-------------------|-------------|--|
| 3.          | 982             | 86 | <50%           | 6 Grass co           | over, Poor,       | HSG C       |  |
| 3.          | 982             |    | 100.           | 00% Pervi            | ous Area          |             |  |
| Tc<br>(min) | Length<br>(feet |    | lope<br>ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description |  |

Direct Entry, C6 Drainage Area

# Subcatchment C6: C6 Drainage Area



Runoff

## Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

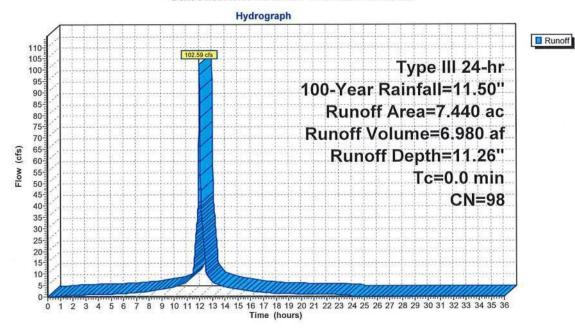
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

102.59 cfs @ 12.00 hrs, Volume=

Page 40

# Summary for Subcatchment PAR: PA Rainfall Area


Use Conservative Value of Tc=10 min

6.980 af, Depth=11.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN    | Desc             | cription             |                   |                                  |  |
|-------------|-----------------|-------|------------------|----------------------|-------------------|----------------------------------|--|
| 7           | 440             | HSG C |                  |                      |                   |                                  |  |
| 7           | 440             |       | 100.             | 00% Pervi            | ous Area          |                                  |  |
| Tc<br>(min) | Length<br>(feet |       | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                      |  |
| 0.0         |                 |       |                  |                      |                   | Direct Entry, Rainfall at Pond A |  |

#### Subcatchment PAR: PA Rainfall Area



Runoff

## Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

59.15 cfs @ 12.00 hrs, Volume=

Printed 8/20/2018 Page 41

# Summary for Subcatchment PBR: PB Rainfall Area


Use Conservative Value of Tc=10 min

4.025 af, Depth=11.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)           | CN | Desc                            | cription             |                   |                                  |  |  |
|-------------|----------------|----|---------------------------------|----------------------|-------------------|----------------------------------|--|--|
| 4.          | 290            | 98 | 98 Water Surface, 0% imp, HSG C |                      |                   |                                  |  |  |
| 4.          | .290           |    | 100.                            | 00% Pervi            | ous Area          |                                  |  |  |
| Tc<br>(min) | Lengt<br>(feet |    | Slope<br>(ft/ft)                | Velocity<br>(ft/sec) | Capacity<br>(cfs) |                                  |  |  |
| 0.0         |                | -  |                                 |                      |                   | Direct Entry, Rainfall at Pond B |  |  |

#### Subcatchment PBR: PB Rainfall Area



Runoff

## Post Development 100 Yr Drainage

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

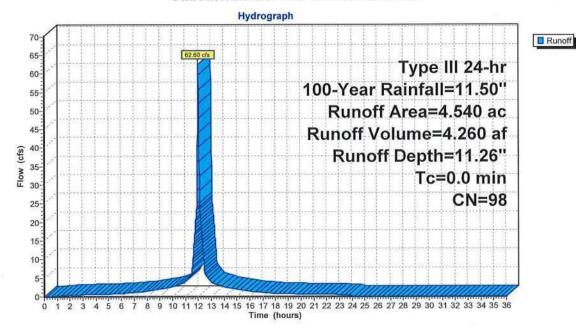
Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

62.60 cfs @ 12.00 hrs, Volume=

Page 42

# Summary for Subcatchment PCR: PC Rainfall Area


Use Conservative Value of Tc=10 min

4.260 af, Depth=11.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=11.50"

| Area        | (ac)            | CN                              | Desc             | cription             |                   |                                  |  |
|-------------|-----------------|---------------------------------|------------------|----------------------|-------------------|----------------------------------|--|
| 4.          | 540             | 98 Water Surface, 0% imp, HSG C |                  |                      |                   |                                  |  |
| 4.          | 540             |                                 | 100.             | 00% Pervi            | ous Area          |                                  |  |
| Tc<br>(min) | Lengti<br>(feet |                                 | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) |                                  |  |
| 0.0         | (1001           | /                               | (ivit)           | (10300)              | (013)             | Direct Entry, Rainfall at Pond C |  |

#### Subcatchment PCR: PC Rainfall Area



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 43

# Summary for Reach 1CC: 1CC Collector Channel

Inflow Area = 38.047 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 301.75 cfs @ 12.17 hrs, Volume= 27.992 af

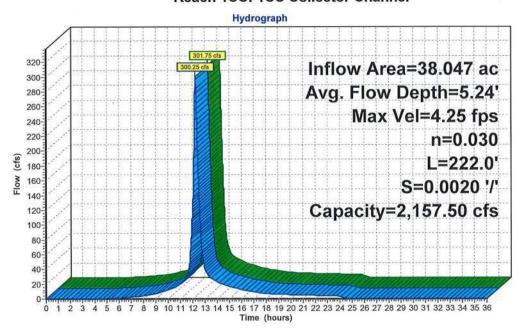
Outflow = 300.25 cfs @ 12.20 hrs, Volume= 27.992 af, Atten= 0%, Lag= 1.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 4.25 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 2.6 min

Peak Storage= 15,702 cf @ 12.18 hrs Average Depth at Peak Storage= 5.24'

Bank-Full Depth= 11.73' Flow Area= 310.4 sf, Capacity= 2,157.50 cfs


3.00' x 11.73' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 2.0 '/' Top Width= 49.92'

Length= 222.0' Slope= 0.0020 '/' Inlet Invert= 53.89', Outlet Invert= 53.45'



#### Reach 1CC: 1CC Collector Channel





Type III 24-hr 100-Year Rainfall=11.50"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 44

# Summary for Reach 2CC: 2CC Collector Channel

Inflow Area = 1.480 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 12.98 cfs @ 12.14 hrs, Volume= 1.089 af

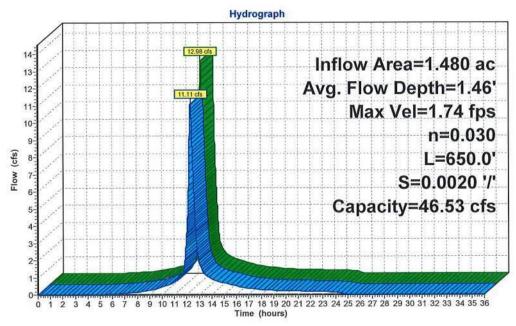
Outflow = 11.11 cfs @ 12.30 hrs, Volume= 1.089 af, Atten= 14%, Lag= 10.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.74 fps, Min. Travel Time= 6.2 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 19.4 min

Peak Storage= 4,166 cf @ 12.20 hrs Average Depth at Peak Storage= 1.46'

Bank-Full Depth= 2.50' Flow Area= 18.8 sf, Capacity= 46.53 cfs


0.00' x 2.50' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 3.0 '/' Top Width= 15.00'

Length= 650.0' Slope= 0.0020 '/' Inlet Invert= 54.50', Outlet Invert= 53.20'



#### Reach 2CC: 2CC Collector Channel



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 45

# Summary for Reach 5CC: A2 Collector Channel

1.000 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event Inflow Area =

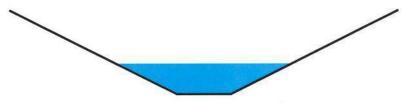
8.77 cfs @ 12.14 hrs, Volume= 0.736 af Inflow

7.45 cfs @ 12.31 hrs, Volume= 0.736 af, Atten= 15%, Lag= 10.5 min Outflow

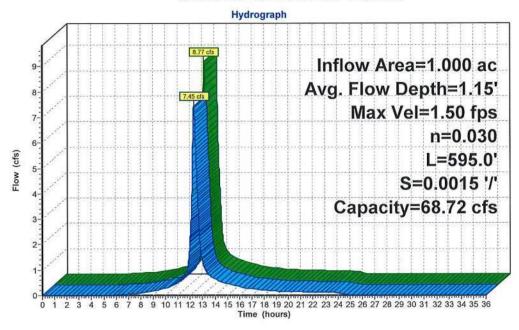
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.50 fps, Min. Travel Time= 6.6 min Avg. Velocity = 0.46 fps, Avg. Travel Time= 21.6 min

Peak Storage= 2,954 cf @ 12.20 hrs Average Depth at Peak Storage= 1.15'


Bank-Full Depth= 3.14' Flow Area= 26.0 sf, Capacity= 68.72 cfs

2.00' x 3.14' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 14.56'

Length= 595.0' Slope= 0.0015 '/'

Inlet Invert= 58.50', Outlet Invert= 57.61'



#### Reach 5CC: A2 Collector Channel





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 46

# Summary for Reach 6CC: A3 Collector Channel

Inflow Area = 1.000 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

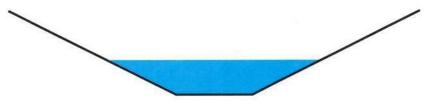
Inflow = 8.77 cfs @ 12.14 hrs, Volume= 0.736 af

Outflow = 7.67 cfs @ 12.29 hrs, Volume= 0.736 af, Atten= 13%, Lag= 9.2 min

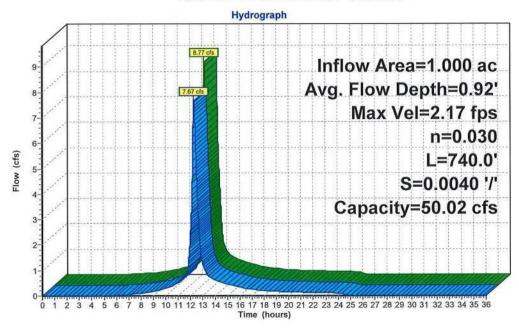
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 2.17 fps, Min. Travel Time= 5.7 min Avg. Velocity = 0.64 fps, Avg. Travel Time= 19.2 min

Peak Storage= 2,614 cf @ 12.19 hrs Average Depth at Peak Storage= 0.92


Bank-Full Depth= 2.21' Flow Area= 14.2 sf, Capacity= 50.02 cfs

2.00' x 2.21' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 10.84'

Length= 740.0' Slope= 0.0040 '/'

Inlet Invert= 59.50', Outlet Invert= 56.54'



#### Reach 6CC: A3 Collector Channel



Type III 24-hr 100-Year Rainfall=11.50"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 47

# Summary for Reach A2-1: A2-1 Channel

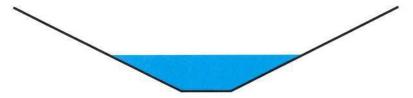
Inflow Area = 2.000 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 12.75 cfs @ 12.25 hrs, Volume= 1.471 af

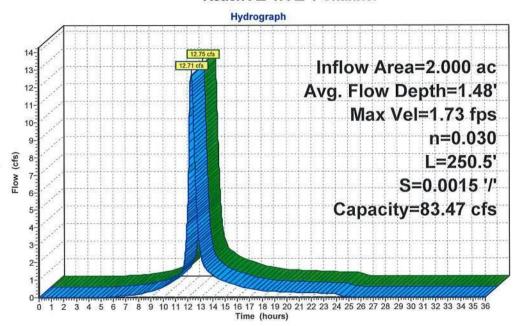
Outflow = 12.71 cfs @ 12.31 hrs, Volume= 1.471 af, Atten= 0%, Lag= 3.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.73 fps, Min. Travel Time= 2.4 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 7.5 min


Peak Storage= 1,837 cf @ 12.27 hrs Average Depth at Peak Storage= 1.48'

Bank-Full Depth= 3.40' Flow Area= 29.9 sf, Capacity= 83.47 cfs


2.00' x 3.40' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 2.0 '/' Top Width= 15.60'

Length= 250.5' Slope= 0.0015 '/'
Inlet Invert= 57.61', Outlet Invert= 57.23'



#### Reach A2-1: A2-1 Channel





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 48

# Summary for Reach A2-2: A2-2 Channel

Inflow Area = 19.361 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 162.11 cfs @ 12.15 hrs, Volume= 14.244 af

Outflow = 160.83 cfs @ 12.18 hrs, Volume= 14.244 af, Atten= 1%, Lag= 1.8 min

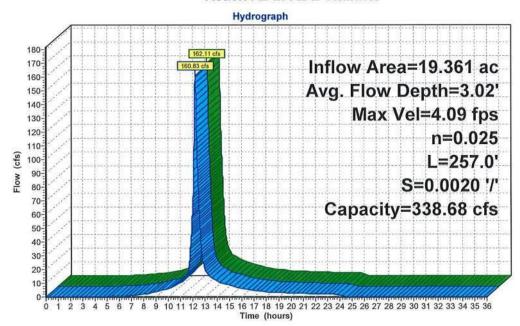
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 4.09 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 3.9 min

Peak Storage= 10,114 cf @ 12.16 hrs Average Depth at Peak Storage= 3.02'

Bank-Full Depth= 4.34' Flow Area= 68.1 sf, Capacity= 338.68 cfs

7.00' x 4.34' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 2.0 '/' Top Width= 24.36'

Length= 257.0' Slope= 0.0020 '/'

Inlet Invert= 55.84', Outlet Invert= 55.33'



#### Reach A2-2: A2-2 Channel



Inflow
Outflow

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 49

# Summary for Reach A2-3: A2-3 Channel

Inflow Area = 19.361 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 160.83 cfs @ 12.18 hrs, Volume= 14.244 af

Outflow = 154.07 cfs @ 12.26 hrs, Volume= 14.244 af, Atten= 4%, Lag= 4.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.52 fps, Min. Travel Time= 2.8 min Avg. Velocity = 0.95 fps, Avg. Travel Time= 10.2 min

Peak Storage= 25,497 cf @ 12.21 hrs Average Depth at Peak Storage= 3.09'

Bank-Full Depth= 5.65' Flow Area= 109.0 sf, Capacity= 532.10 cfs

8.00' x 5.65' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 2.0 '/' Top Width= 30.60'

Length= 582.0' Slope= 0.0020 '/'

Inlet Invert= 55.33', Outlet Invert= 54.17'



#### Reach A2-3: A2-3 Channel





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 50

# Summary for Reach A2-4: Chute-Concrete Block Open Cell

Inflow Area = 19.361 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 154.07 cfs @ 12.26 hrs, Volume= 14.244 af

Outflow = 153.86 cfs @ 12.27 hrs, Volume= 14.244 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

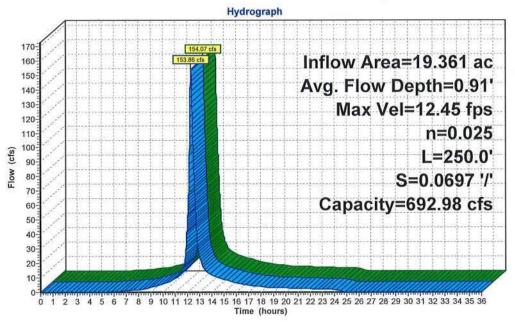
Max. Velocity= 12.45 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.12 fps, Avg. Travel Time= 1.3 min

Peak Storage= 3,091 cf @ 12.26 hrs Average Depth at Peak Storage= 0.91

Bank-Full Depth= 2.00' Flow Area= 36.0 sf, Capacity= 692.98 cfs

10.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented

Side Slope Z-value= 4.0 '/' Top Width= 26.00'


Length= 250.0' Slope= 0.0697 '/'

#

Inlet Invert= 54.17', Outlet Invert= 36.75'



Reach A2-4: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 51

# Summary for Reach A2-5: Cocrete Block-Channel Transition

Inflow Area = 2.000 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

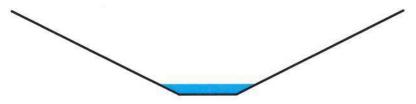
Inflow = 12.71 cfs @ 12.31 hrs, Volume= 1.471 af

Outflow = 12.71 cfs @ 12.31 hrs, Volume= 1.471 af, Atten= 0%, Lag= 0.0 min

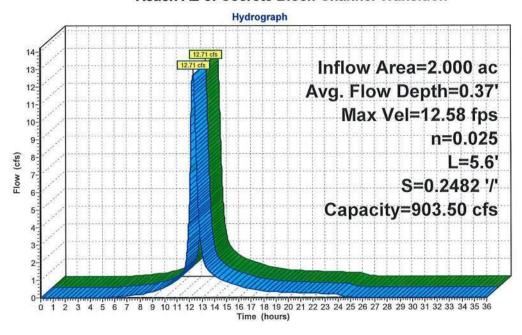
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 12.58 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.06 fps, Avg. Travel Time= 0.0 min

Peak Storage= 6 cf @ 12.31 hrs Average Depth at Peak Storage= 0.37


Bank-Full Depth= 2.93' Flow Area= 23.0 sf, Capacity= 903.50 cfs

2.00' x 2.93' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 2.0 '/' Top Width= 13.72'

Length= 5.6' Slope= 0.2482 '/'

Inlet Invert= 57.23', Outlet Invert= 55.84'



Reach A2-5: Cocrete Block-Channel Transition





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 52

# Summary for Reach B1: 5' x 4' Box Culvert

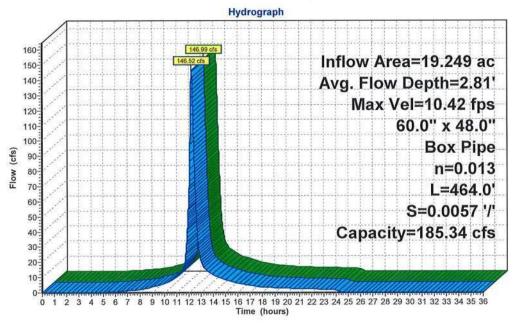
Inflow Area = 19.249 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 146.99 cfs @ 12.17 hrs, Volume= 14.162 af

Outflow = 146.52 cfs @ 12.19 hrs, Volume= 14.162 af, Atten= 0%, Lag= 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 10.42 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.94 fps, Avg. Travel Time= 2.6 min


Peak Storage= 6,530 cf @ 12.18 hrs Average Depth at Peak Storage= 2.81'

Bank-Full Depth= 4.00' Flow Area= 20.0 sf, Capacity= 185.34 cfs

60.0" W x 48.0" H Box Pipe n= 0.013 Concrete pipe, bends & connections Length= 464.0' Slope= 0.0057 '/' Inlet Invert= 56.54', Outlet Invert= 53.89'



#### Reach B1: 5' x 4' Box Culvert



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 53

#### Summary for Reach B2: 5' x 4' Box Culvert

Inflow Area = 38.047 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 300.25 cfs @ 12.20 hrs, Volume= 27.992 af

Outflow = 300.01 cfs @ 12.20 hrs, Volume= 27.992 af, Atten= 0%, Lag= 0.3 min

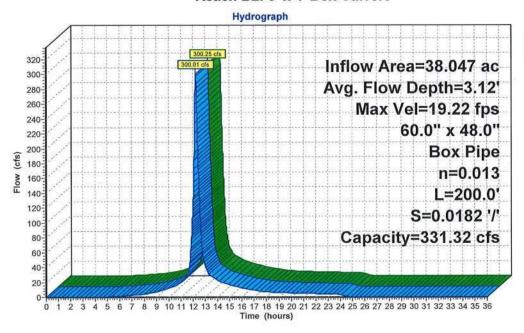
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.22 fps, Min. Travel Time= 0.2 min Avg. Velocity = 5.48 fps, Avg. Travel Time= 0.6 min

Peak Storage= 3,124 cf @ 12.20 hrs Average Depth at Peak Storage= 3.12

Bank-Full Depth= 4.00' Flow Area= 20.0 sf, Capacity= 331.32 cfs

60.0" W x 48.0" H Box Pipe


n= 0.013 Concrete pipe, bends & connections

Length= 200.0' Slope= 0.0182 '/'

Inlet Invert= 53.45', Outlet Invert= 49.80'



#### Reach B2: 5' x 4' Box Culvert



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 54

# Summary for Reach C1-4: Chute-Concrete Block Open Cell

Inflow Area = 38.047 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 300.01 cfs @ 12.20 hrs, Volume= 27.992 af

Outflow = 299.94 cfs @ 12.20 hrs, Volume= 27.992 af, Atten= 0%, Lag= 0.1 min

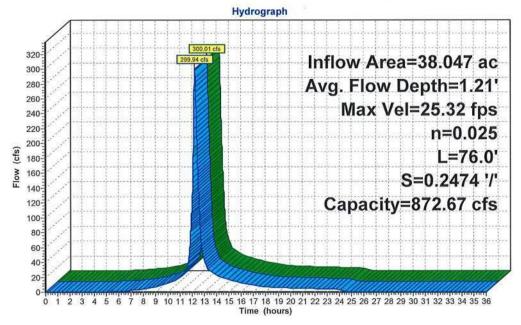
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 25.32 fps, Min. Travel Time= 0.1 min Avg. Velocity = 7.50 fps, Avg. Travel Time= 0.2 min

Peak Storage= 900 cf @ 12.20 hrs Average Depth at Peak Storage= 1.21

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 872.67 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 76.0' Slope= 0.2474 '/'

Inlet Invert= 49.80', Outlet Invert= 31.00'



#### Reach C1-4: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 55

# Summary for Reach C1SCCN1: C1SCCN1 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 2.19 cfs @ 12.14 hrs, Volume= 0.184 af

Outflow = 2.06 cfs @ 12.23 hrs, Volume= 0.184 af, Atten= 6%, Lag= 5.8 min

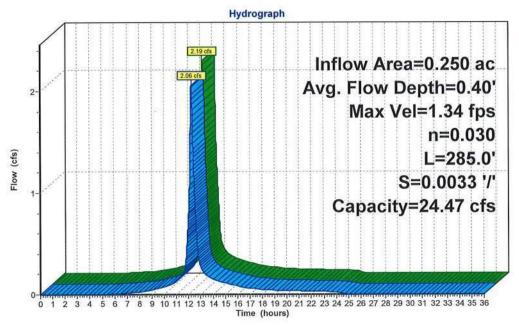
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.34 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 13.0 min

Peak Storage= 439 cf @ 12.17 hrs Average Depth at Peak Storage= 0.40'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.47 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 285.0' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.55'



## Reach C1SCCN1: C1SCCN1 Collector Channel



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 56

Part III

# Summary for Reach C1SCCN2: C1SCCN2 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 2.19 cfs @ 12.14 hrs, Volume= 0.184 af

Outflow = 2.06 cfs @ 12.23 hrs, Volume= 0.184 af, Atten= 6%, Lag= 5.9 min

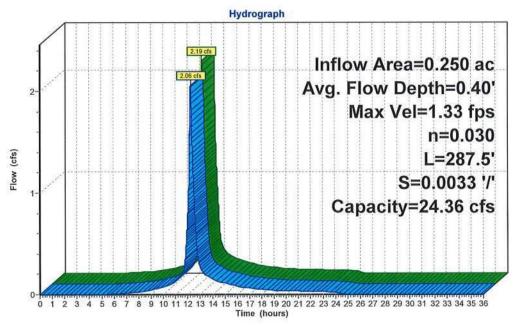
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.33 fps, Min. Travel Time= 3.6 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 13.2 min

Peak Storage= 443 cf @ 12.17 hrs Average Depth at Peak Storage= 0.40'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.36 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 287.5' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.55'



#### Reach C1SCCN2: C1SCCN2 Collector Channel





Submittal Date: September 2018

Revision: 0

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 57

# Summary for Reach C1SCCS1: C1SCCS1 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 2.19 cfs @ 12.14 hrs, Volume= 0.184 af

Outflow = 2.06 cfs @ 12.23 hrs, Volume= 0.184 af, Atten= 6%, Lag= 5.8 min

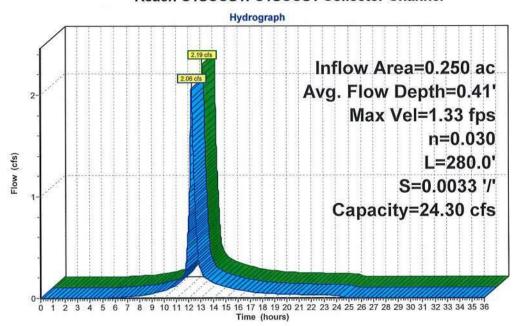
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.33 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 12.9 min

Peak Storage= 433 cf @ 12.17 hrs Average Depth at Peak Storage= 0.41'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.30 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 280.0' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.58'



#### Reach C1SCCS1: C1SCCS1 Collector Channel



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 58

# Summary for Reach C1SCCS2: C1SCCS2 Collector Channel

Inflow Area = 0.250 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 2.19 cfs @ 12.14 hrs, Volume= 0.184 af

Outflow = 2.06 cfs @ 12.23 hrs, Volume= 0.184 af, Atten= 6%, Lag= 5.8 min

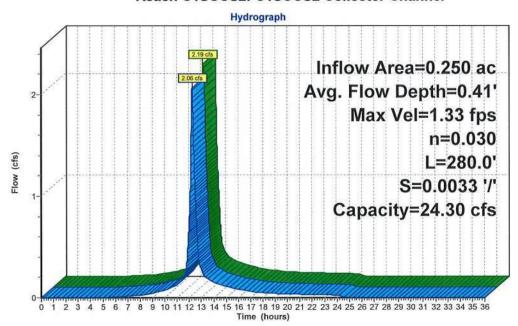
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.33 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 12.9 min

Peak Storage= 433 cf @ 12.17 hrs Average Depth at Peak Storage= 0.41'

Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 24.30 cfs

3.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 9.00'

Length= 280.0' Slope= 0.0033 '/'

Inlet Invert= 58.50', Outlet Invert= 57.58'



## Reach C1SCCS2: C1SCCS2 Collector Channel





Revision: 0

Type III 24-hr 100-Year Rainfall=11.50"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 59

# Summary for Reach C2-3: C2-3 Channel

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 129.45 cfs @ 12.16 hrs, Volume= 11.247 af

Outflow = 118.51 cfs @ 12.28 hrs, Volume= 11.247 af, Atten= 8%, Lag= 7.4 min

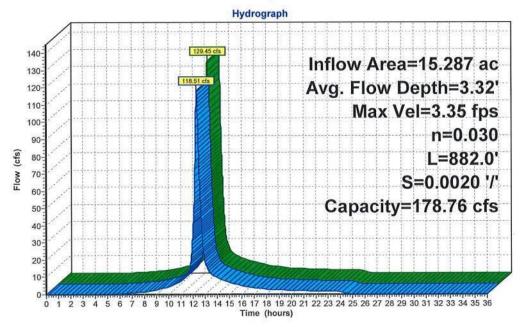
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.35 fps, Min. Travel Time= 4.4 min Avg. Velocity = 0.96 fps, Avg. Travel Time= 15.3 min

Peak Storage= 31,176 cf @ 12.21 hrs Average Depth at Peak Storage= 3.32'

Bank-Full Depth= 4.00' Flow Area= 48.0 sf, Capacity= 178.76 cfs

4.00' x 4.00' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 2.0 '/' Top Width= 20.00'

Length= 882.0' Slope= 0.0020 '/'

Inlet Invert= 53.50', Outlet Invert= 51.75'



# Reach C2-3: C2-3 Channel





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 60

# Summary for Reach C2-4: Chute-Concrete Block Open Cell

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 118.38 cfs @ 12.29 hrs, Volume= 11.247 af

Outflow = 118.36 cfs @ 12.29 hrs, Volume= 11.247 af, Atten= 0%, Lag= 0.1 min

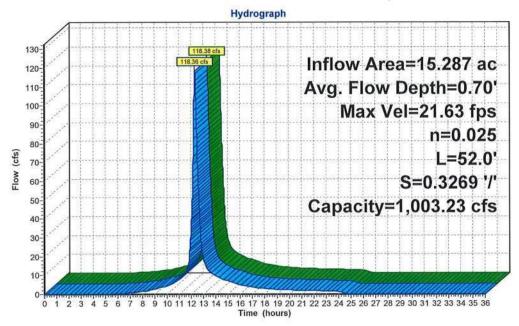
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 21.63 fps, Min. Travel Time= 0.0 min Avg. Velocity = 5.92 fps, Avg. Travel Time= 0.1 min

Peak Storage= 285 cf @ 12.29 hrs Average Depth at Peak Storage= 0.70

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 1,003.23 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 52.0' Slope= 0.3269 '/'

Inlet Invert= 48.00', Outlet Invert= 31.00'



Reach C2-4: Chute-Concrete Block Open Cell



Revision: 0

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 61

## Summary for Reach C2-5: C2-5 Channel

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 118.48 cfs @ 12.28 hrs, Volume= 11.247 af

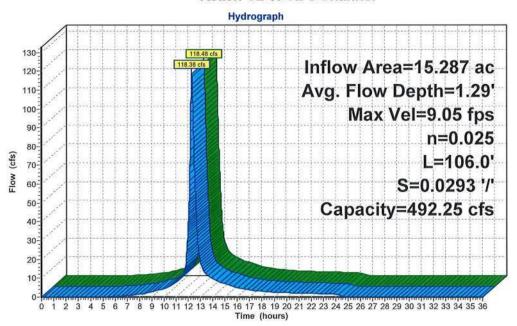
Outflow = 118.38 cfs @ 12.29 hrs, Volume= 11.247 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 9.05 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.55 fps, Avg. Travel Time= 0.7 min

Peak Storage= 1,388 cf @ 12.28 hrs Average Depth at Peak Storage= 1.29

Bank-Full Depth= 2.50' Flow Area= 37.5 sf, Capacity= 492.25 cfs


5.00' x 2.50' deep channel, n= 0.025 Rubble masonry, cemented

Side Slope Z-value= 4.0 '/' Top Width= 25.00'

Length= 106.0' Slope= 0.0293 '/' Inlet Invert= 51.11', Outlet Invert= 48.00'



#### Reach C2-5: C2-5 Channel



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 62

# Summary for Reach CC: Chute-Concrete Block Open Cell

Inflow Area = 1.480 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 11.11 cfs @ 12.30 hrs, Volume= 1.089 af

Outflow = 11.10 cfs @ 12.31 hrs, Volume= 1.089 af, Atten= 0%, Lag= 0.6 min

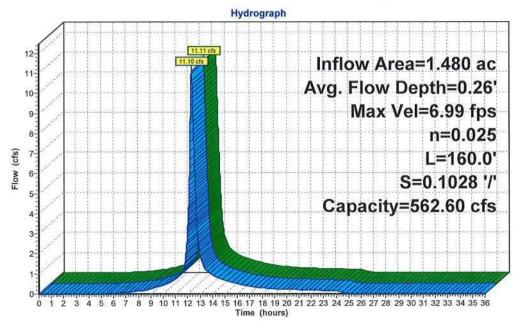
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 6.99 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 1.3 min

Peak Storage= 254 cf @ 12.31 hrs Average Depth at Peak Storage= 0.26'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 562.60 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 160.0' Slope= 0.1028 '/'

Inlet Invert= 53.20', Outlet Invert= 36.75'



Reach CC: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 63

#### Summary for Reach E: Chute-Concrete Block Open Cell

Inflow Area = 17.798 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 150.87 cfs @ 12.14 hrs, Volume= 13.094 af

Outflow = 150.58 cfs @ 12.16 hrs, Volume= 13.094 af, Atten= 0%, Lag= 0.6 min

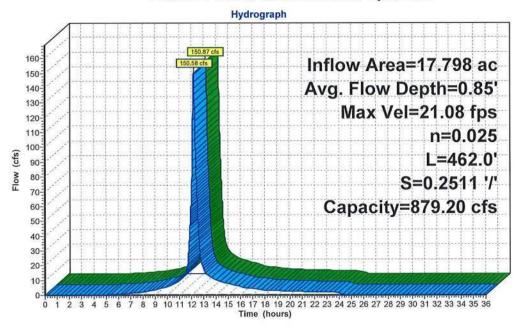
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 21.08 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.60 fps, Avg. Travel Time= 1.2 min

Peak Storage= 3,305 cf @ 12.15 hrs Average Depth at Peak Storage= 0.85

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 879.20 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 462.0' Slope= 0.2511 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



#### Reach E: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 64

## Summary for Reach NE: Chute-Concrete Block Open Cell

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 129.70 cfs @ 12.14 hrs, Volume= 11.247 af

Outflow = 129.45 cfs @ 12.16 hrs, Volume= 11.247 af, Atten= 0%, Lag= 0.7 min

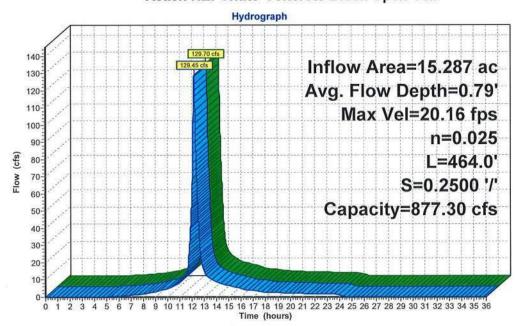
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 20.16 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.26 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,982 cf @ 12.15 hrs Average Depth at Peak Storage= 0.79

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 464.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



#### Reach NE: Chute-Concrete Block Open Cell





Revision: 0

Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 65

# Summary for Reach NW: Chute-Concrete Block Open Cell

Inflow Area = 13.115 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 109.40 cfs @ 12.15 hrs, Volume= 9.649 af

Outflow = 109.21 cfs @ 12.16 hrs, Volume= 9.649 af, Atten= 0%, Lag= 0.7 min

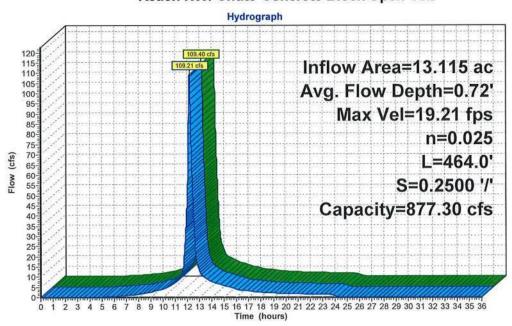
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.21 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.93 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,640 cf @ 12.15 hrs Average Depth at Peak Storage= 0.72

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 464.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



#### Reach NW: Chute-Concrete Block Open Cell





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 66

#### Summary for Reach OC: Existing Offsite Channel

Inflow Area = 42.338 ac, 0.00% Impervious, Inflow Depth > 8.85" for 100-Year event

Inflow = 42.26 cfs @ 12.98 hrs, Volume= 31.217 af

Outflow = 41.59 cfs @ 14.06 hrs, Volume= 31.108 af, Atten= 2%, Lag= 64.9 min

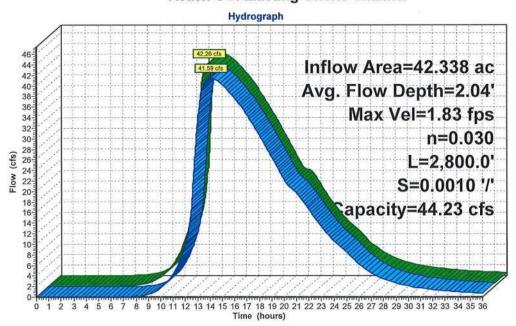
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.83 fps, Min. Travel Time= 25.4 min Avg. Velocity = 0.95 fps, Avg. Travel Time= 49.3 min

Peak Storage= 63,491 cf @ 13.64 hrs Average Depth at Peak Storage= 2.04'

Bank-Full Depth= 2.10' Flow Area= 23.7 sf, Capacity= 44.23 cfs

5.00' x 2.10' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 3.0 '/' Top Width= 17.60'

Length= 2,800.0' Slope= 0.0010 '/'

Inlet Invert= 46.66', Outlet Invert= 43.86'



#### Reach OC: Existing Offsite Channel



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 67

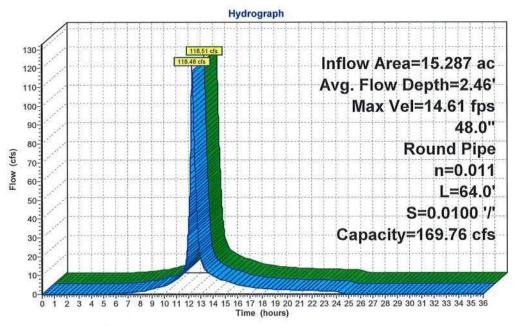
# Summary for Reach P1: Culvert

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 118.51 cfs @ 12.28 hrs, Volume= 11.247 af

Outflow = 118.48 cfs @ 12.28 hrs, Volume= 11.247 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs


Max. Velocity= 14.61 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.39 fps, Avg. Travel Time= 0.2 min

Peak Storage= 519 cf @ 12.28 hrs Average Depth at Peak Storage= 2.46' Bank-Full Depth= 4.00' Flow Area= 12.6 sf, Capacity= 169.76 cfs

48.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 64.0' Slope= 0.0100 '/' Inlet Invert= 51.75', Outlet Invert= 51.11'



#### Reach P1: Culvert





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 68

#### Summary for Reach P2: Culvert

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 4.12 cfs @ 12.23 hrs, Volume= 0.368 af

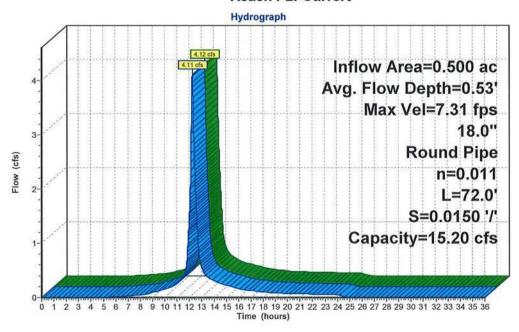
Outflow = 4.11 cfs @ 12.24 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 7.31 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.37 fps, Avg. Travel Time= 0.5 min

Peak Storage= 41 cf @ 12.24 hrs Average Depth at Peak Storage= 0.53'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.20 cfs


18.0" Round Pipe

n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0150 '/'

Inlet Invert= 54.39', Outlet Invert= 53.31'



#### Reach P2: Culvert





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 69

# Summary for Reach P2-1: Chute-Concrete Block Open Cell

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 4.11 cfs @ 12.24 hrs, Volume= 0.368 af

Outflow = 4.11 cfs @ 12.24 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.2 min

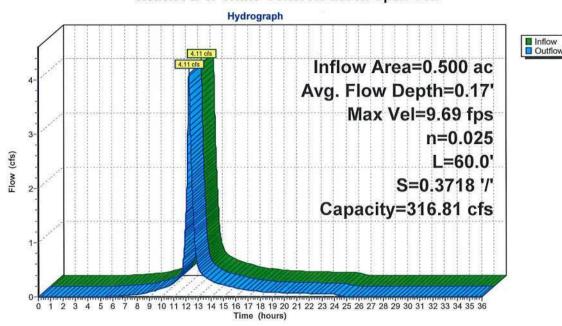
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 9.69 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.91 fps, Avg. Travel Time= 0.3 min

Peak Storage= 25 cf @ 12.24 hrs Average Depth at Peak Storage= 0.17'

Bank-Full Depth= 1.50' Flow Area= 9.8 sf, Capacity= 316.81 cfs

2.00' x 1.50' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 3.0 '/' Top Width= 11.00'

Length= 60.0' Slope= 0.3718 '/'

Inlet Invert= 53.31', Outlet Invert= 31.00'



Reach P2-1: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 70

## Summary for Reach P3: Culvert

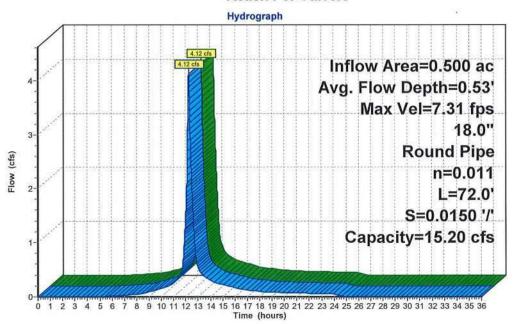
Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 4.12 cfs @ 12.23 hrs, Volume= 0.368 af

Outflow = 4.12 cfs @ 12.24 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 7.31 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.38 fps, Avg. Travel Time= 0.5 min


Peak Storage= 41 cf @ 12.23 hrs Average Depth at Peak Storage= 0.53'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.20 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0150 '/' Inlet Invert= 55.41', Outlet Invert= 54.33'



#### Reach P3: Culvert



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 71

# Summary for Reach P3-1: Chute-Concrete Block Open Cell

Inflow Area = 0.500 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 4.12 cfs @ 12.24 hrs, Volume= 0.368 af

Outflow = 4.12 cfs @ 12.24 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.2 min

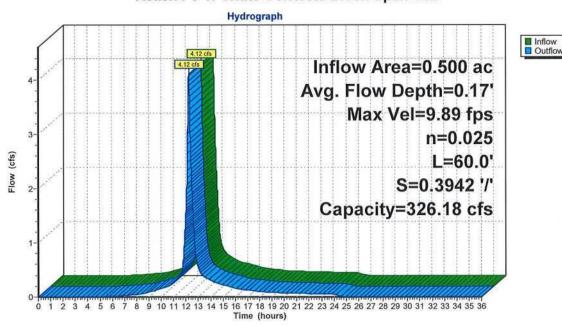
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 9.89 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.98 fps, Avg. Travel Time= 0.3 min

Peak Storage= 25 cf @ 12.24 hrs Average Depth at Peak Storage= 0.17

Bank-Full Depth= 1.50' Flow Area= 9.8 sf, Capacity= 326.18 cfs

2.00' x 1.50' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 3.0 '/' Top Width= 11.00'

Length= 60.0' Slope= 0.3942 '/'

Inlet Invert= 54.65', Outlet Invert= 31.00'



Reach P3-1: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 72

# Summary for Reach S: Chute-Concrete Block Open Cell

Inflow Area = 17.361 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 152.24 cfs @ 12.14 hrs, Volume= 12.773 af

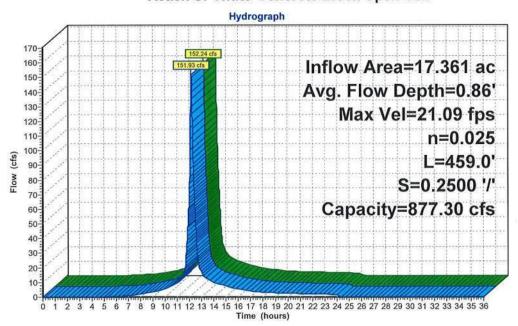
Outflow = 151.93 cfs @ 12.15 hrs, Volume= 12.773 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 21.09 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.55 fps, Avg. Travel Time= 1.2 min

Peak Storage= 3,309 cf @ 12.14 hrs Average Depth at Peak Storage= 0.86

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs


5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented

Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 459.0' Slope= 0.2500 '/'
Inlet Invert= 174.00', Outlet Invert= 59.25'



Reach S: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 73

#### Summary for Reach SE: Chute-Concrete Block Open Cell

Inflow Area = 18.249 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 142.28 cfs @ 12.15 hrs, Volume= 13.426 af

Outflow = 142.07 cfs @ 12.17 hrs, Volume= 13.426 af, Atten= 0%, Lag= 0.7 min

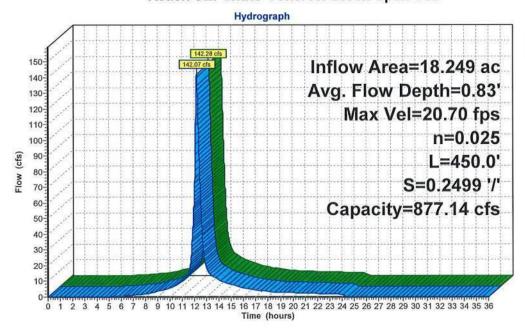
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 20.70 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.61 fps, Avg. Travel Time= 1.1 min

Peak Storage= 3,091 cf @ 12.16 hrs Average Depth at Peak Storage= 0.83'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.14 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 450.0' Slope= 0.2499 '/'

Inlet Invert= 174.00', Outlet Invert= 61.54'



#### Reach SE: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 74

#### Summary for Reach SE1: Chute-Concrete Block Open Cell

Inflow Area = 18.249 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 142.07 cfs @ 12.17 hrs, Volume= 13.426 af

Outflow = 142.01 cfs @ 12.17 hrs, Volume= 13.426 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

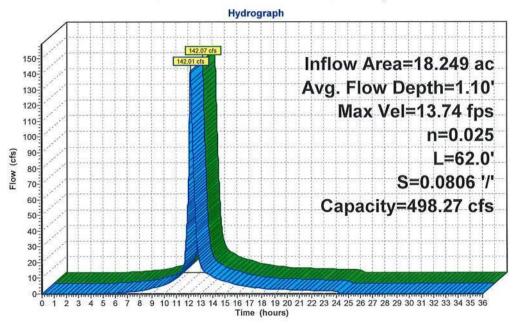
Max. Velocity= 13.74 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.54 fps, Avg. Travel Time= 0.2 min

Peak Storage= 641 cf @ 12.17 hrs Average Depth at Peak Storage= 1.10'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 498.27 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented

Side Slope Z-value= 4.0 '/' Top Width= 21.00'


Length= 62.0' Slope= 0.0806 '/'

#

Inlet Invert= 61.54', Outlet Invert= 56.54'



#### Reach SE1: Chute-Concrete Block Open Cell





Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 75

#### Summary for Reach SW: Chute-Concrete Block Open Cell

Inflow Area = 15.434 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 135.35 cfs @ 12.14 hrs, Volume= 11.355 af

Outflow = 135.10 cfs @ 12.14 hrs, Volume= 11.355 af, Atten= 0%, Lag= 0.5 min

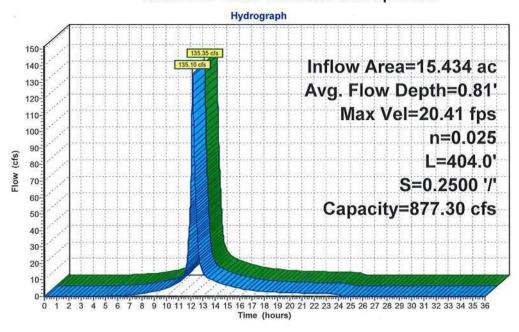
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 20.41 fps, Min. Travel Time= 0.3 min Avg. Velocity = 6.30 fps, Avg. Travel Time= 1.1 min

Peak Storage= 2,677 cf @ 12.14 hrs Average Depth at Peak Storage= 0.81

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 404.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 73.00'



#### Reach SW: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 76

#### Summary for Reach SW-1: Chute-Concrete Block Open Cell

Inflow Area = 15.434 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 135.10 cfs @ 12.14 hrs, Volume= 11.355 af

Outflow = 134.87 cfs @ 12.15 hrs, Volume= 11.355 af, Atten= 0%, Lag= 0.5 min

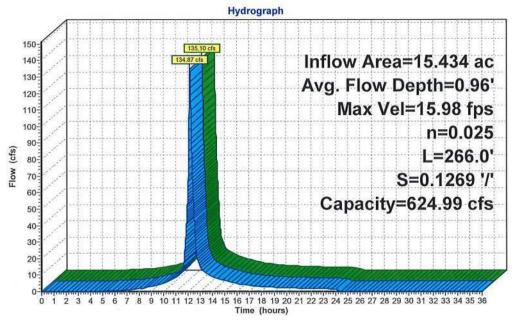
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 15.98 fps, Min. Travel Time= 0.3 min Avg. Velocity = 5.02 fps, Avg. Travel Time= 0.9 min

Peak Storage= 2,248 cf @ 12.15 hrs Average Depth at Peak Storage= 0.96'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 624.99 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 266.0' Slope= 0.1269 '/'

Inlet Invert= 70.50', Outlet Invert= 36.75'



#### Reach SW-1: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 77

Inflow
Outflow

#### Summary for Reach W: Chute-Concrete Block Open Cell

Inflow Area = 22.383 ac, 0.00% Impervious, Inflow Depth = 8.83" for 100-Year event

Inflow = 179.96 cfs @ 12.15 hrs, Volume= 16.468 af

Outflow = 179.70 cfs @ 12.16 hrs, Volume= 16.468 af, Atten= 0%, Lag= 0.6 min

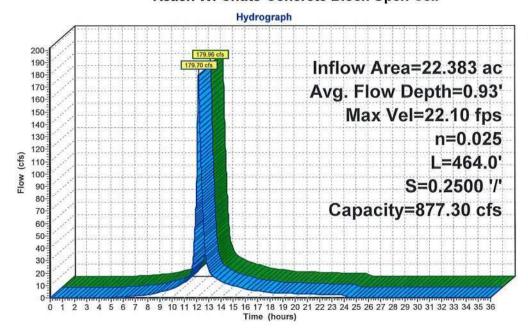
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 22.10 fps, Min. Travel Time= 0.3 min Avg. Velocity = 7.09 fps, Avg. Travel Time= 1.1 min

Peak Storage= 3,776 cf @ 12.15 hrs Average Depth at Peak Storage= 0.93'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 464.0' Slope= 0.2500 '/'

Inlet Invert= 174.00', Outlet Invert= 58.00'



Reach W: Chute-Concrete Block Open Cell



Type III 24-hr 100-Year Rainfall=11,50"

Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 78

#### Summary for Pond PA: Retention Pond A

No Discharge, Reshaping of Existing Pond A Bottom Required.

Inflow Area = 47.697 ac, 0.00% Impervious, Inflow Depth = 9.28" for 100-Year event

Inflow = 324.39 cfs @ 12.21 hrs, Volume= 36.905 af

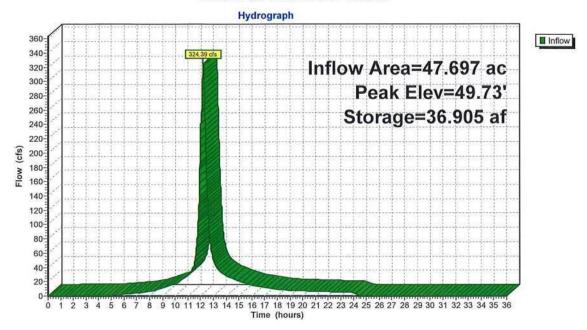
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 49.73' @ 36.00 hrs Surf.Area= 4.915 ac Storage= 36.905 af

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

| Volume              | Invert Av            | /ail.Storage     | Storage Descrip          | tion                     |                      |            |
|---------------------|----------------------|------------------|--------------------------|--------------------------|----------------------|------------|
| #1                  | 36.75'               | 82.379 af        | Custom Stage I           | Data (Irregular) i       | Listed below (Recale | <b>5</b> ) |
| Elevation<br>(feet) | Surf.Area<br>(acres) | Perim.<br>(feet) | Inc.Store<br>(acre-feet) | Cum.Store<br>(acre-feet) | Wet.Area<br>(acres)  |            |
| 36.75               | 1.340                | 1,049.8          | 0.000                    | 0.000                    | 1.340                |            |
| 37.00               | 1.380                | 1,064.9          | 0.340                    | 0.340                    | 1.399                |            |
| 38.00               | 1.540                | 1,125.4          | 1.459                    | 1.799                    | 1.642                |            |
| 39.00               | 1.720                | 1,171.5          | 1.629                    | 3,428                    | 1.837                |            |
| 40.00               | 1.890                | 1,216.8          | 1.804                    | 5.233                    | 2.037                |            |
| 41.00               | 2.120                | 1,292.5          | 2,004                    | 7.237                    | 2.385                |            |
| 42.00               | 2.360                | 1,370.6          | 2.239                    | 9.476                    | 2,766                |            |
| 43.00               | 2.620                | 1,447.9          | 2.489                    | 11.964                   | 3.166                |            |
| <b>44.0</b> 0       | 2.900                | 1,537.3          | 2.759                    | 14.723                   | 3.654                |            |
| 45.00               | 3.210                | 1,623.3          | 3.054                    | 17.777                   | 4.152                |            |
| 46.00               | 3.550                | 1,699.4          | 3.379                    | 21.156                   | 4.616                |            |
| 47.00               | 3.910                | 1,769.6          | 3.729                    | 24.884                   | 5.062                |            |
| 48.00               | 4.270                | 1,832.8          | 4.089                    | 28.973                   | 5.480                |            |
| 49.00               | 4.640                | 1,894.6          | 4.454                    | 33.426                   | 5.903                |            |
| 50.00               | 5.020                | 1,956.1          | 4.829                    | 38.255                   | 6.338                |            |
| 51.00               | 5.450                | 2,024.3          | 5.234                    | 43.489                   | 6.836                |            |
| 52.00               | 5.860                | 2,075.6          | 5.654                    | 49.143                   | 7.223                |            |
| 53.00               | 6.180                | 2,125.3          | 6.019                    | 55.162                   | 7.608                |            |
| 54.00               | 6.490                | 2,167.2          | 6.334                    | 61.496                   | 7.940                |            |
| 55.00               | 6.800                | 2,209.1          | 6.644                    | 68.141                   | 8.279                |            |
| 56.00               | 7.120                | 2,250.9          | 6.959                    | 75.100                   | 8.623                |            |
| 57.00               | 7.440                | 2,292.6          | 7.279                    | 82.379                   | 8.973                |            |


Type III 24-hr 100-Year Rainfall=11.50"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 79

#### Pond PA: Retention Pond A



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018 Page 80

#### Summary for Pond PB: Detention Pond B

42,338 ac, 0.00% Impervious, Inflow Depth = 9.07" for 100-Year event Inflow Area =

331.73 cfs @ 12.16 hrs, Volume= 32.018 af Inflow =

42.26 cfs @ 12.98 hrs, Volume= Outflow = 31.217 af, Atten= 87%, Lag= 49.7 min

42.26 cfs @ 12.98 hrs, Volume= 31.217 af Primary

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 52.22' @ 12.98 hrs Surf.Area= 3.914 ac Storage= 16.607 af

Plug-Flow detention time= 253.1 min calculated for 31.217 af (97% of inflow)

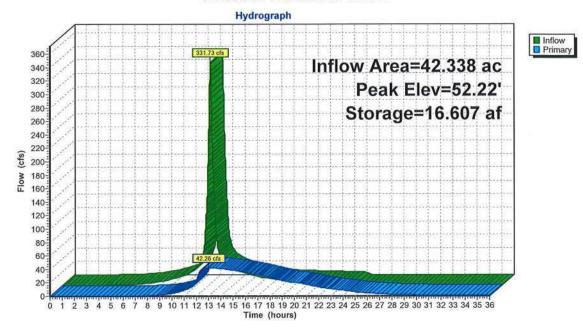
Center-of-Mass det. time= 237.9 min ( 1,027.8 - 789.9 )

| Volume   | Invert  | Avail.Stora | ge Storage Descri                                                                                                                  | ption                                                                                                            |                                              |                   |
|----------|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|
| #1       | 47.00'  | 19.739      | af Custom Stage                                                                                                                    | Data (Irregular)                                                                                                 | Listed below (Recalc)                        | )                 |
| Elevatio |         |             |                                                                                                                                    | Cum.Store<br>(acre-feet)                                                                                         | Wet.Area<br>(acres)                          |                   |
| 47.0     |         | 50 3,998    | **************************************                                                                                             | 0.000                                                                                                            | 2,450                                        |                   |
| 48.0     | 0 2.7   | 30 4,022    | 7 2.589                                                                                                                            | 2.589                                                                                                            | 2.814                                        |                   |
| 49.0     | 00 3.0  | 10 4,046    | 7 2.869                                                                                                                            | 5.458                                                                                                            | 3.179                                        |                   |
| 50.0     | 00 3.2  | 90 4,070    | 7 3.149                                                                                                                            | 8.607                                                                                                            | 3.547                                        |                   |
| 51.0     | 00 3.5  | 70 4,094    | 3.429                                                                                                                              | 12,036                                                                                                           | 3.916                                        |                   |
| 52.0     | 00 3.8  | 50 4,118    | 3.709                                                                                                                              | 15.745                                                                                                           | 4.291                                        |                   |
| 53.0     | 00 4.1  | 40 4,158    | 1 3.994                                                                                                                            | 19.739                                                                                                           | 4.893                                        |                   |
| Device   | Routing | Invert      | Outlet Devices                                                                                                                     |                                                                                                                  |                                              |                   |
| #1       | Primary | 47.00'      | 21.0" Round RCP                                                                                                                    | Round 21"                                                                                                        |                                              |                   |
| #2       | Primary | 47.00'      | L= 128.0' RCP, gr<br>Inlet / Outlet Invertane 0.013 Concrete<br>21.0" Round RCP,<br>L= 128.0' RCP, gr<br>Inlet / Outlet Invertance | oove end project<br>= 47.00' / 46.75'<br>pipe, bends & co<br>_Round 21"<br>oove end project<br>= 47.00' / 46.75' | S= 0.0020 '/' Cc= 0.<br>onnections, Flow Are | a= 2.41 sf<br>900 |

Primary OutFlow Max=42.26 cfs @ 12.98 hrs HW=52.22' (Free Discharge)

-1=RCP\_Round 21" (Barrel Controls 21.13 cfs @ 8.78 fps)
-2=RCP\_Round 21" (Barrel Controls 21.13 cfs @ 8.78 fps)

Part III, Attachment 6, Appendix 6B.5, p.g.-80


Type III 24-hr 100-Year Rainfall=11.50"

Printed 8/20/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 81

#### Pond PB: Detention Pond B



Type III 24-hr 100-Year Rainfall=11.50"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/20/2018

Page 82

# Summary for Pond PC: Retention Pond C

No Discharge, Constructrion of Perimeter Berm to Elevation 48 ft. Required.

61.564 ac, 0.00% Impervious, Inflow Depth = 9.05" for 100-Year event Inflow Area =

Inflow = 446.58 cfs @ 12.22 hrs, Volume= 46.421 af

Outflow 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

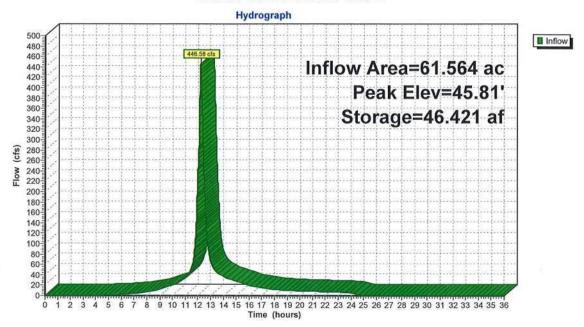
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 45.81' @ 36.00 hrs Surf.Area= 4.259 ac Storage= 46.421 af

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

| <u>Volume</u>       | Invert Av            | ail.Storage      | Storage Descrip          | tion                     |                       |  |
|---------------------|----------------------|------------------|--------------------------|--------------------------|-----------------------|--|
| #1                  | 31.00'               | 56.115 af        | Custom Stage I           | Data (Irregular) l       | Listed below (Recalc) |  |
| Elevation<br>(feet) | Surf.Area<br>(acres) | Perim.<br>(feet) | Inc.Store<br>(acre-feet) | Cum.Store<br>(acre-feet) | Wet.Area<br>(acres)   |  |
| 31.00               | 2.060                | 2,014.1          | 0.000                    | 0.000                    | 2.060                 |  |
| 32.00               | 2.200                | 2,032.9          | 2.130                    | 2.130                    | 2.207                 |  |
| 33.00               | 2.340                | 2,051.7          | 2.270                    | 4.399                    | 2,354                 |  |
| 34.00               | 2.480                | 2,070.5          | 2,410                    | 6.809                    | 2.504                 |  |
| 35.00               | 2.630                | 2,089.2          | 2.555                    | 9,364                    | 2.654                 |  |
| 36.00               | 2.770                | 2,108.0          | 2.700                    | 12.063                   | 2.806                 |  |
| 37.00               | 2.920                | 2,126.8          | 2.845                    | 14,908                   | 2.959                 |  |
| 38.00               | 3.060                | 2,145.6          | 2.990                    | 17.898                   | 3.114                 |  |
| 39.00               | 3,210                | 2,164.4          | 3.135                    | 21.032                   | 3.270                 |  |
| 40.00               | 3.360                | 2,183.2          | 3.285                    | 24.317                   | 3.427                 |  |
| 41.00               | 3,510                | 2,201.9          | 3.435                    | 27.752                   | 3.585                 |  |
| 42.00               | 3.660                | 2,220.7          | 3.585                    | 31.337                   | 3.745                 |  |
| 43.00               | 3.820                | 2,239.5          | 3.740                    | 35.076                   | 3.907                 |  |
| 44.00               | 3.970                | 2,258.3          | 3.895                    | 38.971                   | 4.070                 |  |
| 45.00               | 4.130                | 2,277.1          | 4.050                    | 43.021                   | 4.234                 |  |
| 46.00               | 4.290                | 2,295.9          | 4.210                    | 47.230                   | 4.400                 |  |
| 47.00               | 4.440                | 2,314.6          | 4.365                    | 51.595                   | 4.566                 |  |
| 48.00               | 4.600                | 2,333.4          | 4.520                    | 56.115                   | 4.734                 |  |

Type III 24-hr 100-Year Rainfall=11.50"


Prepared by Hanson Professional Services Inc.

Printed 8/20/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 83

#### Pond PC: Retention Pond C



# APPENDIX 6B.6 HYDROCAD MODEL POST DEVELOPMENT 25 YEAR POND SUMMARY



#### **25 YEAR POND SUMMARY**

Retention Pond A (Irregular Shape)

| Elevation<br>(ft) | Surface Area<br>(sf) | Surface Area<br>(acres) | Perimeter<br>(ft) | Cum. Store<br>(Ac-ft) |
|-------------------|----------------------|-------------------------|-------------------|-----------------------|
| 36.75             | 58430.13             | 1.34                    | 1049.83           | 0.00                  |
| 37                | 60148.48             | 1.38                    | 1064.95           | 0.34                  |
| 38                | 67269.32             | 1.54                    | 1125.40           | 1.80                  |
| 39                | 74737.41             | 1.72                    | 1171.54           | 3.43                  |
| 40                | 82487.17             | 1.89                    | 1216.78           | 5.23                  |
| 41                | 92350.92             | 2.12                    | 1292.54           | 7.24                  |
| 42                | 102766.37            | 2.36                    | 1370.62           | 9.48                  |
| 43                | 114109.20            | 2.62                    | 1447.92           | 11.96                 |
| 44                | 126406.25            | 2.90                    | 1537.27           | 14.72                 |
| 45                | 139784.84            | 3.21                    | 1623.30           | 17.78                 |
| 46                | 154666.98            | 3.55                    | 1699.39           | 21.16                 |
| 47                | 170157.85            | 3.91                    | 1769.61           | 24.88                 |
| 48                | 185990.18            | 4.27                    | 1832.75           | 28.97                 |
| 49                | 201992.64            | 4.64                    | 1894.58           | 33.43                 |
| 50                | 218522.96            | 5.02                    | 1956.10           | 38.26                 |
| 51                | 237214.05            | 5.45                    | 2024.29           | 43.49                 |
| 52                | 255380.19            | 5.86                    | 2075.63           | 49.14                 |
| 53                | 268998.35            | 6.18                    | 2125.30           | 55.16                 |
| 54                | 282587.03            | 6.49                    | 2167.18           | 61.50                 |
| 55                | 296319.75            | 6.80                    | 2209.05           | 68.14                 |
| 56                | 310196.38            | 7.12                    | 2250.89           | 75.10                 |
| 57                | 324212.86            | 7.44                    | 2292.64           | 82.38                 |

Summary

Pond Depth = 20.25 ft Peak Elevation = 47.33 ft

Peak Inflow = 225.75 cfs
Peak Outflow = No Discharge

Peak Storage = 26.20 Ac-ft Freeboard = 9.67 ft

#### Detention Pond B (Irregular Shape)

| Elevation<br>(ft) | Surface Area<br>(sf) | Surface Area<br>(acres) | Perimeter<br>(ft) | Cum. Store<br>(Ac-ft) |
|-------------------|----------------------|-------------------------|-------------------|-----------------------|
| 47                | 106908.62            | 2.45                    | 3998.70           | 0.00                  |
| 48                | 118939.02            | 2.73                    | 4022.70           | 2.59                  |
| 49                | 131040.75            | 3.01                    | 4046.70           | 5.46                  |
| 50                | 143213.79            | 3.29                    | 4070.70           | 8.61                  |
| 51                | 155458.15            | 3.57                    | 4094.60           | 12.04                 |
| 52                | 167773.82            | 3.85                    | 4118.80           | 15.75                 |
| 53                | 180160.81            | 4.14                    | 4158.10           | 19.74                 |

Summary

Pond Depth = 6 ft

 Peak Elevation =
 50.87 ft

 Peak Inflow =
 235.89 cfs

 Peak Outflow =
 33.70 cfs

Peak Storage = 11.56 Ac-ft

Culvert size = 2 X 21 in x 128 ft RCP

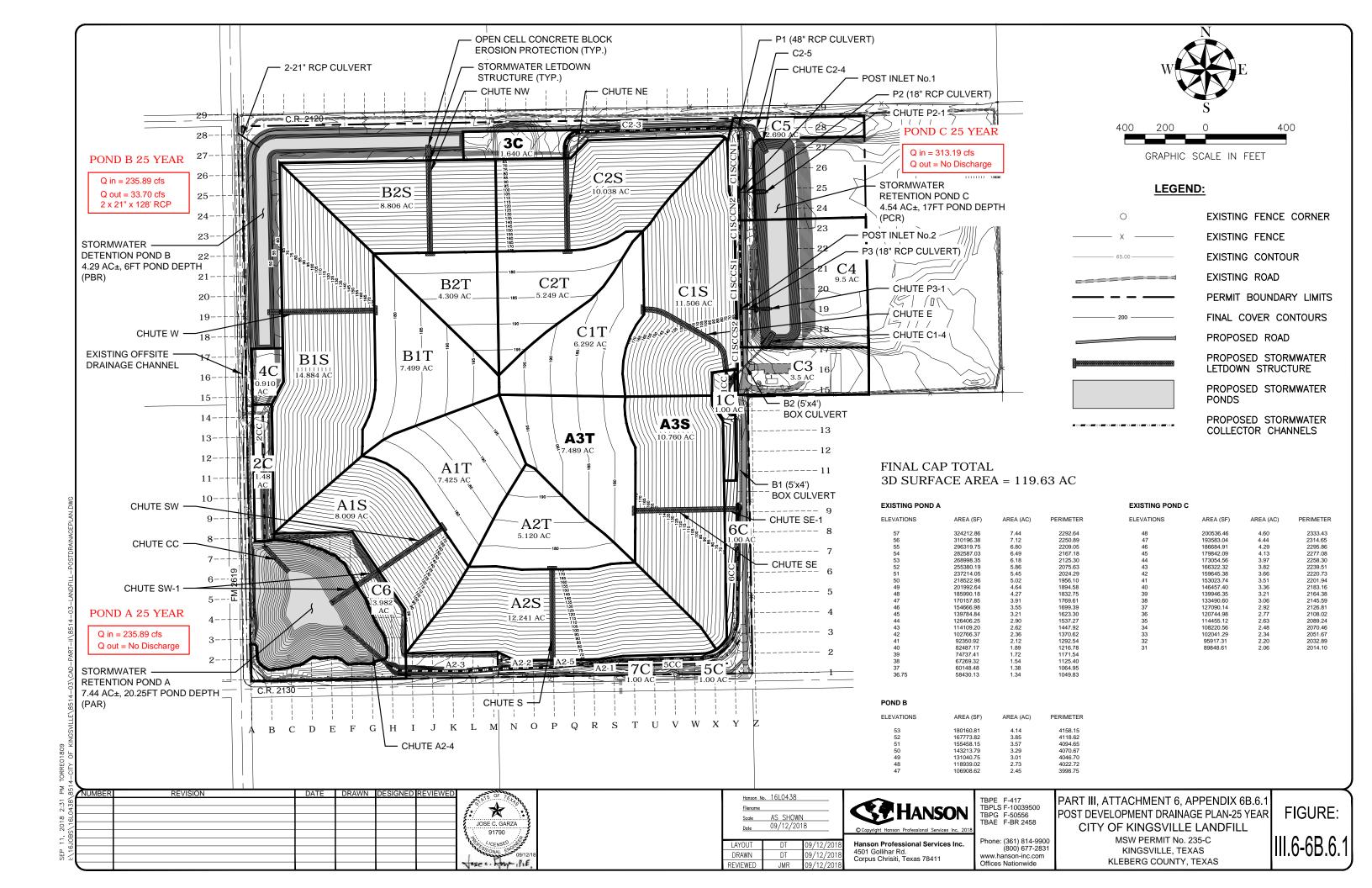
Culvert Slope = 0.20% Freeboard = 2.13 ft

#### Retention Pond C (Irregular Shape)

| Elevation<br>(ft) | Surface Area<br>(sf) | Surface Area<br>(acres) | Perimeter<br>(ft) | Cum. Store<br>(Ac-ft) |
|-------------------|----------------------|-------------------------|-------------------|-----------------------|
| 31                | 89848.61             | 2.06                    | 2014.10           | 0.00                  |
| 32                | 95917.31             | 2.20                    | 2032.90           | 2.13                  |
| 33                | 102041.29            | 2.34                    | 2051.70           | 4.40                  |
| 34                | 108220.56            | 2.48                    | 2070.50           | 6,81                  |
| 35                | 114455.12            | 2.63                    | 2089.20           | 9.36                  |
| 36                | 120744.98            | 2.77                    | 2108.00           | 12.06                 |
| 37                | 127090.14            | 2.92                    | 2126.80           | 14.91                 |
| 38                | 133490.60            | 3.06                    | 2145.60           | 17.90                 |
| 39                | 139946.35            | 3.21                    | 2164.40           | 21.03                 |
| 40                | 146457.40            | 3.36                    | 2183.20           | 24.32                 |
| 41                | 153023.74            | 3.51                    | 2201.90           | 27.75                 |
| 42                | 159645.38            | 3.66                    | 2220.70           | 31.34                 |
| 43                | 166322.32            | 3.82                    | 2239.50           | 35.08                 |
| 44                | 173054.56            | 3.97                    | 2258.30           | 38.97                 |
| 45                | 179842.09            | 4.13                    | 2277.10           | 43.02                 |
| 46                | 186684.91            | 4.29                    | 2295.90           | 47.23                 |
| 47                | 193583.04            | 4.44                    | 2314.60           | 51.60                 |
| 48                | 200536.46            | 4.60                    | 2333.40           | 56.12                 |

Summary

Pond Depth = 17 ft


Peak Elevation = 42.36 ft
Peak Inflow = 313.19 cfs

Peak Outflow = No Discharge Peak Storage = 32.68 Ac-ft

Freeboard = 5.64 ft

# APPENDIX 6B.6.1 POST DEVELOPMENT DRAINAGE PLAN-25 YEAR





# APPENDIX 6B.7 HYDROCAD MODEL POST DEVELOPMENT 100 YEAR POND SUMMARY



#### **100 YEAR POND SUMMARY**

Retention Pond A (Irregular Shape)

| Elevation<br>(ft) | Surface Area<br>(sf) | Surface Area (acres) | Perimeter<br>(ft) | Cum. Store<br>(Ac-ft) |
|-------------------|----------------------|----------------------|-------------------|-----------------------|
| 36.75             | 58430.13             | 1.34                 | 1049.83           | 0.00                  |
| 37                | 60148.48             | 1.38                 | 1064.95           | 0.34                  |
| 38                | 67269.32             | 1.54                 | 1125.40           | 1.80                  |
| 39                | 74737.41             | 1.72                 | 1171.54           | 3.43                  |
| 40                | 82487.17             | 1.89                 | 1216.78           | 5.23                  |
| 41                | 92350.92             | 2.12                 | 1292.54           | 7.24                  |
| 42                | 102766.37            | 2.36                 | 1370.62           | 9.48                  |
| 43                | 114109.20            | 2,62                 | 1447.92           | 11.96                 |
| 44                | 126406.25            | 2.90                 | 1537.27           | 14.72                 |
| 45                | 139784.84            | 3.21                 | 1623.30           | 17.78                 |
| 46                | 154666.98            | 3.55                 | 1699.39           | 21.16                 |
| 47                | 170157.85            | 3.91                 | 1769.61           | 24.88                 |
| 48                | 185990.18            | 4.27                 | 1832.75           | 28.97                 |
| 49                | 201992,64            | 4.64                 | 1894.58           | 33.43                 |
| 50                | 218522.96            | 5.02                 | 1956.10           | 38.26                 |
| 51                | 237214.05            | 5.45                 | 2024.29           | 43.49                 |
| 52                | 255380.19            | 5.86                 | 2075.63           | 49.14                 |
| 53                | 268998.35            | 6.18                 | 2125.30           | 55.16                 |
| 54                | 282587.03            | 6.49                 | 2167.18           | 61.50                 |
| 55                | 296319.75            | 6.80                 | 2209.05           | 68.14                 |
| 56                | 310196.38            | 7.12                 | 2250.89           | 75.10                 |
| 57                | 324212.86            | 7.44                 | 2292.64           | 82.38                 |

Summary

Pond Depth = 20.25 ft

Peak Elevation = 49.73 ft
Peak Inflow = 324.39 cfs
Peak Outflow = No Discharge

Peak Storage = 36.90 Ac-ft Freeboard = 7.27 ft

Detention Pond B (Irregular Shape)

| Elevation<br>(ft) | Surface Area<br>(sf) | Surface Area<br>(acres) | Perimeter<br>(ft) | Cum. Store<br>(Ac-ft) |
|-------------------|----------------------|-------------------------|-------------------|-----------------------|
| 47                | 106908.62            | 2.45                    | 3998.70           | 0.00                  |
| 48                | 118939.02            | 2.73                    | 4022.70           | 2.59                  |
| 49                | 131040.75            | 3.01                    | 4046.70           | 5.46                  |
| 50                | 143213.79            | 3.29                    | 4070.70           | 8.61                  |
| 51                | 155458.15            | 3.57                    | 4094.60           | 12.04                 |
| 52                | 167773.82            | 3.85                    | 4118.80           | 15.75                 |
| 53                | 180160.81            | 4.14                    | 4158.10           | 19.74                 |

Summary

Pond Depth = 6 ft

 Peak Elevation =
 52.22 ft

 Peak Inflow =
 331.73 cfs

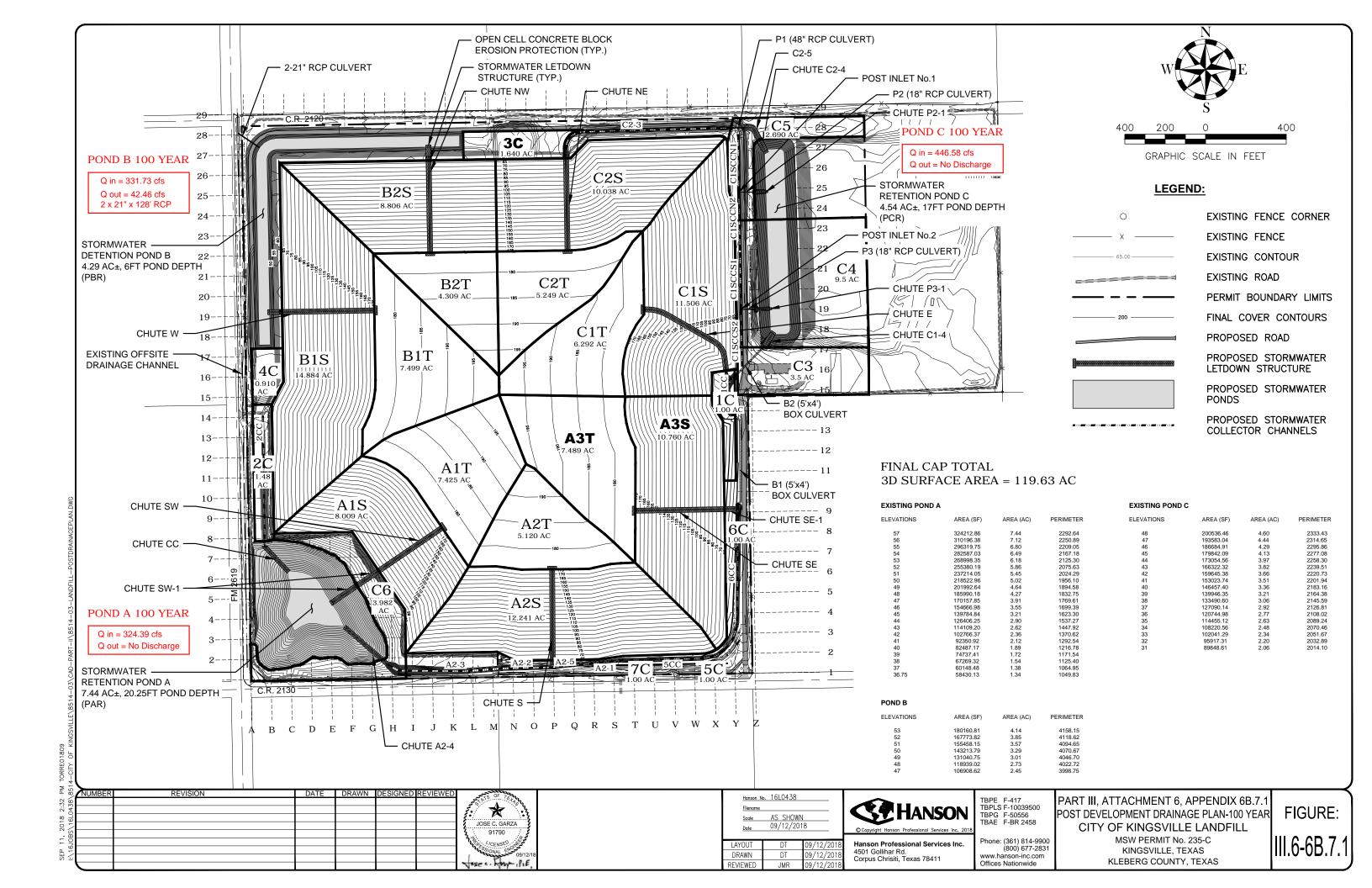
 Peak Outflow =
 42.46 cfs

Peak Storage = 16.607 Ac-ft
Culvert size = 2 X 21 in x 128 ft RCP

Culvert Slope = 0.20% Freeboard = 0.78 ft

#### Retention Pond C (Irregular Shape)

| Elevation<br>(ft) | Surface Area<br>(sf) | Surface Area<br>(acres) | Perimeter<br>(ft) | Cum. Store<br>(Ac-ft) |
|-------------------|----------------------|-------------------------|-------------------|-----------------------|
| 31                | 89848.61             | 2.06                    | 2014.10           | 0.00                  |
| 32                | 95917.31             | 2.20                    | 2032.90           | 2.13                  |
| 33                | 102041.29            | 2.34                    | 2051.70           | 4.40                  |
| 34                | 108220.56            | 2.48                    | 2070.50           | 6.81                  |
| 35                | 114455.12            | 2.63                    | 2089.20           | 9.36                  |
| 36                | 120744.98            | 2.77                    | 2108.00           | 12.06                 |
| 37                | 127090.14            | 2.92                    | 2126.80           | 14.91                 |
| 38                | 133490.60            | 3.06                    | 2145.60           | 17.90                 |
| 39                | 139946.35            | 3.21                    | 2164.40           | 21.03                 |
| 40                | 146457.40            | 3.36                    | 2183.20           | 24.32                 |
| 41                | 153023.74            | 3.51                    | 2201.90           | 27.75                 |
| 42                | 159645.38            | 3.66                    | 2220.70           | 31.34                 |
| 43                | 166322.32            | 3.82                    | 2239.50           | 35.08                 |
| 44                | 173054.56            | 3.97                    | 2258.30           | 38.97                 |
| 45                | 179842.09            | 4.13                    | 2277.10           | 43.02                 |
| 46                | 186684.91            | 4.29                    | 2295.90           | 47.23                 |
| 47                | 193583.04            | 4.44                    | 2314.60           | 51.60                 |
| 48                | 200536.46            | 4.60                    | 2333.40           | 56.12                 |


Summary

Pond Depth = 17 ft Peak Elevation = 45.81 ft

Peak Inflow = 446.58 cfs
Peak Outflow = No Discharge
Peak Storage = 46.42 Ac-ft
Freeboard = 2.19 ft

# APPENDIX 6B.7.1 POST DEVELOPMENT DRAINAGE PLAN-100 YEAR





### KINGSVILLE LANDFILL PERMIT AMENDMENT 235-B

PORTION OF ATTACHMENT 6 GROUNDWATER AND SURFACEWATER PROTECTION PLAN (PRE-DEVELOPMENT/POST DEVELOPMENT DRAINAGE CONDITIONS & DESIGN)

PORTION OF APPENDIX 6A-PRE-DEVELOPMENT CONDITIONS (FIGURE A-1 PRE-DEVELOPMENT DRAINAGE MAP)

PORTION OF APPENDIX 6B-FINAL DEVELOPMENT CONDITIONS (FIGURE B-1 FINAL DEVELOPMENT DRAINAGE MAP)

PORTION OF APPENDIX 6C DETENTION PONDS AND DISCHARGE CULVERTS (25-YEAR STORM STRATEGY/COMPARATIVE SUMMARY OF PEAK FLOWS)



#### **APPENDIX 6B.8.1**

PORTION OF ATTACHMENT 6 GROUNDWATER AND SURFACE WATER PROTECTION PLAN (PRE-DEVELOPMENT/POST DEVELOPMENT DRAINAGE CONDITIONS AND DESIGN [ANNOTATED]



# Attachment 6

# Groundwater and Surface Water Protection Plan

# City of Kingsville Municipal Landfill Facility Permit Amendment Application 235-B

Prepared by: Alpha Engineering

#### TABLE OF CONTENTS

|      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>Page</u>                 |
|------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1    | .0         | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                           |
| (75) | .0 .<br>.0 | Pre-Development Drainage Conditions Post-Development Drainage Conditions and Design                                                                                                                                                                                                                                                                                                                                                                      | . 3                         |
| 4    | .0         | <ul> <li>3.1 Stormwater Detention Ponds Analysis</li> <li>Erosion and Sedimentation Control Plan</li> <li>4.1 Erosion and Sedimentation Assessment</li> <li>4.2 Stormwater Management Structural Controls</li> <li>4.3 Soil Erosion and Sediment Control Practices</li> <li>4.4 Minimizing Offsite Vehicular Tracking of Sediments</li> <li>4.5 Run-on and Run-off Controls for Active Disposal Areas</li> <li>4.6 Maintenance and Inspection</li> </ul> | 7<br>7<br>8<br>9<br>9<br>10 |
| 7    | 0.0        | Floodplain Evaluation<br>Maintenance and Restoration Plan                                                                                                                                                                                                                                                                                                                                                                                                | 11                          |

### **Appendices**

| 'Appendix 6A | Pre-Development Conditio    | ns       |            |
|--------------|-----------------------------|----------|------------|
| Annandiy AB  | Final Development Condition | ons      |            |
| Appendix 6C  | Detention Ponds and Disch   | arge Cul | veris      |
| Appendix 6D  | Drainage Channel Profiles   | and Cros | s-2ections |
| Appendix 6E  | Erosion Control Plan        |          |            |
| Appendix 6F  | Offsite Drainage System     |          |            |
| Appendix 6G  | References                  | # 14 P   | - Sec. 19  |
| 50 (6.5)     |                             |          | S. N.E.    |

THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY
May 1998
Page i Revision No. 1

are as follows. From 2.0 Pre-Development Drainage Conditions

|    | Watershed | Drainage Area | Name | 25-Year Peak F | low (cis) |
|----|-----------|---------------|------|----------------|-----------|
| 9. | Α .       | PA1           |      | 27.3           |           |
|    |           | PA2           |      | 22,0           |           |
|    |           | PA3           |      | 13.7           |           |
|    | 12        | 3.3.33        |      | 30             |           |
|    | В         | PB1           |      | 19.0           |           |
|    | ь         | PB2           |      | 4.3            |           |
|    |           | PB3           |      | 5.4            |           |
|    |           |               |      |                |           |
|    | C         | PC1           |      | 39.6           | 2.70      |
|    |           | PC2           |      | 15.7           | SV .      |
|    |           | PC3           |      | 3.1            |           |

### 3.0 POST-DEVELOPMENT DRAINAGE CONDITIONS AND DESIGN

The post-development peak discharge analysis defines the hydrologic conditions for the final landfill development. The method for calculating the 25-year peak discharge flows also follows the TR-55 worksheets and is shown in Appendix 6B. Since the composition of the final cover material and slopes are different from the pre-existing conditions, the CN values also change to reflect an increase runoff, and are shown below.

| Description                       | CN |
|-----------------------------------|----|
| Unimproved, 0 - 7% slope          | 60 |
| Unimproved, greater than 7% slope | 70 |

Appendix 6B includes final development contour maps, drainage area boundaries, slope map, and each worksheet necessary to calculate the post-development peak discharges for the strategic points. Although the landfill facility changes the storm water drainage patterns from the site pre-development conditions, the surrounding natural drainage patterns will not be adversely affected. The peak discharge flows before detention are as follows.

|        | Watershed | 25 0 | Drainage Area Name | 25-Yea | r Peak Flow (cfs) |
|--------|-----------|------|--------------------|--------|-------------------|
| 22 E   | A         |      | FA                 |        | 87.3              |
| fi (a) | В         | 4    | FB                 |        | 68.0              |
|        | С         |      | FC                 |        | 71.7              |

THIS DOCUMENT IS ISSUED FOR PERMITTING PURPOSES ONLY
November 1998
Page 3 Revision 3

Kingsville Landfill Permit Amendment 235-B Attachment 6

# Appendix 6A Pre-Development Conditions

#### TABLE OF CONTENTS

| - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D           |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | TR-55 Worksheets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>Page</u> |
|   | Drainage Area PA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |
|   | Drainage Area PA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5           |
| 5 | Drainage Area PA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8           |
|   | Drainage Area PB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1         |
|   | Drainage Area PB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14          |
|   | Drainage Area PB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17          |
|   | Drainage Area PC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21          |
|   | Drainage Area PC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23          |
|   | Drainage Area PC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   | FlowMaster Hydraulic Worksheets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   | The state of the s |             |
|   | Channel Segment C-D (Trial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29          |
|   | Channel Segment C-D (Final)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30          |
|   | Channel Segment Q-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31          |
|   | Channel Segment W-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

Figure A-1 Pre-Development Drainage Map
Figure A-2 Pre-Development Slope Map



#### **APPENDIX 6B.8.2**

PORTION OF APPENDIX 6A-PRE-DEVELOPMENT CONDITIONS (FIGURE A-1 PRE-DEVELOPMENT DRAINAGE MAP) [ANNOTATED]



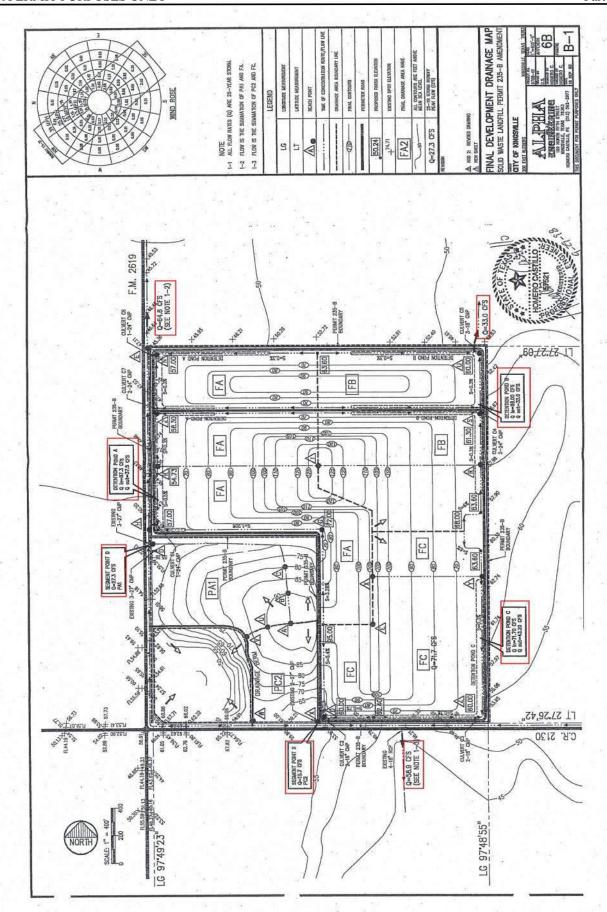
Part III, Attachment 6, Appendix 6B.8.2, p.g.-1

Kingsville Landfill Permit Amendment 235-B Attachment 6

# Appendix 6B Final Development Conditions

#### TABLE OF CONTENTS

| TR-55 Worksheets                |    | <u>Page</u> |
|---------------------------------|----|-------------|
| Drainage Area FA                |    | 1           |
| Drainage Area FB                | 6  | 4           |
| Drainage Area FC                |    | 7           |
|                                 |    |             |
| FlowMaster Hydraulic Worksheets |    |             |
| Channel Segment K-H             |    | 10          |
| Channel Segment R-U             |    | 11          |
| Channel Segment Y-Z             |    | 12          |
| Berm B3                         |    | 13          |
| Section D6                      |    | 14          |
| Section D3                      | 19 | 15          |
| Section D2                      |    | 16          |
| Section D1                      |    | 17          |
|                                 |    |             |


| Figure B-1 | Final Development Drainage Map   |
|------------|----------------------------------|
| Figure B-2 | Final Development Slope Map      |
| Figure B-3 | Final Cover Phase 1              |
| Figure B-4 | Perimeter Road and Berm Sections |



#### **APPENDIX 6B.8.3**

PORTION OF APPENDIX 6B-FINAL DEVELOPMENT CONDITIONS (FIGURE B-1 FINAL DEVELOPMENT DRAINAGE MAP) [ANNOTATED]





Part III, Attachment 6, Appendix 6B.8.3, p.g.-1

Hanson Professional Services Inc. Submittal Date: September 2018 Revision: 0

#### **APPENDIX 6B.8.4**

PORTION OF APPENDIX 6C DETENTION PONDS AND DISCHARGE CULVERTS (25-YEAR STORM STRATEGY/COMPARATIVE SUMMARY OF PEAK FLOWS) [ANNOTATED]



Kingsville Landfill Permit Amendment 235-B Attachment 6

# Appendix 6C Detention Ponds and Discharge Culverts

#### TABLE OF CONTENTS

|                                                | Page  |
|------------------------------------------------|-------|
| 25-Year Storm Strategy                         | 1     |
| Drainage Area A TR-55 Detention Volume Workshe | et 2  |
| Pond A Discharge Structure Culvert Worksheet   | 3     |
| Drainage Area B TR-55 Detention Volume Workshe | et 4  |
| Pond B Discharge Structure Culvert Worksheet   | 5     |
| Drainage Area C TR-55 Detention Volume Worksho | eet 6 |
| Pond C Discharge Structure Culvert Worksheet   | 7     |
| Detention Pond A Storage Size Calculations     | 8     |
| Detention Pond B Storage Size Calculations     | 9     |
| Detention Pond C Storage Size Calculations     | 10    |
|                                                | 24    |

Figure C-1 Detention Pond A Figure C-2 Detention Pond B Figure C-3 Detention Pond C



May 1998 Revision 1

Kingsville Landfill Permit 235-B Attachment 6

### 25-Year Stormwater Detention Strategy

| W | 1-4 | ~ | -1 | <br>H | Λ |
|---|-----|---|----|-------|---|
|   |     |   |    |       |   |

 Pre-Development Conditions

 Area No.
 Peak Flow (cfs)

 PA2
 22.0

 PA3
 13.7

 Total
 35.7

|          | relopment Conditions<br>fore detention) |
|----------|-----------------------------------------|
| Area No. | Peak Flow (cfs)                         |
| FA       | 87.3                                    |
| Total    | 87.3                                    |

Maximum Final Development discharge for Watershed A shall not exceed 35.7 cfs

#### Watershed B

| Pre-Development Conditions |                 |  |
|----------------------------|-----------------|--|
| Area No.                   | Peak Flow (cfs) |  |
| PB1                        | 19.0            |  |
| PB2                        | 4.3             |  |
| Total                      | 23.3            |  |

|          | relopment Conditions<br>fore detention) |
|----------|-----------------------------------------|
| Area No. | Peak Flow (cfs)                         |
| FB       | 68.0                                    |
| Total    | 68.0                                    |

Maximum Final Development discharge for Watershed B shall not exceed 23.3 cfs

Watershed C

| <b>Pre-Development Conditions</b> |                 |
|-----------------------------------|-----------------|
| Area No.                          | Peak Flow (cfs) |
| PC1                               | 39.6            |
| PC3                               | 3.1             |
| Total                             | 42.7            |

|          | relopment Conditions |
|----------|----------------------|
| · (be    | fore detention)      |
| Area No. | Peak Flow (cfs)      |
| FC       | 71.7                 |

Total 71.7

Maximum Final Development discharge for Watershed B shall not exceed 42.7 cfs

#### Comparative Summary of Peak Flows

|             | Pre-Development<br>25-Year Peak Flow | Final Development  25-Year Peak Flow (after detention) |
|-------------|--------------------------------------|--------------------------------------------------------|
| Watershed A | 35.7 cfs                             | 37.5 cfs                                               |
| Watershed B | 23.3 cfs                             | 33.0 cfs                                               |
| Watershed C | 42.7 cfs                             | 43.2 cfs                                               |
|             |                                      |                                                        |

Appendix 6C May 1998 Revision 1

#### **APPENDIX 6B.9**

PERIMETER CHANNELS, COLLECTOR CHANNELS, AND CHUTES-25 YEAR SUMMARY TABLE



25 Year Perimeter Channels, Collector Channels, & Chutes Summary Table

| 23 Tear I  | ermieter       | er Channels, Collector Channels, & Chutes Summary Table |            |       |                     |                  |       |            |                       |                                               |                                  |                               |                   |                         |               |                   |              |                            |              |                     |                   |              |
|------------|----------------|---------------------------------------------------------|------------|-------|---------------------|------------------|-------|------------|-----------------------|-----------------------------------------------|----------------------------------|-------------------------------|-------------------|-------------------------|---------------|-------------------|--------------|----------------------------|--------------|---------------------|-------------------|--------------|
|            |                | · · · · · · · · · · · · · · · · · · ·                   | Begining   |       |                     | Ending           |       |            |                       | Trapezoidal, Triangular, Box, & Pipe Channels |                                  |                               |                   |                         |               |                   |              |                            |              |                     |                   |              |
| Channel ID | Length<br>(FT) | Existing<br>NG Elev                                     | Depth (FT) | FL    | Existing<br>NG Elev | Slope<br>(FT/FT) | FL    | Depth (FT) | Base<br>Width<br>(Ft) | Avg Channel<br>Depth<br>(FT)                  | **Avg Channel<br>Flow Depth (FT) | ***Hydraulic<br>Grade<br>Elev | Freeboard<br>(FT) | Bottom<br>Slope (FT/FT) | Side<br>Slope | Top Width<br>(FT) | Manning<br>n | Wetted<br>Permeter<br>(FT) | Area<br>(SF) | Hydraulic<br>Radius | Velocity<br>(FPS) | Qp<br>(CFS)  |
| EAST       |                |                                                         |            |       |                     |                  |       |            |                       |                                               |                                  |                               |                   |                         |               |                   |              |                            |              |                     |                   |              |
| 6CC        | 740.00         | 61.71                                                   | 2.21       | 59.50 | 62.36               | 0.0040           | 56.54 | 5.82       | 2.00                  | 4.02                                          | 0.77                             | 60.27                         | 1.4               | 0.0040                  | 2.00          | 10.84             | 0.030        | 5.44                       | 2.73         | 0.50                | 1.98              | 5.40         |
| B1         | 464.00         | 62.36                                                   | 4.00       | 56.54 | 65.59               | 0.0057           | 53.89 | 4.00       | 5.00                  | 4.00                                          | 2.17                             | 58.71                         | 1.8               | 0.0057                  | 0.00          | 5.00              | 0.013        | 9.34                       | 10.85        | 1.16                | 9.57              | 103.85       |
| 100        | 222.00         | 65.59                                                   | 11.70      | 53.89 | 61.74               | 0.0020           | 53.45 | 8.29       | 3.00                  | 10.00                                         | 4.52                             | 58.41                         | 7.2               | 0.0020                  | 2.00          | 49.80             | 0.030        | 23.21                      | 54.42        | 2.34                | 3.90              | 212.35       |
| B2         | 200.00         | 61.74                                                   | 4.00       | 53.45 | 59.30               | 0.0183           | 49.80 | 4.00       | 5.00                  | 4.00                                          | 2.44                             | 55.85                         | 1.6               | 0.0183                  | 0.00          | 5.00              | 0.013        | 9.88                       | 12.20        | 1.23                | 17.82             | 217.42       |
| SOUTH      |                |                                                         |            |       |                     |                  |       |            |                       |                                               |                                  |                               |                   |                         |               |                   |              |                            |              |                     |                   |              |
| 5CC        | 595.00         | 61.64                                                   | 3.14       | 58.50 | 61.01               | 0.0015           | 57.61 | 3.40       | 2.00                  | 3.27                                          | 0.97                             | 59.47                         | 2.2               | 0.0015                  | 2.00          | 14.56             | 0.030        | 6.34                       | 3.82         | 0.60                | 1.37              | 5.24         |
| A2-1       | 250.50         | 61.01                                                   | 3.40       | 57.61 | 60.16               | 0.0015           | 57.23 | 2.93       | 2.00                  | 3.17                                          | 1.24                             | 58.85                         | 2.2               | 0.0015                  | 2.00          | 15.60             | 0.030        | 7.55                       | 5.56         | 0.74                | 1.58              | 8.76         |
| A2~5       | 5.60           | 60.16                                                   | 2.93       | 57,23 | 60.18               | 0.2482           | 55.84 | 4.34       | 2.00                  | 3.64                                          | 0.30                             | 57.53                         | 2.6               | 0.2482                  | 2.00          | 13.72             | 0.025        | 3.34                       | 0.78         | 0.23                | 11.26             | <b>8</b> .78 |
| A2-2       | 257.00         | 60.18                                                   | 4.34       | 55.84 | 60.98               | 0.0020           | 55.33 | 5.65       | 7.00                  | 5.00                                          | 2.54                             | 58.37                         | 1.8               | 0.0020                  | 2.00          | 24.36             | 0.025        | 18.36                      | 30.68        | 1.67                | 3.74              | 114.73       |
| A2-3       | 582.00         | 60.98                                                   | 5.65       | 55.33 | 60.40               | 0.0020           | 54.17 | 6.23       | 8.00                  | 5.94                                          | 2.58                             | 57.90                         | 3,1               | 0.0020                  | 2.00          | 30.60             | 0.030        | 19.54                      | 33.95        | 1.74                | 3.20              | 108.82       |
| NORTH      |                |                                                         |            |       |                     |                  |       |            |                       |                                               |                                  |                               |                   |                         |               |                   |              |                            |              |                     |                   |              |
| Ç2-3       | 882.00         | 57.50                                                   | 4.00       | 53.50 | 57.50               | 0.0020           | 51.75 | 5.75       | 4.00                  | 4.88                                          | 2,82                             | 56.32                         | 1.2               | 0.0020                  | 2.00          | 20.00             | 0.030        | 16.61                      | 27.18        | 1.64                | 3.07              | 83.52        |
| P1         | 64.00          | 57.50                                                   | 4.00       | 51.75 | 57.50               | 0.0100           | 51.11 | 4.00       | 4.00                  | 4.00                                          | 1.97                             | 53.72                         | 2.0               | 0.0100                  | NA.           | 4.00              | 0.011        | 6.22                       | 6.16         | 0.99                | 13.46             | 82.95        |
| C2-5       | 106.00         | 53.61                                                   | 2.50       | 51.11 | 50.50               | 0.0293           | 48.00 | 2.50       | 5.00                  | 2.50                                          | 1.08                             | 52.19                         | 1.4               | 0.0293                  | 4.00          | 25.00             | 0.025        | 13.91                      | 10.07        | 0.72                | 8.23              | 82,84        |
| C1SCCN1    | 285.00         | 60.00                                                   | 1.50       | 58.50 | 60.00               | 0.0033           | 57.55 | 2.45       | 3.00                  | 1.98                                          | 0.33                             | 58.83                         | 1.2               | 0.0033                  | 2.00          | 9.00              | 0.030        | 4.48                       | 1.21         | 0.27                | 1.20              | 1.45         |
| C1SCCN2    | 287.50         | 60.00                                                   | 1.50       | 58.50 | 60.00               | 0.0033           | 57.55 | 2.45       | 3.00                  | 1.98                                          | 0.33                             | 58.83                         | 1.2               | 0.0033                  | 2.00          | 9.00              | 0.030        | 4.48                       | 1.21         | 0.27                | 1.19              | 1.44         |
| P2         | 72.00          | 60.00                                                   | 1.50       | 54.39 | 60.00               | 0.0150           | 53.31 | 1.50       | 1.50                  | 1.50                                          | 0.44                             | 54.83                         | 1.1               | 0.0150                  | NΑ            | 1.50              | 0.011        | 1.72                       | 0.43         | 0.25                | 6.61              | 2.86         |
| C1SCCS1    | 280.00         | 60.00                                                   | 1.50       | 58.50 | 60.00               | 0.0033           | 57.58 | 2.42       | 3.00                  | 1.96                                          | 0.33                             | 58.83                         | 1.2               | 0.0033                  | 2.00          | 9.00              | 0.030        | 4.48                       | 1.21         | 0.27                | 1.19              | 1,44         |
| C1SCCS2    | 280.00         | 60.00                                                   | 1,50       | 58.50 | 60.00               | 0.0033           | 57.58 | 2.42       | 3.00                  | 1.96                                          | 0.33                             | 58.83                         | 1.2               | 0.0033                  | 2.00          | 9.00              | 0.030        | 4.48                       | 1.21         | 0.27                | 1.19              | 1.44         |
| P3         | 72.00          | 60.00                                                   | 1.50       | 55.41 | 60.00               | 0.0150           | 54.33 | 1.50       | 1.50                  | 1.50                                          | 0.44                             | 55.85                         | 1.1               | 0.0150                  | NA            | 1.50              | 0.011        | 1.72                       | 0.43         | 0.25                | 6.61              | 2.86         |
| WEST       |                |                                                         |            |       |                     |                  |       |            |                       |                                               |                                  |                               |                   |                         |               |                   |              |                            |              |                     |                   |              |
| 2CC        | 650.00         | 57.70                                                   | 3.20       | 54.50 | 59.94               | 0.0020           | 53.20 | 6.74       | 0.00                  | 4.97                                          | 1.28                             | 55.78                         | 1.9               | 0.0020                  | 3.00          | 19.20             | 0.030        | 8.10                       | 4.92         | 0.61                | 1.59              | 7.83         |

|            | Length<br>(FT) | Begining         |            |        | Ending           |                  |       |            | Trapezoidal Channel   |                      |                                  |                               |                   |                         |               |                   |              |                            |           |                     |                   |             |
|------------|----------------|------------------|------------|--------|------------------|------------------|-------|------------|-----------------------|----------------------|----------------------------------|-------------------------------|-------------------|-------------------------|---------------|-------------------|--------------|----------------------------|-----------|---------------------|-------------------|-------------|
| *Chute ID  |                | Existing<br>Elev | Depth (FT) | FL     | Existing<br>Elev | Slope<br>(FT/FT) | FL    | Depth (FT) | Base<br>Width<br>(FT) | Avg Channel<br>Depth | **Avg Channel<br>Flow Depth (FT) | ***Hydraulic<br>Grade<br>Elev | Freeboard<br>(FT) | Bottom<br>Slope (FT/FT) | Side<br>Slope | Top Width<br>(FT) | Manning<br>n | Wetted<br>Permeter<br>(FT) | Area (SF) | Hydraulic<br>Radius | Velocity<br>(FPS) | Qp<br>(CFS) |
| SE         | 450.00         | 176.00           | 2.00       | 174.00 | 63.54            | 0.2500           | 61.54 | 2.00       | 5.00                  | 2.00                 | 0.69                             | 174.69                        | 1.3               | 0.2500                  | 4.00          | 21.00             | 0.025        | 10.69                      | 5.35      | 0.50                | 18.79             | 100.64      |
| SE1        | 62.00          | 63.54            | 2.00       | 61.54  | 58.54            | 0.0806           | 56.54 | 2.00       | 5.00                  | 2.00                 | 0.92                             | 62.46                         | 1.1               | 0.0806                  | 4.00          | 21.00             | 0.025        | 12.59                      | 7.99      | 0.63                | 12.49             | 99.77       |
| S          | 451.00         | 176.00           | 2.00       | 174.00 | 61.25            | 0.2500           | 61.25 | 0.00       | 5.00                  | 1.00                 | 0.72                             | 174.72                        | 1.3               | 0.2500                  | 4.00          | 21.00             | 0.025        | 10.94                      | 5.67      | 0.52                | 19.24             | 109.15      |
| SW         | 404.00         | 176.00           | 2.00       | 174.00 | 77.00            | 0.2500           | 73.00 | 4.00       | 5.00                  | 3.00                 | 0.67                             | 174.67                        | 1.3               | 0.2500                  | 4.00          | 21.00             | 0.025        | 10.52                      | 5.15      | 0.49                | 18.49             | 95.16       |
| W          | 456.00         | 176.00           | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.78                             | 174.78                        | 1.2               | 0.2500                  | 4.00          | 21.00             | 0.025        | 11.43                      | 6.33      | 0.55                | 20.10             | 127.32      |
| NW         | 456.00         | 176.00           | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.60                             | 174.60                        | 1.4               | 0.2500                  | 4.00          | 21.00             | 0.025        | 9.95                       | 4,44      | 0.45                | 17.40             | 77.27       |
| NE         | 456.00         | 176.00           | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.66                             | 174.66                        | 1.3               | 0.2500                  | 4.00          | 21.00             | 0.025        | 10.44                      | 5.04      | 0.48                | 18.34             | 92.49       |
| E          | 456.00         | 176.00           | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.71                             | 174.71                        | 1.3               | 0.2500                  | 4.00          | 21.00             | 0.025        | 10.85                      | 5.57      | 0.51                | 19.09             | 106.27      |
| C1-4       | 76.00          | 51.80            | 2.00       | 49.80  | 33.00            | 0.2474           | 31.00 | 2.00       | 5.00                  | 2.50                 | 1.01                             | 50.81                         | 1.0               | 0.2474                  | 4.00          | 21.00             | 0.025        | 13.33                      | 9.13      | 0.69                | 23.04             | 210.33      |
| C2-4       | 52.00          | 50.00            | 2.00       | 48.00  | 33.00            | 0.3269           | 31.00 | 2.00       | 5.00                  | 2.00                 | 0.58                             | 48.58                         | 1.4               | 0.3269                  | 4.00          | 21.00             | 0.025        | 9.78                       | 4.25      | 0.43                | 19.53             | 82.93       |
| P2-1       | 60.00          | 56.15            | 1.50       | 53.31  | 32.50            | 0.3718           | 31.00 | 1.50       | 2.00                  | 1.50                 | 0.14                             | 53.45                         | 1.4               | 0.3718                  | 3.00          | 11.00             | 0.025        | 2.89                       | 0.34      | 0.12                | 8.71              | 2.95        |
| P3-1       | 60.00          | 56.15            | 1.50       | 54.65  | 32.50            | 0.3942           | 31.00 | 1.50       | 2.00                  | 1.50                 | 0.14                             | 54.79                         | 1.4               | 0.3942                  | 3.00          | 11.00             | 0.025        | 2.89                       | 0.34      | 0.12                | 8.97              | 3.04        |
| A2-4       | 250.00         | 56.17            | 2.00       | 54.17  | 38.75            | 0.0697           | 36.75 | 2.00       | 10.00                 | 2.00                 | 0.75                             | 54.92                         | 1.3               | 0.0697                  | 4.00          | 26.00             | 0.025        | 16.18                      | 9.75      | 0.60                | 11.22             | 109.41      |
| SW-1       | 266.00         | 72.50            | 2.00       | 70.50  | 38.75            | 0.1269           | 36.75 | 2.00       | 5.00                  | 2.00                 | 0.80                             | 71.30                         | 1.2               | 0.1269                  | 4.00          | 21.00             | 0.025        | 11.60                      | 6.56      | 0.57                | 14.52             | 95.26       |
| <b>c</b> c | 160.00         | 55.20            | 2.00       | 53.20  | 38.75            | 0.1028           | 36.75 | 2.00       | 5.00                  | 2.00                 | 0.21                             | 53.41                         | 1.8               | 0.1028                  | 4.00          | 21.00             | 0.025        | 6.73                       | 1.23      | 0.18                | 6.14              | 7.53        |

<sup>\*</sup>Chutes-Precast Interlocking Articulating Concrete Blocks

<sup>\*\*</sup> Avg Channel Flow Depth Determined by HydroCAD

<sup>\*\*\*</sup> Hydraulic Grade Elevation Determined by HydroCAD

### **APPENDIX 6B.10**

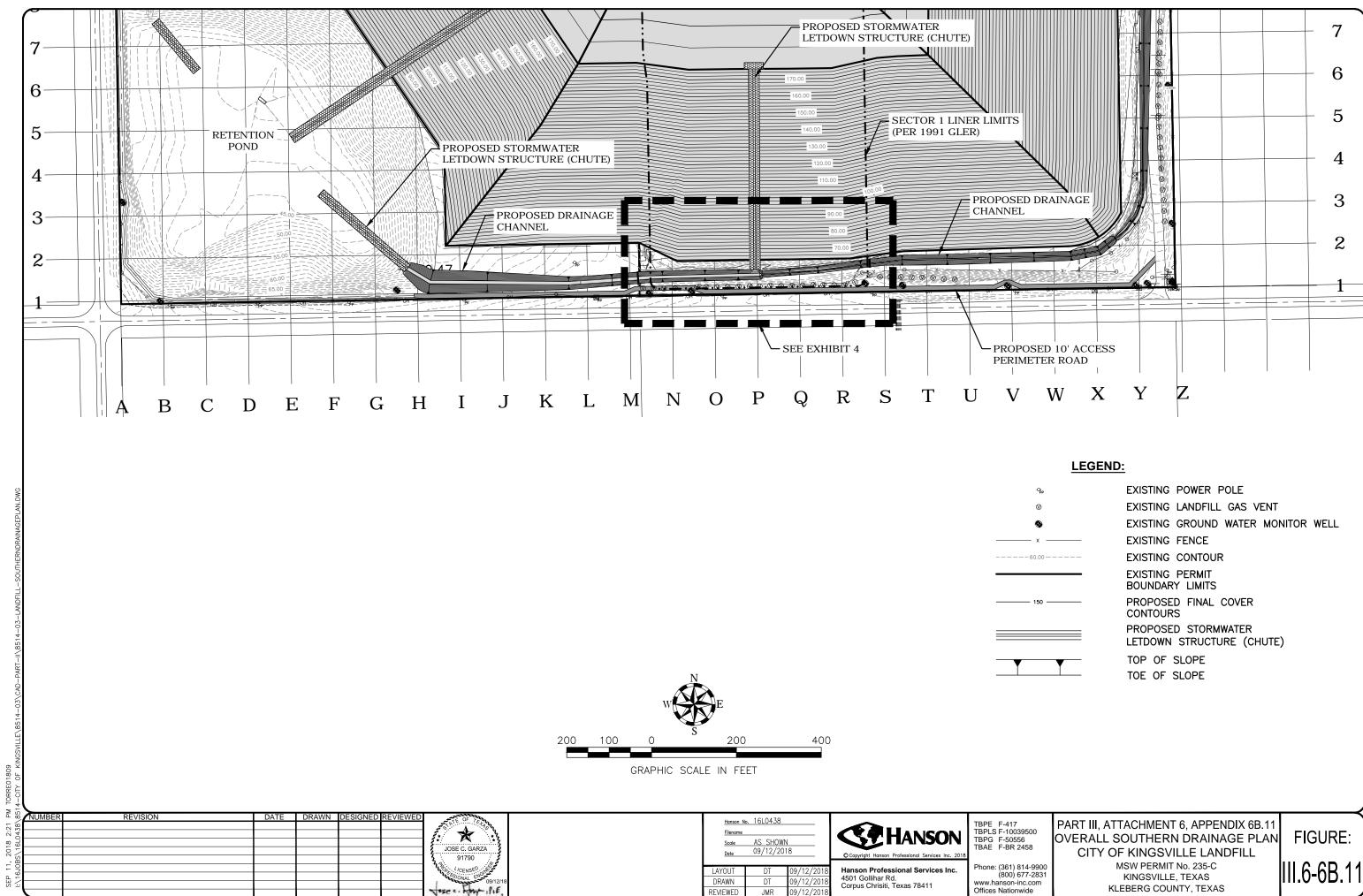
## PERIMETER CHANNELS, COLLECTOR CHANNELS, AND CHUTES-100 YEAR SUMMARY TABLE



100 Year Perimeter Channels, Collector Channels, & Chutes Summary Table

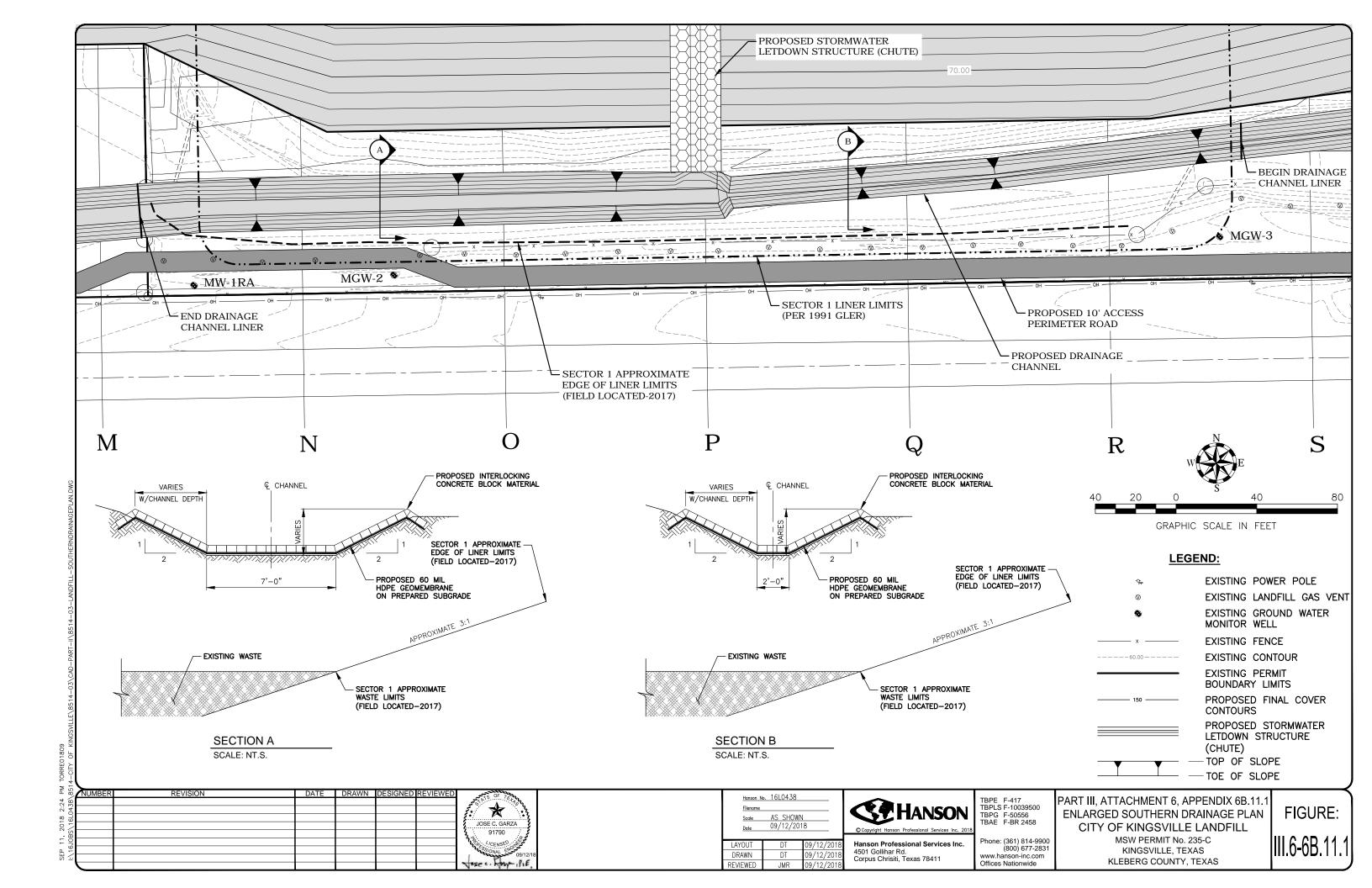
|            |                |                     | Begining   |       |                     | End              | ing           |            |                       |                              |                                  |                               | Trapea            | toidal, Triangul        | lar, Box,     | & Pipe Chani                            | nels         |                            |              |                     |                   |             |
|------------|----------------|---------------------|------------|-------|---------------------|------------------|---------------|------------|-----------------------|------------------------------|----------------------------------|-------------------------------|-------------------|-------------------------|---------------|-----------------------------------------|--------------|----------------------------|--------------|---------------------|-------------------|-------------|
| Channel ID | Length<br>(FT) | Existing<br>NG Elev | Depth (FT) | FL    | Existing<br>NG Elev | Slope<br>(FT/FT) | FL            | Depth (FT) | Base<br>Width<br>(Ft) | Avg Channel<br>Depth<br>(FT) | **Avg Channel<br>Flow Depth (FT) | ***Hydraulic<br>Grade<br>Elev | Freeboard<br>(FT) | Bottom<br>Slope (FT/FT) | Side<br>Slope | Top Width<br>(FT)                       | Manning<br>n | Wetted<br>Permeter<br>(FT) | Area<br>(SF) | Hydraulic<br>Radius | Velocity<br>(FPS) | Qp<br>(CFS) |
| EAST       |                |                     |            |       | ·                   |                  |               |            |                       |                              |                                  |                               |                   |                         |               | *************************************** |              |                            |              |                     |                   |             |
| 6CC        | 740.00         | 61.71               | 2.21       | 59.50 | 62.36               | 0.0040           | 56.54         | 5.82       | 2.00                  | 4.02                         | 0.92                             | 60.42                         | 1.3               | 0.0040                  | 2.00          | 10.84                                   | 0.030        | 6.11                       | 3.53         | 0.58                | 2.18              | 7.70        |
| B1.        | 464.00         | 62.36               | 4.00       | 56.54 | 65.59               | 0.0057           | 53.89         | 4.00       | 5.00                  | 4.00                         | 2.81                             | 59,35                         | 1.2               | 0.0057                  | 0.00          | 5.00                                    | 0.013        | 10.62                      | 14.05        | 1.32                | 10.44             | 146.66      |
| 1CC        | 222.00         | 65.59               | 11.70      | 53.89 | 61.74               | 0.0020           | 53.45         | 8.29       | 3.00                  | 10.00                        | 5.24                             | 59.13                         | 6.5               | 0.0020                  | 2.00          | 49.80                                   | 0.030        | 26.43                      | 70.64        | 2.67                | 4.26              | 300.75      |
| 82         | 200.00         | 61.74               | 4.00       | 53.45 | 59.30               | 0.0183           | 49.80         | 4.00       | 5.00                  | 4.00                         | 3.12                             | 56.57                         | 0.9               | 0.0183                  | 0.00          | 5.00                                    | 0.013        | 11.24                      | 15.60        | 1.39                | 19.27             | 300.54      |
| SOUTH      |                |                     |            |       |                     |                  |               |            |                       |                              |                                  |                               |                   |                         |               |                                         |              |                            |              |                     |                   | <b></b>     |
| 5CC        | 595.00         | 61.64               | 3.14       | 58.50 | 61.01               | 0.0015           | 57.61         | 3.40       | 2.00                  | 3.27                         | 1.15                             | 59.65                         | 2.0               | 0.0015                  | 2.00          | 14.56                                   | 0.030        | 7.14                       | 4.95         | 0.69                | 1.50              | 7.43        |
| A2-1       | 250.50         | 61.01               | 3.40       | 57.61 | 60.16               | 0.0015           | <b>57.2</b> 3 | 2.93       | 2.00                  | 3.17                         | 1.48                             | 59.09                         | 1.9               | 0.0015                  | 2.00          | 15.60                                   | 0.030        | 8.62                       | 7.34         | 0.85                | 1.74              | 12.76       |
| A2-5       | 5.60           | 60.16               | 2.93       | 57.23 | 60.18               | 0.2482           | 55.84         | 4.34       | 2.00                  | 3.64                         | 0.37                             | 57.60                         | 2.6               | 0.2482                  | 2.00          | 13.72                                   | 0.025        | 3.65                       | 1.01         | 0.28                | 12.63             | 12.80       |
| A2-2       | 257.00         | 60.18               | 4.34       | 55.84 | 60.98               | 0.0020           | 55.33         | 5.65       | 7.00                  | 5.00                         | 3.02                             | 58.86                         | 1.3               | 0.0020                  | 2.00          | 24.36                                   | 0.025        | 20.51                      | 39.38        | 1.92                | 4.10              | 161.54      |
| A2-3       | 582.00         | 60.98               | 5.65       | 55.33 | 60.40               | 0.0020           | 54.17         | 6.23       | 8.00                  | 5.94                         | 3.09                             | 58.42                         | 2.6               | 0.0020                  | 2.00          | 30.60                                   | 0.030        | 21.82                      | 43.82        | 2.01                | 3.53              | 154.64      |
| NORTH      |                |                     |            |       |                     |                  |               |            |                       |                              |                                  |                               |                   |                         |               |                                         |              | -                          |              |                     |                   | L           |
| C2-3       | 882.00         | 57.50               | 4.00       | 53.50 | 57.50               | 0.0020           | 51.75         | 5.75       | 4.00                  | 4.88                         | 3.32                             | 56.82                         | 0.7               | 0.0020                  | 2.00          | 20.00                                   | 0.030        | 18.85                      | 35.32        | 1.87                | 3.36              | 118.80      |
| P1         | 64.00          | 57.50               | 4.00       | 51.75 | 57.50               | 0.0100           | 51.11         | 4.00       | 4.00                  | 4.00                         | 2.46                             | 54.21                         | 1.5               | 0.0100                  | NΑ            | 4.00                                    | 0.011        | 7.21                       | 8.11         | 1.12                | 14.64             | 118.72      |
| C2-5       | 106.00         | 53.61               | 2.50       | 51.11 | 50.50               | 0.0293           | 48.00         | 2.50       | 5.00                  | 2.50                         | 1.29                             | 52.40                         | 1.2               | 0.0293                  | 4.00          | 25.00                                   | 0.025        | 15.64                      | 13.11        | 0.84                | 9.08              | 118.94      |
| C1SCCN1    | 285.00         | 60.00               | 1.50       | 58.50 | 60.00               | 0.0033           | 57.55         | 2.45       | 3.00                  | 1.98                         | 0.40                             | 58.90                         | 1.1               | 0.0033                  | 2.00          | 9.00                                    | 0.030        | 4.79                       | 1.52         | 0.32                | 1.33              | 2.03        |
| C1SCCN2    | 287.50         | 60.00               | 1.50       | 58.50 | 60.00               | 0.0033           | 57.55         | 2.45       | 3.00                  | 1.98                         | 0.40                             | 58.90                         | 1.1               | 0.0033                  | 2.00          | 9.00                                    | 0.030        | 4.79                       | 1.52         | 0.32                | 1.33              | 2.02        |
| P2         | 72.00          | 60.00               | 1.50       | 54.39 | 60.00               | 0.0150           | 53.31         | 1.50       | 1.50                  | 1.50                         | 0.53                             | 54.92                         | 1.0               | 0.0150                  | NA            | 1.50                                    | 0.011        | 1.91                       | 0.56         | 0.29                | 7.31              | 4.08        |
| C1SCCS1    | 280.00         | 60.00               | 1.50       | 58.50 | 60.00               | 0.0033           | 57.58         | 2.42       | 3.00                  | 1.96                         | 0.41                             | 58.91                         | 1.1               | 0.0033                  | 2.00          | 9.00                                    | 0.030        | 4.83                       | 1.57         | 0.32                | 1.34              | 2.10        |
| C1SCCS2    | 280.00         | 60.00               | 1.50       | 58.50 | 60.00               | 0.0033           | 57.58         | 2.42       | 3.00                  | 1.96                         | 0.41                             | 58.91                         | 1.1               | 0.0033                  | 2.00          | 9.00                                    | 0.030        | 4.83                       | 1.57         | 0.32                | 1.34              | 2.10        |
| Р3         | 72.00          | 60.00               | 1.50       | 55.41 | 60.00               | 0.0150           | 54.33         | 1.50       | 1.50                  | 1.50                         | 0.53                             | 55.94                         | 1.0               | 0.0150                  | NA            | 1.50                                    | 0.011        | 1.91                       | 0.56         | 0.29                | 7.31              | 4.08        |
| WEST       |                |                     |            |       |                     |                  |               |            |                       |                              |                                  |                               |                   |                         |               |                                         |              |                            |              | <u> </u>            |                   | L           |
| 2CC        | 650.00         | 57.70               | 3.20       | 54.50 | 59.94               | 0.0020           | 53.20         | 6.74       | 0.00                  | 4.97                         | 1.46                             | 55.96                         | 1.7               | 0.0020                  | 3.00          | 19.20                                   | 0.030        | 9.23                       | 6.39         | 0.69                | 1.74              | 11.12       |

|           |                |                     |            |        |                  |                  |       |            |                       |                      |                                  | Trapezoi                      | idal Char         | inel                    |               |                   |              |                            |           |                     |                   |                |
|-----------|----------------|---------------------|------------|--------|------------------|------------------|-------|------------|-----------------------|----------------------|----------------------------------|-------------------------------|-------------------|-------------------------|---------------|-------------------|--------------|----------------------------|-----------|---------------------|-------------------|----------------|
| *Chute 1D | Length<br>(FT) | Existing<br>Elev    | Depth (FT) | FL     | Existing<br>Elev | Slope<br>(FT/FT) | FL    | Depth (FT) | Base<br>Width<br>(FT) | Avg Channel<br>Depth | **Avg Channel<br>Flow Depth (FT) | ***Hydraulic<br>Grade<br>Elev | Freeboard<br>(FT) | Bottom<br>Slope (FT/FT) | Side<br>Slope | Top Width<br>(FT) | Manning<br>n | Wetted<br>Permeter<br>(FT) | Area (SF) | Hydraulic<br>Radius | Velocity<br>(FPS) | Qp<br>(CFS)    |
| SE        | 450.00         | 176.00              | 2.00       | 174.00 | 63.54            | 0.2500           | 61.54 | 2.00       | 5.00                  | 2.00                 | 0.83                             | 174.83                        | 1.2               | 0.2500                  | 4.00          | 21.00             | 0.025        | 11.84                      | 6.91      | 0.58                | 20.80             | 143.62         |
| SE1       | 62.00          | 63.54               | 2.00       | 61.54  | 58.54            | 0.0806           | 56.54 | 2.00       | 5.00                  | 2.00                 | 1.10                             | 62.64                         | 0.9               | 0.0806                  | 4.00          | 21.00             | 0.025        | 14.07                      | 10.34     | 0.73                | 13.78             | 142.47         |
| 5         | 451.00         | 176.00              | 2.00       | 174.00 | 61.25            | 0.2500           | 61.25 | 0.00       | 5.00                  | 1.00                 | 0.86                             | 174.86                        | 1.1               | 0.2500                  | 4.00          | 21.00             | 0.025        | 12.09                      | 7.26      | 0.60                | 21.21             | 153.92         |
| SW        | 404.00         | 17 <del>6</del> .00 | 2.00       | 174.00 | 77.00            | 0.2500           | 73.00 | 4.00       | 5.00                  | 3.00                 | 0.81                             | 174.81                        | 1.2               | 0.2500                  | 4.00          | 21.00             | 0.025        | 11.68                      | 6.67      | 0.57                | 20.52             | 136.97         |
| W         | 456.00         | 176.00              | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.93                             | 174.93                        | 1.1               | 0.2500                  | 4.00          | 21.00             | 0.025        | 12.67                      | 8.11      | 0.64                | 22.13             | 179.50         |
| NW        | 456.00         | 176.00              | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.72                             | 174.72                        | 1.3               | 0.2500                  | 4.00          | 21.00             | 0.025        | 10.94                      | 5.67      | 0.52                | 19.24             | 109.15         |
| NE        | 456.00         | 17 <del>6</del> .00 | 2.00       | 174.00 | 60.00            | 0.2500           | 60,00 | 0.00       | 5.00                  | 1.00                 | 0.79                             | 174.79                        | 1.2               | 0.2500                  | 4.00          | 21.00             | 0.025        | 11.51                      | 6.45      | 0.56                | 20.24             | 130.49         |
| E         | 456.00         | 176.00              | 2.00       | 174.00 | 60.00            | 0.2500           | 60.00 | 0.00       | 5.00                  | 1.00                 | 0.85                             | 174.85                        | 1.2               | 0.2500                  | 4.00          | 21.00             | 0.025        | 12.01                      | 7.14      | 0.59                | 21.07             | <b>1</b> 50.44 |
| C1-4      | 76.00          | 51.80               | 2.00       | 49.80  | 33.00            | 0.2474           | 31.00 | 2.00       | 5.00                  | 2.50                 | 1.21                             | 51.01                         | 8.0               | 0.2474                  | 4.00          | 21.00             | 0.025        | 14.98                      | 11.91     | 0.79                | 25.44             | 302.89         |
| C2-4      | 52.00          | 50.00               | 2.00       | 48.00  | 33.00            | 0.3269           | 31.00 | 2.00       | 5.00                  | 2.00                 | 0.70                             | 48.70                         | 1.3               | 0.3269                  | 4.00          | 21.00             | 0.025        | 10.77                      | 5.46      | 0.51                | 21.65             | 118.28         |
| P2-1      | 60.00          | 56.15               | 1.50       | 53.31  | 32.50            | 0.3718           | 31.00 | 1.50       | 2.00                  | 1.50                 | 0.17                             | 53.48                         | 1.3               | 0.3718                  | 3.00          | 11.00             | 0.025        | 3.08                       | 0.43      | 0.14                | 9.74              | 4.16           |
| P3-1      | 60.00          | 56.15               | 1.50       | 54.65  | 32.50            | 0.3942           | 31.00 | 1.50       | 2.00                  | 1.50                 | 0.17                             | 54.82                         | 1.3               | 0.3942                  | 3.00          | 11.00             | 0.025        | 3.08                       | 0.43      | 0.14                | 10.03             | 4.28           |
| A2-4      | 250.00         | 56.17               | 2.00       | 54.17  | 38.75            | 0.0697           | 36.75 | 2.00       | 10.00                 | 2.00                 | 0.91                             | 55.08                         | 1.1               | 0.0697                  | 4.00          | 26.00             | 0.025        | 17.50                      | 12.41     | 0.71                | 12.51             | 155.29         |
| 5W-1      | 266.00         | 72.50               | 2.00       | 70.50  | 38.75            | 0.1269           | 36.75 | 2.00       | 5.00                  | 2.00                 | 0.96                             | 71.46                         | 1.0               | 0.1269                  | 4.00          | 21.00             | 0.025        | 12,92                      | 8.49      | 0.66                | 16.05             | 136.17         |
| cc        | 160.00         | 55.20               | 2.00       | 53.20  | 38.75            | 0.1028           | 36.75 | 2.00       | 5.00                  | 2.00                 | 0.26                             | 54.46                         | 1.7               | 0.1028                  | 4.00          | 21.00             | 0.025        | 7.14                       | 1.57      | 0.22                | 6.96              | 10.93          |


<sup>\*</sup>Chutes-Precast Interlocking Articulating Concrete Blocks

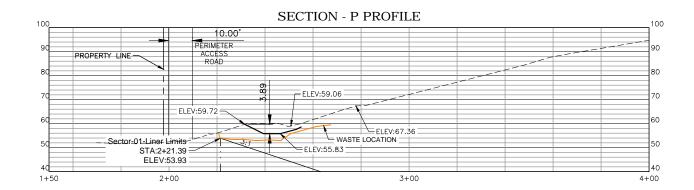
<sup>\*\*</sup> Avg Channel Flow Depth Determined by HydroCAD

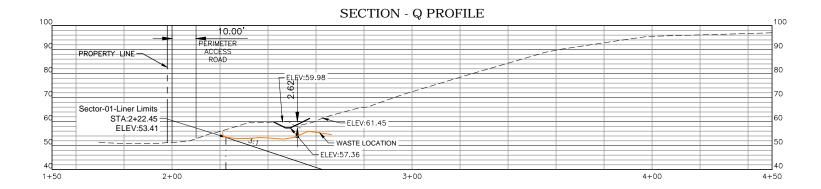
<sup>\*\*\*</sup> Hydraulic Grade Elevation Determined by HydroCAD

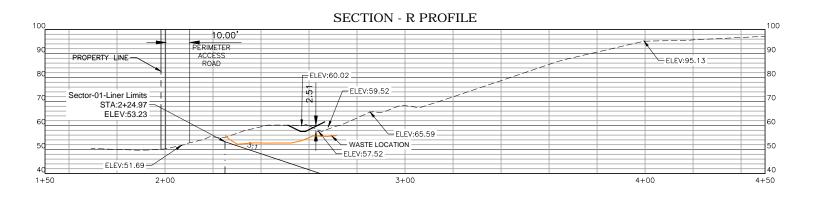

# APPENDIX 6B.11 FIGURE 1 OVERALL SOUTHERN DRAINAGE PLAN






# APPENDIX 6B.11.1 FIGURE 2 ENLARGED SOUTHERN DRAINAGE PLAN




# APPENDIX 6B.11.2 FIGURE 3 CROSS SECTIONS











| NUMBER | REVISION | DATE | DRAWN | DESIGNED | REVIEWED | OF CALL      |
|--------|----------|------|-------|----------|----------|--------------|
|        |          |      |       |          |          | F            |
|        |          |      |       |          |          | <i>f.</i> 🖈  |
|        |          |      |       |          |          | <i>3*</i>    |
|        |          |      |       |          |          | JOSE C. GARZ |
|        |          |      |       |          |          | 91790        |
|        |          |      |       |          |          | CENSED       |
|        |          |      |       |          |          | SSIONAL ENG  |
|        |          |      |       |          |          | Mary Mary    |
|        |          |      |       |          |          | MARC C. HAWA |

| ١   | Hanson No. | 16L0438    |
|-----|------------|------------|
| - 1 | Filename   |            |
| - 1 | Scale      | AS SHOWN   |
| ١   | Date       | 09/12/2018 |
| - 1 |            |            |

DT

09/12/20

DRAWN

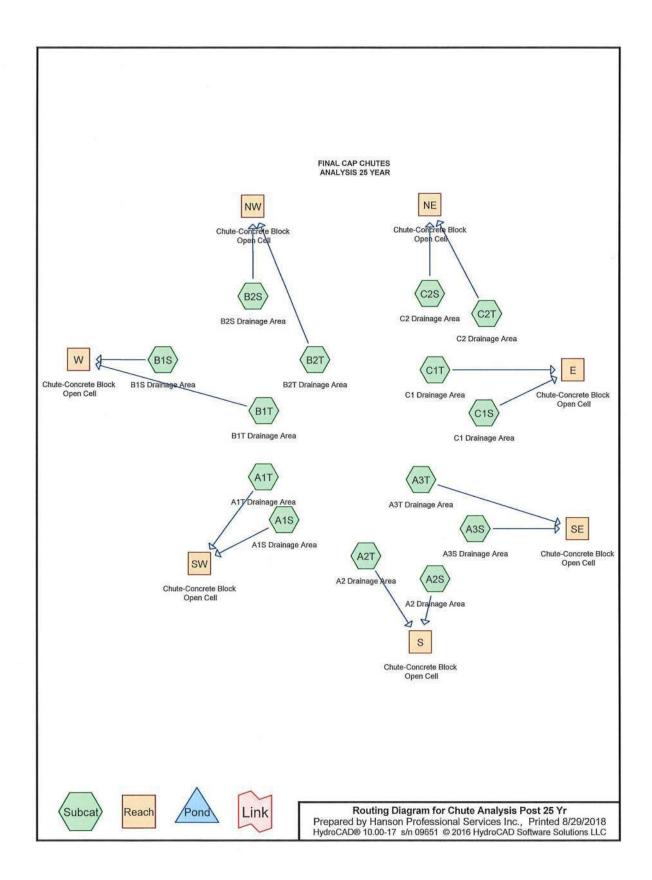
Copyright Hanson Professional Services Inc. 2018

Hanson Professional Services Inc. 4501 Gollihar Rd. Corpus Chrisiti, Texas 78411

TBPE F-417 TBPLS F-10039500 TBPG F-50556 TBAE F-BR 2458

Phone: (361) 814-9900 (800) 677-2831 www.hanson-inc.com Offices Nationwide

PART III, ATTACHMENT 6, APPENDIX 6B.11.2 CROSS SECTIONS CITY OF KINGSVILLE LANDFILL MSW PERMIT No. 235-C


KINGSVILLE, TEXAS

KLEBERG COUNTY, TEXAS

FIGURE:

# APPENDIX 6B.12 HYDROCAD MODEL 25 YEAR POST DEVELOPMENT CHUTES





Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/29/2018 Page 2

# Area Listing (all nodes)

|     | Area (acres) | CN | Description (subcatchment-numbers)                                       |
|-----|--------------|----|--------------------------------------------------------------------------|
| 38- | 119.627      | 79 | 50-75% Grass cover, Fair, HSG C (A1S, A1T, A2S, A2T, A3S, A3T, B1S, B1T, |
|     |              |    | B2S, B2T, C1S, C1T, C2S, C2T)                                            |
|     | 119.627      | 79 | TOTAL AREA                                                               |

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/29/2018

Page 3

# Soil Listing (all nodes)

|     | Area (acres) | Soil<br>Group | Subcatchment<br>Numbers                                              |
|-----|--------------|---------------|----------------------------------------------------------------------|
| 2.5 | 0.000        | HSG A         |                                                                      |
|     | 0.000        | HSG B         |                                                                      |
|     | 119.627      | HSG C         | A1S, A1T, A2S, A2T, A3S, A3T, B1S, B1T, B2S, B2T, C1S, C1T, C2S, C2T |
|     | 0.000        | HSG D         |                                                                      |
|     | 0.000        | Other         |                                                                      |
|     | 119.627      |               | TOTAL AREA                                                           |

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/29/2018

Page 4

# **Ground Covers (all nodes)**

|   | HSG-A<br>(acres) | HSG-B (acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total (acres) | Ground<br>Cover          | Subcatchment<br>Numbers |
|---|------------------|---------------|------------------|------------------|---------------|---------------|--------------------------|-------------------------|
| 8 | 0.000            | 0.000         | 119.627          | 0.000            | 0.000         | 119.627       | 50-75% Grass cover, Fair | A1S,                    |
|   |                  |               |                  |                  |               |               |                          | A1T,                    |
|   |                  |               |                  |                  |               |               |                          | A2S,                    |
|   |                  |               |                  |                  |               |               |                          | A2T,                    |
|   |                  |               |                  |                  |               |               |                          | A3S,                    |
|   |                  |               |                  |                  |               |               |                          | A3T,                    |
|   |                  |               |                  |                  |               |               |                          | B1S,                    |
|   |                  |               |                  |                  |               |               |                          | B1T,                    |
|   |                  |               |                  |                  |               |               |                          | B2S,                    |
|   |                  |               |                  |                  |               |               |                          | B2T,                    |
|   |                  |               |                  |                  |               |               |                          | C1S,                    |
|   |                  |               |                  |                  |               |               |                          | C1T,                    |
|   |                  |               |                  |                  |               |               |                          | C2S,                    |
|   |                  |               |                  |                  |               |               |                          | C2T                     |
|   | 0.000            | 0.000         | 119.627          | 0.000            | 0.000         | 119.627       | TOTAL AREA               |                         |

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/29/2018

Page 5

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Reach routing by Stor-Ind+Trans method - Folid routing by Stor-Ind method                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment A1S: A1S Drainage Area  Runoff Area=8.009 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=49.80 cfs 4.113 af                  |
| Subcatchment A1T: A1T Drainage Area  Runoff Area=7.425 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=46.16 cfs 3.813 af                  |
| Subcatchment A2S: A2 Drainage Area  Runoff Area=12.241 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=76.11 cfs 6.287 af                  |
| Subcatchment A2T: A2 Drainage Area  Runoff Area=5.120 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=31.83 cfs 2.629 af                   |
| Subcatchment A3S: A3S Drainage Area  Runoff Area=10.760 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=66.90 cfs 5.526 af                 |
| Subcatchment A3T: A3T Drainage Area Runoff Area=7.489 ac 0.00% Impervious Runoff Depth=6.16" Flow Length=1,050' Tc=16.7 min CN=79 Runoff=38.81 cfs 3.846 af |
| Subcatchment B1S: B1S Drainage Area  Runoff Area=14.884 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=92.54 cfs 7.644 af                 |
| Subcatchment B1T: B1T Drainage Area Runoff Area=7.499 ac 0.00% Impervious Runoff Depth=6.16" Flow Length=950' Tc=16.0 min CN=79 Runoff=39.52 cfs 3.851 af   |
| Subcatchment B2S: B2S Drainage Area  Runoff Area=8.806 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=54.75 cfs 4.522 af                  |
| Subcatchment B2T: B2T Drainage Area Runoff Area=4.309 ac 0.00% Impervious Runoff Depth=6.16" Flow Length=850' Tc=13.7 min CN=79 Runoff=24.07 cfs 2.213 af   |
| Subcatchment C1S: C1 Drainage Area  Runoff Area=11.506 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=71.54 cfs 5.909 af                  |
| Subcatchment C1T: C1 Drainage Area  Runoff Area=6.292 ac 0.00% Impervious Runoff Depth=6.16" Flow Length=800' Tc=12.5 min CN=79 Runoff=36.29 cfs 3.231 af   |
| Subcatchment C2S: C2 Drainage Area  Runoff Area=10.038 ac 0.00% Impervious Runoff Depth=6.16"  Tc=10.0 min CN=79 Runoff=62.41 cfs 5.155 af                  |
| Subcatchment C2T: C2 Drainage Area  Runoff Area=5.249 ac 0.00% Impervious Runoff Depth=6.16" Flow Length=800' Tc=12.5 min CN=79 Runoff=30.27 cfs 2.696 af   |
| Reach E: Chute-Concrete Block n=0.025                                                                                                                       |
| Reach NE: Chute-Concrete Block n=0.025                                                                                                                      |

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 6

Reach NW: Chute-Concrete Block Avg. Flow Depth=0.60' Max Vel=17.38 fps Inflow=77.52 cfs 6.735 af n=0.025 L=456.0' S=0.2500'/' Capacity=877.30 cfs Outflow=77.39 cfs 6.735 af

Avg. Flow Depth=0.72' Max Vel=19.13 fps Inflow=107.94 cfs 8.916 af Reach S: Chute-Concrete Block n=0.025 L=451.0' S=0.2500 '/' Capacity=877.30 cfs Outflow=107.71 cfs 8.916 af

Avg. Flow Depth=0.69' Max Vel=18.76 fps Inflow=100.71 cfs 9.372 af Reach SE: Chute-Concrete Block n=0.025 L=441.7' S=0.2500 '/' Capacity=877.36 cfs Outflow=100.58 cfs 9.372 af

Avg. Flow Depth=0.67' Max Vel=18.50 fps Inflow=95.96 cfs 7.926 af Reach SW: Chute-Concrete Block n=0.025 L=406.0' S=0.2500 '/' Capacity=877.30 cfs Outflow=95.76 cfs 7.926 af

Avg. Flow Depth=0.78' Max Vel=20.06 fps Inflow=127.46 cfs 11.495 af Reach W: Chute-Concrete Block n=0.025 L=456.0' S=0.2500 '/' Capacity=877.30 cfs Outflow=127.28 cfs 11.495 af

> Total Runoff Area = 119.627 ac Runoff Volume = 61.436 af Average Runoff Depth = 6.16" 100.00% Pervious = 119.627 ac 0.00% Impervious = 0.000 ac

Type III 24-hr 25-Year Rainfall=8.70"

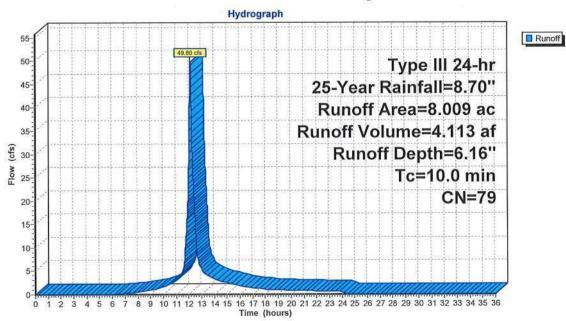
Printed 8/29/2018

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 7

# Summary for Subcatchment A1S: A1S Drainage Area

Use Conservative Value of Tc=10 min.


Runoff = 49.80 cfs @ 12.14 hrs, Volume=

4.113 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C           | N Des            | cription             |                |                                         |
|-------------|------------------|------------------|----------------------|----------------|-----------------------------------------|
| 8.          | 009              | 79 50-7          | 5% Grass             | cover, Fair    | , HSG C                                 |
| 8.          | 009              | 100.             | 00% Pervi            | ous Area       |                                         |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                             |
| 10.0        | W - W            |                  |                      |                | Direct Entry, A1S-Chute Flow Evaluation |

### Subcatchment A1S: A1S Drainage Area

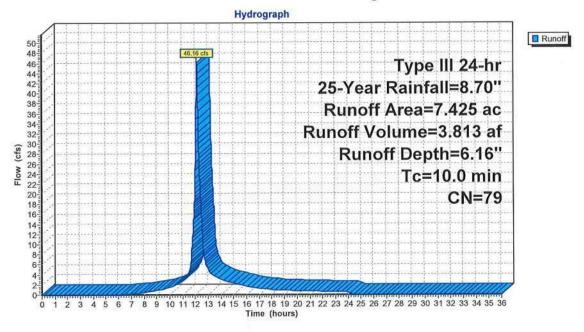


Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/29/2018 Page 8

#### 1 4

# Summary for Subcatchment A1T: A1T Drainage Area


Runoff = 46.16 cfs @ 12.14 hrs, Volume=

3.813 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)         | CN | Desc             | cription             |                   |                                         |
|-------------|--------------|----|------------------|----------------------|-------------------|-----------------------------------------|
| 7.          | 425          | 79 | 50-7             | 5% Grass             | cover, Fair       | r, HSG C                                |
| 7.          | 425          |    | 100.             | 00% Pervi            | ous Area          |                                         |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
| 10.0        |              |    |                  | No.                  |                   | Direct Entry, A1T-Chute Flow Evaluation |

#### Subcatchment A1T: A1T Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

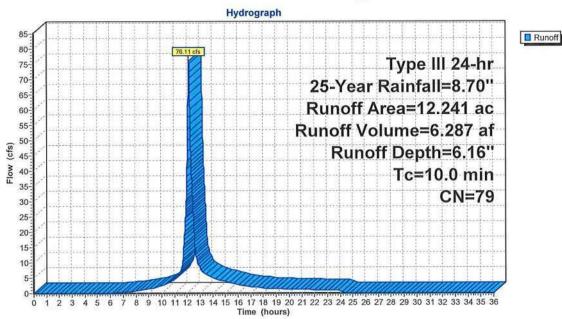
Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

76.11 cfs @ 12.14 hrs, Volume=

Printed 8/29/2018 Page 9

# Summary for Subcatchment A2S: A2 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff

6.287 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)         | CN | Desc             | cription             |                   |                               |  |
|-------------|--------------|----|------------------|----------------------|-------------------|-------------------------------|--|
| 12.         | 241          | 79 | 50-7             | 5% Grass             | cover, Fair,      | , HSG C                       |  |
| 12.         | 241          |    | 100.             | 00% Pervi            | ous Area          |                               |  |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                   |  |
| 10.0        |              |    |                  |                      |                   | Direct Entry A2 Drainage Area |  |

# Subcatchment A2S: A2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

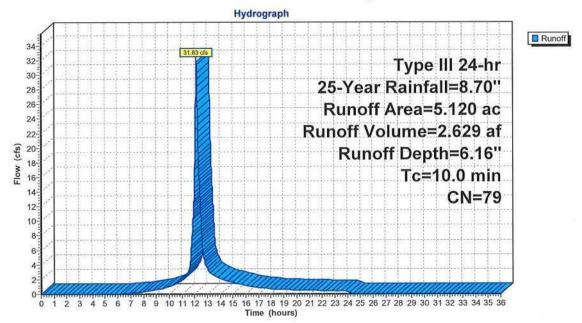
Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 10

# Summary for Subcatchment A2T: A2 Drainage Area

Runoff


31.83 cfs @ 12.14 hrs, Volume=

2.629 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)          | CN | Desc                              | cription             |                   |                                |  |  |  |  |  |  |
|-------------|---------------|----|-----------------------------------|----------------------|-------------------|--------------------------------|--|--|--|--|--|--|
| 5           | .120          | 79 | 9 50-75% Grass cover, Fair, HSG C |                      |                   |                                |  |  |  |  |  |  |
| 5           | .120          |    | 100.                              | 00% Pervi            | ous Area          |                                |  |  |  |  |  |  |
| Tc<br>(min) | Lengt<br>(fee | 1  | Slope<br>(ft/ft)                  | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                    |  |  |  |  |  |  |
| 10.0        |               |    |                                   |                      |                   | Direct Entry, A2 Drainage Area |  |  |  |  |  |  |

# Subcatchment A2T: A2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

# HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 11

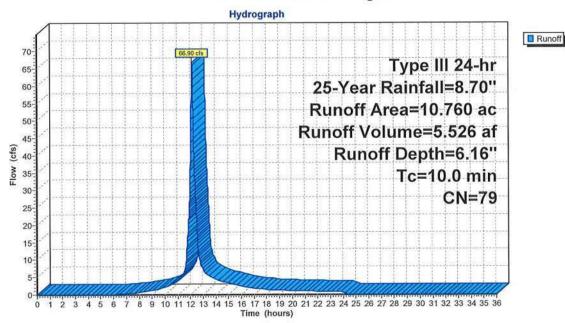
# Summary for Subcatchment A3S: A3S Drainage Area

Use Conservative Value of Tc=10 min.

Runoff

10.0

66.90 cfs @ 12.14 hrs, Volume=


5.526 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| 77-  | Area        | (ac)         | CN | Desc             | cription             |                   |             |  |
|------|-------------|--------------|----|------------------|----------------------|-------------------|-------------|--|
| 02.0 | 10.         | 760          | 79 | 50-7             | 5% Grass             | cover, Fair       | r, HSG C    |  |
|      | 10.         | 760          |    | 100.             | 00% Pervi            | ous Area          |             |  |
|      | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description |  |

Direct Entry, A3S-Chute Flow Evaluation

#### Subcatchment A3S: A3S Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

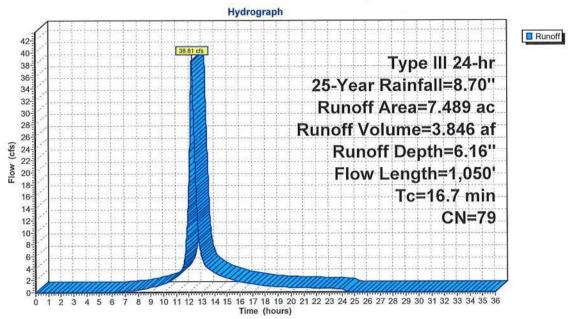
Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 12

# Summary for Subcatchment A3T: A3T Drainage Area


Runoff = 38.81 cfs @ 12.23 hrs, Volume=

3.846 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription             |                   |                                         |
|-------------|---------------|------------------|----------------------|-------------------|-----------------------------------------|
| 7.          | 489 7         | 9 50-7           | 5% Grass             | cover, Fair       | r, HSG C                                |
| 7.          | 489           | 100.             | 00% Pervi            | ous Area          |                                         |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
| 9.6         | 750           |                  | 1.30                 |                   | Direct Entry, A3T-Chute Flow Evaluation |
| 7.1         | 300           |                  | 0.70                 |                   | Direct Entry,                           |
| 16.7        | 1.050         | Total            |                      |                   |                                         |

# Subcatchment A3T: A3T Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

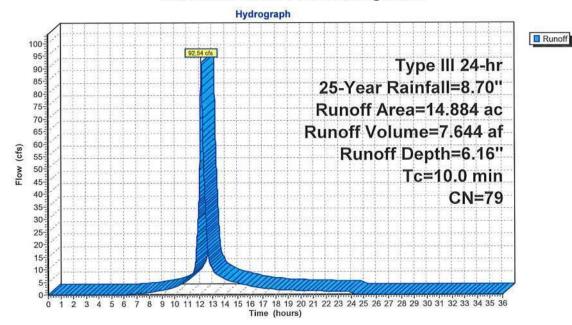
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

92.54 cfs @ 12.14 hrs, Volume=

Page 13

# Summary for Subcatchment B1S: B1S Drainage Area

Use Conservative Value of Tc=10 min.


Runoff

7.644 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area  | (ac) | CN  | Des     | cription  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|-------|------|-----|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 14.   | 884  | 79  | 50-7    | 5% Grass  | cover, Fair,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HSG C                                   |
| 14.   | 884  |     | 100.    | 00% Pervi | ous Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| Tc    | 0    |     |         |           | THE RESERVE THE PROPERTY OF THE PERSON OF TH | Description                             |
| (min) | (fee | et) | (ft/ft) | (ft/sec)  | (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 10.0  |      |     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Direct Entry, B1S-Chute Flow Evaluation |

### Subcatchment B1S: B1S Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

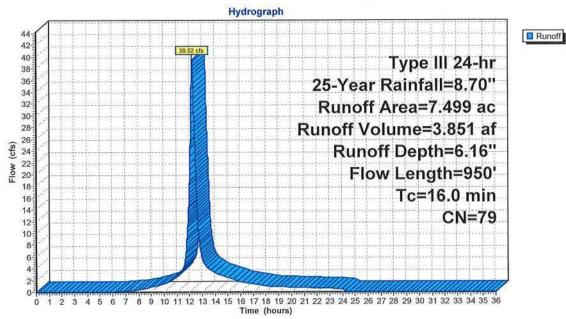
Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 14

# Summary for Subcatchment B1T: B1T Drainage Area

Runoff


39.52 cfs @ 12.21 hrs, Volume=

3.851 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription             |                   |                                         |
|-------------|---------------|------------------|----------------------|-------------------|-----------------------------------------|
| 7.499       |               | 9 50-7           | 5% Grass             | cover, Fair       | HSG C                                   |
| 7.          | 499           | 100.             | 00% Pervi            | ous Area          |                                         |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
| 7.7         | 600           |                  | 1.30                 |                   | Direct Entry, B1T-Chute Flow Evaluation |
| 8.3         | 350           |                  | 0.70                 |                   | Direct Entry,                           |
| 16.0        | 950           | Total            |                      | •                 |                                         |

# Subcatchment B1T: B1T Drainage Area



Runoff

#### Chute Analysis Post 25 Yr

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

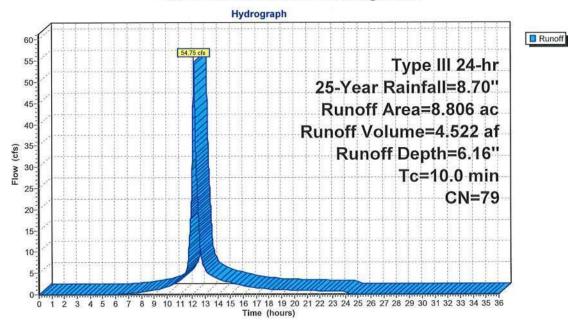
Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

54.75 cfs @ 12.14 hrs, Volume=

Page 15

# Summary for Subcatchment B2S: B2S Drainage Area


Use Conservative Value of Tc=10 min.

4.522 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)             | CN D | escription         |                   |                                         |
|-------------|------------------|------|--------------------|-------------------|-----------------------------------------|
| 8.          | .806             | 79 5 | 0-75% Grass        | cover, Fair       | , HSG C                                 |
| 8           | .806             | 1    | 00.00% Perv        | ious Area         |                                         |
| Tc<br>(min) | Length<br>(feet) |      | 기계의 기가 있었다면 보고 하다. | Capacity<br>(cfs) | Description                             |
| 10.0        |                  |      |                    |                   | Direct Entry, B2S-Chute Flow Evaluation |

### Subcatchment B2S: B2S Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

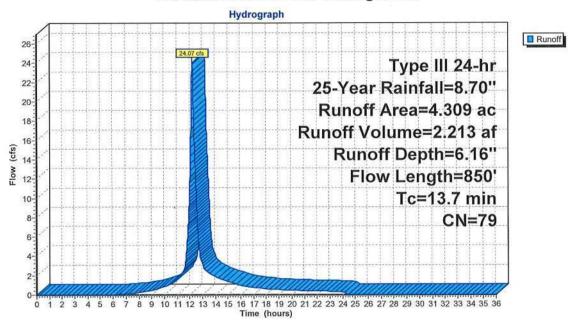
Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 16

#### Summary for Subcatchment B2T: B2T Drainage Area

Runoff =


24.07 cfs @ 12.19 hrs, Volume=

2.213 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription             |                |                                                       |
|-------------|---------------|------------------|----------------------|----------------|-------------------------------------------------------|
| 4.          | .309          | 79 50-7          | 5% Grass             | cover, Fair    | , HSG C                                               |
| 4.          | .309          | 100.             | 00% Pervi            | ous Area       |                                                       |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity (cfs) | Description                                           |
| 7.7<br>6.0  | 600<br>250    |                  | 1.30<br>0.70         |                | Direct Entry, B2T-Chute Flow Evaluation Direct Entry, |
| 13.7        | 850           | Total            |                      |                |                                                       |

### Subcatchment B2T: B2T Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

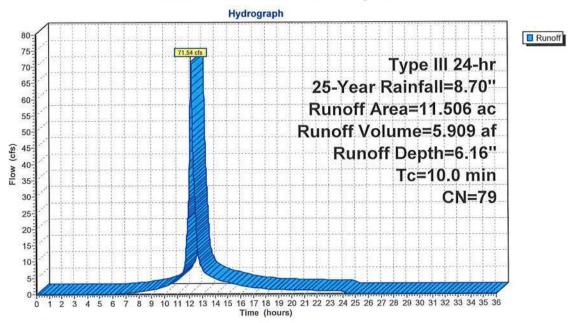
71.54 cfs @ 12.14 hrs, Volume=

Printed 8/29/2018

Page 17

# Summary for Subcatchment C1S: C1 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff

5.909 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac)            | CN De | escription |                   |                                |  |
|-------------|-----------------|-------|------------|-------------------|--------------------------------|--|
| 11          | .506            | 79 50 | -75% Grass | cover, Fair       | r, HSG C                       |  |
| 11          | .506            | 10    | 0.00% Perv | ious Area         |                                |  |
| Tc<br>(min) | Length<br>(feet |       |            | Capacity<br>(cfs) | Description                    |  |
| 10.0        | 1.55            |       |            |                   | Direct Entry, C1 Drainage Area |  |

#### Subcatchment C1S: C1 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

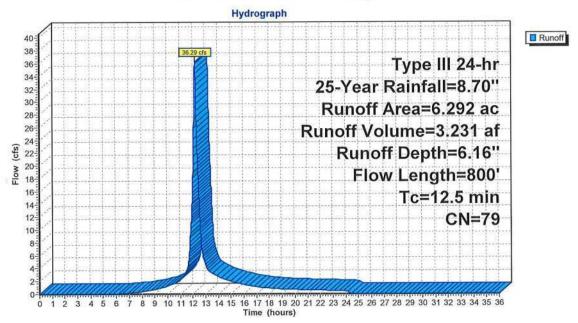
Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 18

# Summary for Subcatchment C1T: C1 Drainage Area

Runoff = 36.29 cfs


36.29 cfs @ 12.17 hrs, Volume=

3.231 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription                        |                   |                                |  |  |  |
|-------------|---------------|------------------|---------------------------------|-------------------|--------------------------------|--|--|--|
| 6.          | 292 7         | 9 50-7           | 50-75% Grass cover, Fair, HSG C |                   |                                |  |  |  |
| 6.          | 292           | 100.             | 00% Pervi                       | ous Area          |                                |  |  |  |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec)            | Capacity<br>(cfs) | Description                    |  |  |  |
| 7.7         | 600           |                  | 1.30                            |                   | Direct Entry, C1 Drainage Area |  |  |  |
| 4.8         | 200           |                  | 0.70                            |                   | Direct Entry,                  |  |  |  |
| 12.5        | 800           | Total            |                                 |                   |                                |  |  |  |

# Subcatchment C1T: C1 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

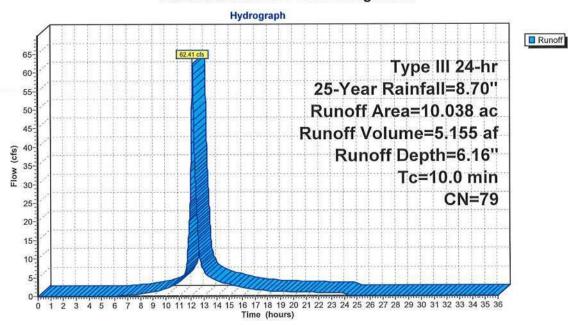
HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

62.41 cfs @ 12.14 hrs, Volume=

Page 19

# Summary for Subcatchment C2S: C2 Drainage Area

Use Conservative Value of Tc=10 min.


Runoff

5.155 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des            | cription             |                   |                                |  |
|-------------|---------------|------------------|----------------------|-------------------|--------------------------------|--|
| 10          | .038 7        | 9 50-7           | 5% Grass             | cover, Fair       | , HSG C                        |  |
| 10          | .038          | 100.             | 00% Pervi            | ious Area         |                                |  |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                    |  |
| 10.0        |               |                  |                      | The second second | Direct Entry, C2 Drainage Area |  |

#### Subcatchment C2S: C2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

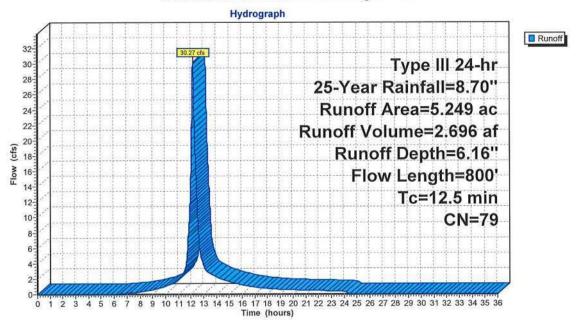
Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 20

# Summary for Subcatchment C2T: C2 Drainage Area


Runoff = 30.27 cfs @ 12.17 hrs, Volume=

2.696 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=8.70"

| Area        | (ac) C        | N Des                   | cription             |                |                                |  |
|-------------|---------------|-------------------------|----------------------|----------------|--------------------------------|--|
| 5.          | 249 7         | 9 50-75% Grass cover, F |                      |                | , HSG C                        |  |
| 5.          | .249          | 100.                    | 00% Pervi            | ous Area       |                                |  |
| Tc<br>(min) | Length (feet) | Slope<br>(ft/ft)        | Velocity<br>(ft/sec) | Capacity (cfs) | Description                    |  |
| 7.7         | 600           |                         | 1.30                 |                | Direct Entry, C2 Drainage Area |  |
| 4.8         | 200           |                         | 0.70                 |                | Direct Entry,                  |  |
| 12.5        | 800           | Total                   |                      |                |                                |  |

# Subcatchment C2T: C2 Drainage Area



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 21

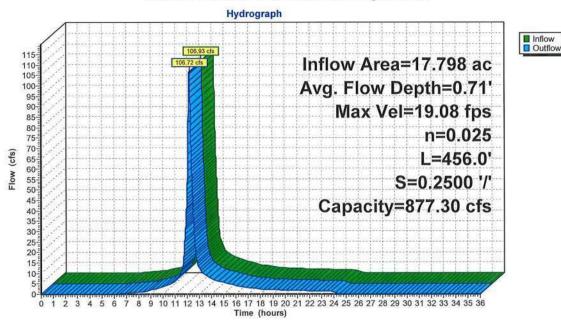
# Summary for Reach E: Chute-Concrete Block Open Cell

Inflow Area = 17.798 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 106.93 cfs @ 12.15 hrs, Volume= 9.140 af

Outflow = 106.72 cfs @ 12.16 hrs, Volume= 9.140 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs


Max. Velocity= 19.08 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.95 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,552 cf @ 12.15 hrs Average Depth at Peak Storage= 0.71' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented Side Slope Z-value= 4.0 '/' Top Width= 21.00' Length= 456.0' Slope= 0.2500 '/' Inlet Invert= 172.00', Outlet Invert= 58.00'



#### Reach E: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 22

# Summary for Reach NE: Chute-Concrete Block Open Cell

Inflow Area = 15.287 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 91.93 cfs @ 12.15 hrs, Volume= 7.851 af

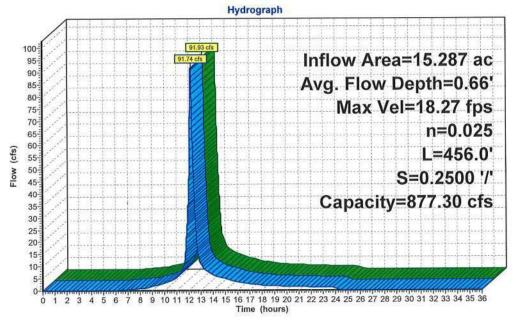
Outflow = 91.74 cfs @ 12.16 hrs, Volume= 7.851 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.27 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.65 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,292 cf @ 12.15 hrs Average Depth at Peak Storage= 0.66' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 456.0' Slope= 0.2500 '/'

Inlet Invert= 172.00', Outlet Invert= 58.00'



#### Reach NE: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 23

### Summary for Reach NW: Chute-Concrete Block Open Cell

Inflow Area = 13.115 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 77.52 cfs @ 12.15 hrs, Volume= 6.735 af

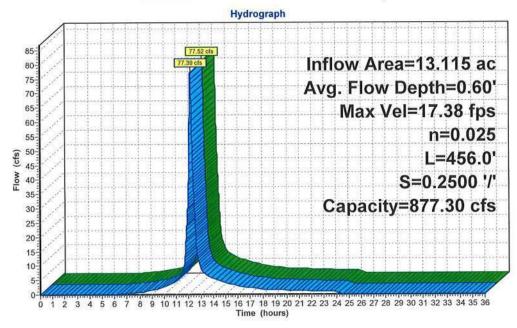
Outflow = 77.39 cfs @ 12.16 hrs, Volume= 6.735 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 17.38 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.36 fps, Avg. Travel Time= 1.4 min

Peak Storage= 2,032 cf @ 12.15 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 456.0' Slope= 0.2500 '/'

Inlet Invert= 172.00', Outlet Invert= 58.00'



#### Reach NW: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc. HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC Printed 8/29/2018

Page 24

# Summary for Reach S: Chute-Concrete Block Open Cell

Inflow Area = 17.361 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 107.94 cfs @ 12.14 hrs, Volume= 8.916 af

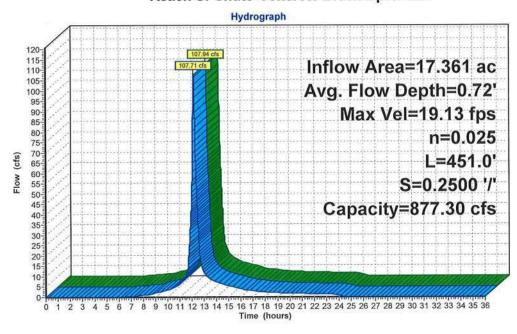
Outflow = 107.71 cfs @ 12.15 hrs, Volume= 8.916 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 19.13 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.91 fps, Avg. Travel Time= 1.3 min

Peak Storage= 2,541 cf @ 12.14 hrs Average Depth at Peak Storage= 0.72' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 451.0' Slope= 0.2500 '/'

Inlet Invert= 172.00', Outlet Invert= 59.25'



Reach S: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 25

### Summary for Reach SE: Chute-Concrete Block Open Cell

Inflow Area = 18.249 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 100.71 cfs @ 12.16 hrs, Volume= 9.372 af

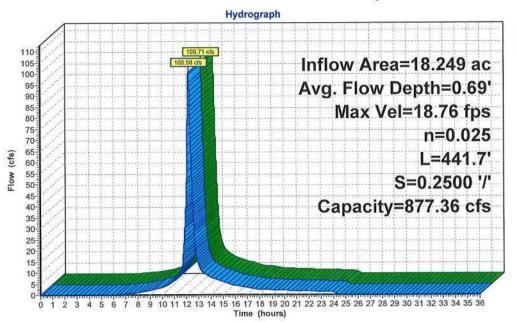
Outflow = 100.58 cfs @ 12.17 hrs, Volume= 9.372 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.76 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.97 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,370 cf @ 12.16 hrs Average Depth at Peak Storage= 0.69' Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.36 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 441.7' Slope= 0.2500 '/'

Inlet Invert= 172.00', Outlet Invert= 61.56'



#### Reach SE: Chute-Concrete Block Open Cell



Inflow
Outflow

Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 26

# Summary for Reach SW: Chute-Concrete Block Open Cell

Inflow Area = 15.434 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 95.96 cfs @ 12.14 hrs, Volume= 7.926 af

Outflow = 95.76 cfs @ 12.15 hrs, Volume= 7.926 af, Atten= 0%, Lag= 0.6 min

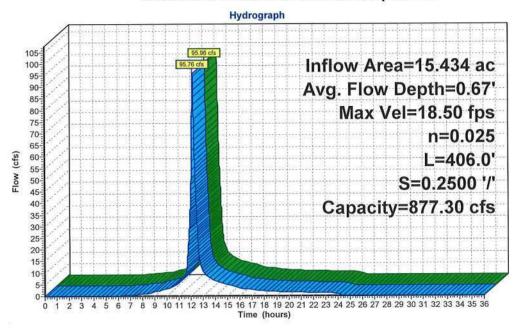
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Max. Velocity= 18.50 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.68 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,104 cf @ 12.14 hrs Average Depth at Peak Storage= 0.67'

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 406.0' Slope= 0.2500 '/'

Inlet Invert= 172.00', Outlet Invert= 70.50'



#### Reach SW: Chute-Concrete Block Open Cell



Type III 24-hr 25-Year Rainfall=8.70"

Prepared by Hanson Professional Services Inc.

Printed 8/29/2018

HydroCAD® 10.00-17 s/n 09651 © 2016 HydroCAD Software Solutions LLC

Page 27

# Summary for Reach W: Chute-Concrete Block Open Cell

Inflow Area = 22.383 ac, 0.00% Impervious, Inflow Depth = 6.16" for 25-Year event

Inflow = 127.46 cfs @ 12.15 hrs, Volume= 11.495 af

Outflow = 127.28 cfs @ 12.16 hrs, Volume= 11.495 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

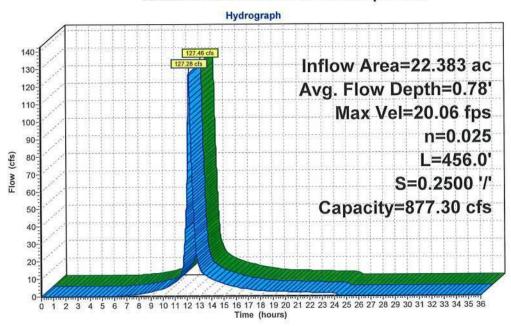
Max. Velocity= 20.06 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.41 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,895 cf @ 12.15 hrs
Average Depth at Peak Storage= 0.78'

Peak Full Depth = 2.00', Flow Area = 26.0 sf. Cana

Bank-Full Depth= 2.00' Flow Area= 26.0 sf, Capacity= 877.30 cfs

5.00' x 2.00' deep channel, n= 0.025 Rubble masonry, cemented


Side Slope Z-value= 4.0 '/' Top Width= 21.00'

Length= 456.0' Slope= 0.2500 '/'

Inlet Invert= 172.00', Outlet Invert= 58.00'



#### Reach W: Chute-Concrete Block Open Cell

